(18.210.12.229) 您好!臺灣時間:2021/03/01 05:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳聖凱
研究生(外文):Sheng-Kai Wu
論文名稱:聚焦式超音波應用於中樞神經系統疾病治療之探討
論文名稱(外文):Investigation of Focused Ultrasound for the Treatment of Central Nervous System Diseases
指導教授:林文澧林文澧引用關係
指導教授(外文):Win-Li Lin
口試委員:陳文翔江惠華謝松蒼李宗海黃棣棟
口試委員(外文):Wen-Shiang ChenHui-Hua ChiangSung-Tsang HsiehTsong-Hai LeeTai-Tong Wong
口試日期:2014-07-29
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:醫學工程學研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:73
中文關鍵詞:紅血球生成素聚焦式超音波微氣泡治療期效熱治療乳癌腦部轉移
外文關鍵詞:ErythropoietinMicrobubbles/Focused ultrasoundThree vessels occlusionTherapeutic time windowAcute phaseChronic phase HyperthermiaFocused ultrasound (FUS)Pegylated liposomal doxorubicin (PLD)Brain metastasis of breast cancer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:190
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
聚焦式超音波藉由其產生的熱效應與非熱效應能增進藥物傳輸的能力。此論文分為兩個部分:(1)利用聚焦式超音波搭配微氣泡傳送神經保護物質用於治療缺血後再灌流所造成傷害之腦部組織;(2)利用短時間聚焦式超音波熱治療增加化療藥物進入腦腫瘤區域。紅血球生成素是一種用於治療大腦缺血後再灌流傷害的神經保護物質,然而其通過血腦屏障的能力有限。聚焦式超音波搭配微氣泡震盪能有效開啟血腦屏障,增加血管之通透性。本研究利用聚焦式超音波搭配微氣泡用於延長紅血球生成素的神經保護治療期效。實驗設計為雄性大白鼠施以50分鐘局部腦缺血,於腦部血流再灌流後五小時施以以下幾種治療:I/R (Ischemia/reperfusion)、I/R+MBs (Microbubbles) /FUS (Focused ultrasound)、I/R+hEPO、I/R+hEPO (human recombinant erythropoietin)+MBs/FUS。動物於24小時後進行急性期之評估;長期療效評估包含步態分析及前肢使用頻率差別。由定量分析結果得知,聚焦式超音波搭配微氣泡可增加紅血球生成素累積於受損害之腦組織。急性期分析結果顯示I/R+hEPO+MBs/FUS組別其神經動作表現與損傷區域皆有明顯改善。更重要的是長期行為評估亦顯示I/R+hEPO+MBs/FUS的確對於其行動步態左右前肢使用協調有顯著的改善。此研究證實就算超過單獨使用紅血球生成素的治療效期,聚焦式超音波搭配微氣泡仍然可以傳送具有神經保護作用之物質進入受損腦區,並達到治療之效果。血腦屏障與血腫瘤屏障會抑制化療藥物在腦部之吸收與累積,而熱治療可增進化療藥物進入腫瘤區域。此研究探討短時間聚焦式超音波熱治療是否可增強pegylated liposomal doxorubicin (PLD)對於乳癌腦部轉移之化療效用。本實驗使用小鼠乳癌細胞4T1種植於小鼠腦部。利用活體影像系統(IVIS)追蹤腫瘤生長。治療時間點設定為細胞植入後六天,給予PLD (5 mg/kg)並施以10分鐘聚焦式超音波熱治療。由定量結果得知,短時間聚焦式超音波熱治療可增加PLD累積於腦瘤區域。化療藥物PLD加上短時間聚焦式超音波熱治療確實能有效抑制腫瘤之生長,而免疫染色及細胞凋亡測試亦可證實其效用。此研究證實應用短時間聚焦式超音波熱治療能促進化療藥物有效進入腦腫瘤組織並達到治療之效果。

Focused ultrasound is a promising modality to enhance drug delivery via its thermal and non-thermal effects. The study included two parts: part (1) using MBs/FUS to deliver a neuroprotective agent into ischemia/reperfusion (I/R)-induced injured brain; and part (2) using short-time FUS hyperthermia to enhance a chemotherapeutic agent into the brain tumor.
