跳到主要內容

臺灣博碩士論文加值系統

(44.192.254.59) 您好!臺灣時間:2023/01/27 18:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:朱盈樺
研究生(外文):Ying-Hua Chu
論文名稱:多通道核磁共振影像射頻接收器
論文名稱(外文):Multichannel Radio-Frequency Receiver Systems for Magnetic Resonance Imaging
指導教授:林發暄
口試委員:鍾孝文曾文毅官偉鵬郭文瑞
口試日期:2014-04-29
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:醫學工程學研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:77
中文關鍵詞:相位線圈SENSE射頻接收線圈磁共振平行影像場偵測器k空間軌跡
外文關鍵詞:arraySENSERF coilparallel MRIfield probek-space trajectory
相關次數:
  • 被引用被引用:0
  • 點閱點閱:482
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文旨在研究發展高品質多通道核磁共振接受器,研究分為二部分。第一部分發展3T 32通道頭部相列線圈,此線圈為環狀對稱排列,針對一維或二維的加速影像重建設計。利用信噪比及重建影像雜訊放大率(g-factor)作為衡量標準,與商用32通道足球型頭部相列線圈相比,結果顯示本線圈設計在加速情況下擁有較高的信噪比與較低的g-factor。我們所研發的頭部相列線圈之信噪比在造影外圍區域為足球型頭部相列線圈的2.36倍,而中心區域大約是0.8倍。第二部分為磁場偵測器系統設計與應用,此系統可偵測動態磁場變化,校正渦電流(eddy current)及梯度線圈不完美造成的k空間軌跡偏移。在應用方面,我們展示此系統運用在重建螺旋軌跡(spiral trajectory)之影像重建上。本研究也提出,利用特製激發線圈可以同時確保磁場偵測器不受成像物體訊號干擾,並同時可獲得高品質核磁共振信號。總結來說,此環狀對稱頭部線圈用於加速影像重建上,可提供高品質的人腦影像,而場偵測器系統則可應用於偵測k-space軌跡與影像校正的一項利器。

This research aims at developing multi-channel radio-frequency (RF) receiver systems. In the first part of the thesis, I developed a 32-channel 3T head coil array with circular symmetric (CS) geometry tailored for 1D and 2D accelerated acquisitions and image reconstructions. Compared to a commercial 32-channel head coil array with soccer-ball geometry (SB array), the CS array has higher signal-to-noise ratio (SNR) and lower reconstruction image noise amplification (g-factor) in accelerated acquisitions. The SNR in the CS array was about 236% and 80% of the SB array at the periphery and the center of the FOV, respectively. The second part of the thesis summarizes the efforts of developing field probe systems. Field probe systems can monitor magnetic field fluctuation caused by imperfect gradients, and eddy current. The information can be used to correct k-space trajectory. Images acquired from a spiral k-space trajectory were used to demonstrate the effectiveness of our field probe system by comparing the image reconstructed with/without the measured k-space trajectory. We also present a novel transceiver field probe system to allow high quality monitoring local magnetic field disturbances dynamically at the same frequency of the imaging object with minimized interferences. In conclusion, the CS array can be a helpful tool to provide high quality images of the human brain in accelerated MRI acquisitions. Field probe systems are useful tools in calibrating the k-space trajectory.

摘要...ii
Abstract...iii
List of Figures...viii
List of Tables...xiii
Introduction...1
Part I...4
1. Introduction...5
2. Method...8
2.1. Circularly symmetric 32-channel array design...8
2.2. Bench measurements...12
2.3. Single channel control experiment...13
2.4. Imaging experiments...14
3.2.1. Noise covariance matrix, SNR, g-factor maps, and anatomical images...14
3.2.2. Parallel MRI using a Cartesian k-space trajectory...17
3.2.3. Parallel MRI using a radial k-space trajectory...17
3. Results...18
3.1. Bench measurements...18
3.2. Single channel control experiment...19
3.3. Imaging experiments...20
3.3.1. Noise covariance matrix, SNR profiles, and anatomical images...20
3.3.2. Parallel MRI using a Cartesian k-space trajectory...22
3.3.3. Parallel MRI using a radial k-space trajectory...33
4. Discussion...34
Part II...38
1. Introduction...39
2. Method...42
2.1. Field probe construction and optimizing the susceptibility matching...42
2.2. Coupling reduction between probes and RF coils...44
2.3. Isolation between probes and image object...48
2.4. A Field probe transceiver system with controllable RF coupling and decoupling...49
2.5. Field probe application...52
2.5.1. Magnetic Field Measurement...52
2.5.2. An application of spiral trajectory with 2D correction using 8-channel Field probes monitoring system with susceptibility matching type C and RF shield...53
3. Result...55
3.1. Field probe construction with optimizing susceptibility matching...55
3.2. Coupling reduction between probes and RF coils...59
3.3. Isolation between probes and image object...60
3.4. A field probe transceiver system with controllable RF coupling and decoupling...62
3.5. An application of spiral trajectory with 2D correction using 8-channelField probes monitoring system...63
4. Discussion...67
Conclusion...71
Reference...72