Erythropoietin (EPO) is a neuroprotective agent against cerebral I/R-induced brain injury. However, its crossing of blood-brain barrier is limited. Focused ultrasound (FUS) sonication with microbubbles (MBs) can effectively open blood-brain barrier to boost the vascular permeability. In this study, we investigated the effects of MBs/FUS on extending the therapeutic time window of EPO and its neuroprotective effects in both acute and chronic phases. Male Wistar rats were firstly subjected to two common carotid arteries and right middle cerebral artery occlusion (three vessels occlusion, 3VO) for 50 min, and then the rats were treated with hEPO (human recombinant EPO, 5000 IU/kg) with or without MBs/FUS at 5 h after occlusion/reperfusion. Acute phase investigation (I/R, I/R+MBs/FUS, I/R+hEPO, and I/R+hEPO+MBs/FUS) was performed 24 h after I/R; chronic tests including cylinder test and gait analysis were performed one month after I/R. The experimental results showed that MBs/FUS significantly increased the cerebral content of EPO by bettering vascular permeability. In acute phase, both significant improvement of neurological score and reduction of infarct volume were found in the I/R+hEPO+MBs/FUS group, as compared with I/R and I/R+hEPO groups. In chronic phase, long-term behavioral recovery and neuronal loss in brain cortex after I/R injury was significantly improved in the I/R+hEPO+MBs/FUS group. This study indicates that hEPO administration with MBs/FUS sonication even at 5 h after occlusion/reperfusion can produce a significant neuroprotection.
The blood–brain/tumor barrier (BBB/BTB) inhibits the uptake and accumulation of chemotherapeutic drugs. Hyperthermia can enhance the delivery of chemotherapeutic agent into tumors. In this study, we investigated the effects of short-time FUS hyperthermia on the delivery and therapeutic efficacy of pegylated liposomal doxorubicin (PLD) for brain metastasis of breast cancer. Murine breast cancer 4T1-luc2 cells expressing firefly luciferase were injected into female BALB/c mice striatum tissues and used as a brain metastasis model. The mice were intravenously injected with PLD (5 mg/kg) with/without 10 min transcranial FUS hyperthermia on Day-6 after tumor implantation. The amounts of doxorubicin accumulated in the normal brain tissues and tumor tissues with/without FUS hyperthermia were measured using fluorometry. The tumor growth for the control, hyperthermia, PLD, and PLD+Hyperthermia groups was measured using an IVIS system every other day from day 3 to day 11. Cell apoptosis and tumor characteristics were assessed using immunohistochemistry. Short-time FUS hyperthermia was able to significantly enhance the PLD delivery into brain tumors. The tumor growth was effectively inhibited by a single treatment of PLD+Hyperthermia, compared with both PLD alone and short-time FUS hyperthermia alone. Immunohistochemical examination further demonstrated the therapeutic efficacy of PLD plus short-time FUS hyperthermia for brain metastasis of breast cancer. The application of short-time FUS hyperthermia after nanodrug injection may be an effective approach to enhance nanodrug delivery and improve the treatment of metastatic cancers.