1.Roemer PB, Edelstein WA, Hayes CE, Souza SP, Mueller OM. The Nmr Phased-Array. Magn Reson Med 1990;16(2):192-225.
2.Wang Y. Description of parallel imaging in MRI using multiple coils. Magn Reson Med 2000;44(3):495-499.
3.Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: Sensitivity encoding for fast MRI. Magn Reson Med 1999;42(5):952-962.
4.Mansfield P. Multi-planar image formation using NMR spin echoes. Journal of Physics C: Solid State Physics 1977;10(3):L55.
5.Ahn C, Kim J, Cho Z. High-speed spiral-scan echo planar NMR imaging-I. Medical Imaging, IEEE Transactions on 1986;5(1):2-7.
6.Barmet C, De Zanche N, Pruessmann KP. Spatiotemporal magnetic field monitoring for MR. Magn Reson Med 2008;60(1):187-197.
7.De Zanche N, Barmet C, Nordmeyer-Massner JA, Pruessmann KP. NMR probes for measuring magnetic fields and field dynamics in MR systems. Magn Reson Med 2008;60(1):176-186.
8.Roemer PB, Edelstein WA, Hayes CE, Souza SP, Mueller OM. The NMR phased array. Magnetic resonance in medicine : official journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine 1990;16(2):192-225.
9.Sodickson DK, McKenzie CA. A generalized approach to parallel magnetic resonance imaging. Med Phys 2001;28(8):1629-1643.
10.Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J, Kiefer B, Haase A. Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magnetic resonance in medicine : official journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine 2002;47(6):1202-1210.
11.Sodickson DK, Manning WJ. Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magnetic resonance in medicine : official journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine 1997;38(4):591-603.
12.Ohliger MA, Sodickson DK. An introduction to coil array design for parallel MRI. NMR Biomed 2006;19(3):300-315.
13.Wiesinger F, Boesiger P, Pruessmann KP. Electrodynamics and ultimate SNR in parallel MR imaging. Magnetic resonance in medicine : official journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine 2004;52(2):376-390.
14.Ohliger MA, Grant AK, Sodickson DK. Ultimate intrinsic signal-to-noise ratio for parallel MRI: electromagnetic field considerations. Magnetic resonance in medicine : official journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine 2003;50(5):1018-1030.
15.de Zwart JA, Ledden PJ, van Gelderen P, Bodurka J, Chu R, Duyn JH. Signal-to-noise ratio and parallel imaging performance of a 16-channel receive-only brain coil array at 3.0 Tesla. Magnetic resonance in medicine : official journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine 2004;51(1):22-26.
16.de Zwart JA, Ledden PJ, Kellman P, van Gelderen P, Duyn JH. Design of a SENSE-optimized high-sensitivity MRI receive coil for brain imaging. Magnetic resonance in medicine : official journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine 2002;47(6):1218-1227.
17.Bodurka J, Ledden PJ, van Gelderen P, Chu R, de Zwart JA, Morris D, Duyn JH. Scalable multichannel MRI data acquisition system. Magnetic resonance in medicine : official journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine 2004;51(1):165-171.
18.Cohen-Adad J, Mareyam A, Keil B, Polimeni JR, Wald LL. 32-channel RF coil optimized for brain and cervical spinal cord at 3 T. Magnetic resonance in medicine : official journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine 2011;66(4):1198-1208.
19.Wiggins GC, Triantafyllou C, Potthast A, Reykowski A, Nittka M, Wald LL. 32-channel 3 Tesla receive-only phased-array head coil with soccer-ball element geometry. Magnetic resonance in medicine : official journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine 2006;56(1):216-223.
20.Keil B, Blau JN, Biber S, Hoecht P, Tountcheva V, Setsompop K, Triantafyllou C, Wald LL. A 64-channel 3T array coil for accelerated brain MRI. Magnetic resonance in medicine : official journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine 2013;70(1):248-258.
21.Wiggins GC, Polimeni JR, Potthast A, Schmitt M, Alagappan V, Wald LL. 96-Channel receive-only head coil for 3 Tesla: design optimization and evaluation. Magnetic resonance in medicine : official journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine 2009;62(3):754-762.
22.Schmitt M, Potthast A, Sosnovik DE, Polimeni JR, Wiggins GC, Triantafyllou C, Wald LL. A 128-channel receive-only cardiac coil for highly accelerated cardiac MRI at 3 Tesla. Magnetic resonance in medicine : official journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine 2008;59(6):1431-1439.
23.Deppe MH, Parra-Robles J, Marshall H, Lanz T, Wild JM. A flexible 32-channel receive array combined with a homogeneous transmit coil for human lung imaging with hyperpolarized 3He at 1.5 T. Magnetic resonance in medicine : official journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine 2011;66(6):1788-1797.
24.Nordmeyer-Massner JA, De Zanche N, Pruessmann KP. Mechanically adjustable coil array for wrist MRI. Magnetic resonance in medicine : official journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine 2009;61(2):429-438.
25.Keil B, Alagappan V, Mareyam A, McNab JA, Fujimoto K, Tountcheva V, Triantafyllou C, Dilks DD, Kanwisher N, Lin W, Grant PE, Wald LL. Size-optimized 32-channel brain arrays for 3 T pediatric imaging. Magnetic resonance in medicine : official journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine 2011;66(6):1777-1787.
26.McDougall MP, Wright SM. 64-channel array coil for single echo acquisition magnetic resonance imaging. Magnetic resonance in medicine : official journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine 2005;54(2):386-392.
27.De Zanche N, Massner JA, Leussler C, Pruessmann KP. Modular design of receiver coil arrays. NMR in Biomedicine 2008;21(6):644-654.
28.Mispelter J, Lupu M, Briguet A. NMR probeheads for biophysical and biomedical experiments: theoretical principles &; practical guidelines: Imperial College Pr; 2006.
29.Hergt M, Oppelt R, Vester M, Reykowski A, Huber K, Jahns K, Fischer H. Low noise preamplifier with integrated cable trap. 2007. Proc. Intl. Soc. Mag. Reson. Med. p 1037.
30.Roemer PB, Edelstein WA, Hayes CE, Souza SP, Mueller OM. The Nmr Phased-Array. Magn Reson Med 1990;16(2):192-225.
31.Possanzini C, Boutelje M. Influence of magnetic field on preamplifiers using GaAs FET technology. 2008. Proc. Intl. Soc. Mag. Reson. Med. p 1123.
32.Duan Q, Otazo R, Xu J, Sodickson DK. Regularization of parallel MRI reconstruction using in vivo coil sensitivities. 2009. p 72580Z-72580Z-72588.
33.Lin FH, Witzel T, Schultz G, Gallichan D, Kuo WJ, Wang FN, Hennig J, Zaitsev M, Belliveau JW. Reconstruction of MRI data encoded by multiple nonbijective curvilinear magnetic fields. Magnetic resonance in medicine : official journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine 2012;68(4):1145-1156.
34.Noll DC, Meyer CH, Pauly JM, Nishimura DG, Macovski A. A homogeneity correction method for magnetic resonance imaging with time-varying gradients. IEEE Trans Med Imaging 1991;10(4):629-637.
35.Pipe JG. Motion correction with PROPELLER MRI: application to head motion and free-breathing cardiac imaging. Magnetic resonance in medicine : official journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine 1999;42(5):963-969.
36.Zahneisen B, Hugger T, Lee KJ, LeVan P, Reisert M, Lee HL, Asslander J, Zaitsev M, Hennig J. Single shot concentric shells trajectories for ultra fast fMRI. Magnetic resonance in medicine : official journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine 2012;68(2):484-494.
37.Zahneisen B, Grotz T, Lee KJ, Ohlendorf S, Reisert M, Zaitsev M, Hennig J. Three-dimensional MR-encephalography: fast volumetric brain imaging using rosette trajectories. Magnetic resonance in medicine : official journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine 2011;65(5):1260-1268.
38.Stockmann JP, Ciris PA, Galiana G, Tam L, Constable RT. O-space imaging: Highly efficient parallel imaging using second-order nonlinear fields as encoding gradients with no phase encoding. Magnetic resonance in medicine : official journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine 2010;64(2):447-456.
39.Barmet C, De Zanche N, Wilm BJ, Pruessmann KP. A Transmit/Receive System for Magnetic Field Monitoring of In Vivo MRI. Magn Reson Med 2009;62(1):269-276.
40.Boer VO, vd Bank BL, van Vliet G, Luijten PR, Klomp DWJ. Direct B0 field monitoring and real-time B0 field updating in the human breast at 7 tesla. Magn Reson Med 2012;67(2):586-591.
41.Seeber DA, Jevtic I, Menon A. Floating shield current suppression trap. Concept Magn Reson B 2004;21B(1):26-31.
42.Glover GH. Spiral imaging in fMRI. Neuroimage 2012;62(2):706-712.
43.Weiger M, Pruessmann KP, Osterbauer R, Bornert P, Boesiger P, Jezzard P. Sensitivity-encoded single-shot spiral imaging for reduced susceptibility artifacts in BOLD fMRI. Magn Reson Med 2002;48(5):860-866.
44.Glover GH. Simple analytic spiral K-space algorithm. Magn Reson Med 1999;42(2):412-415.
45.Maeda A, Sano K, Yokoyama T. Reconstruction by Weighted Correlation for Mri with Time-Varying Gradients. Ieee T Med Imaging 1988;7(1):26-31.



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top