口試委員會審定書 I
中文摘要 III
Abstract V
Contents VIII
List of Figures XI
Chapter 1 Introduction 1
1-1 Ultrasound 1
1-1-1 General Properties of Ultrasound 1
1-1-2 Bio-effects of Ultrasound 1
1-1-3 Hyperthermia (HT) 2
1-1-4 Microbubbles (MBs) 3
1-2 Ultrasound Drug Delivery 4
1-2-1 Blood-Brain Barrier Opening by Focused Ultrasound with Microbubbles 4
1-2-2 Ultrasound Hyperthermia 4
1-3 Blood-Brain / Blood-Tumor Barriers 5
1-3-1 Blood-Brain Barrier 5
1-3-2 Blood-Tumor Barrier 6
1-4 Purposes 6
1-5 Overview 7
Chapter 2 Targeted Delivery of Erythropoietin by Transcranial Focused Ultrasound for Neuroprotection against Ischemia/reperfusion-induced Neuronal Injury: A Long-term and Short-term Study 10
2-1 Introduction 10
2-2 Materials and Methods 12
2-2-1 Three Vessels Occlusion (3VO) Model 13
2-2-2Experimental Grouping 13
2-2-3 Focused Ultrasound (FUS) Sonication 14
2-2-4 Quantification of hEPO Entering the Brain Tissue 15
2-2-5 Infarct Volume and Residual Brain Volume Evaluation 16
2-2-6 Behavioral Evaluation 16
2-2-7 Immunohistochemistry 17
2-2-8 Statistical Analysis 19
2-3 Results 19
2-3-1 Amount of hEPO Delivered into Brain and CSF by MBs/FUS 19
2-3-2 Reduction of Infarct Volume by hEPO+MBs/FUS 20
2-3-3 Improvement of Neurological Behavior 20
2-3-4 Neuroprotective Effect of hEPO+MBs/FUS 21
2-3-5 Increase of Residual Brain Volume by hEPO+MBs/FUS in Chronic Phase 21
2-3-6 Improvement of Asymmetric Limb-Use and Recovery of Gait Deficits by hEPO+MBs/FUS in Chronic Phase 22
2-4 Discussion 23
Chapter 3 Short-time Focused Ultrasound Hyperthermia Enhances Liposomal Doxorubicin Delivery and Anti-tumor Efficacy for Brain Metastasis of Breast Cancer 34
3-1 Introduction 34
3-2 Materials and Methods 36
3-2-1 Preparations of Cells and the Intracranial Tumor Model 36
3-2-2 Focused Ultrasound (FUS) System and Short-time FUS Hyperthermia 37
3-2-3 Experimental Grouping 39
3-2-4 Quantification of PLD Entering the Brain Tissue 39
3-2-5 Measurement of Tumor Growth by In vivo Imaging 40
3-2-6 Histology and Immunohistochemistry 41
3-2-7 TUNEL Assay 42
3-2-8 Statistical Analysis 43
3-3 Results 43
3-3-1 Enhancement of PLD Delivery to Normal Brain and Tumor Tissues by FUS Hyperthermia 43
3-3-2 Short-time FUS Hyperthermia Enhances the Cytotoxic Action of PLD in Tumor 44
3-3-3 Inhibition of Proliferation in Tumors by FUS Hyperthermia plus PLD 45
3-3-4 Enhancement of TUNEL Staining by Short-time FUS Hyperthermia plus PLD 46
3-4 Discussion 46
Chapter 4 Conclusions 60
Chapter 5 Future Work 63
References 65


Akiyoshi, T., Wada, T., Arinaga, S., Koba, F., &; Tsuji, H. (1986). Enhanced chemosensitivity of cells from malignant effusions under condition of exposure to high temperature. Jpn J Surg, 16(5), 323-329.
Aronowski, J., Strong, R., &; Grotta, J. C. (1997). Reperfusion injury: demonstration of brain damage produced by reperfusion after transient focal ischemia in rats. J Cereb Blood Flow Metab, 17(10), 1048-1056.
Barnholtz-Sloan, J. S., Yu, C., Sloan, A. E., Vengoechea, J., Wang, M., Dignam, J. J., . . . Kattan, M. W. (2012). A nomogram for individualized estimation of survival among patients with brain metastasis. Neuro Oncol, 14(7), 910-918.
Bernaudin, M., Marti, H. H., Roussel, S., Divoux, D., Nouvelot, A., MacKenzie, E. T., &; Petit, E. (1999). A potential role for erythropoietin in focal permanent cerebral ischemia in mice. J Cereb Blood Flow Metab, 19(6), 643-651.
Brines, M. L., Ghezzi, P., Keenan, S., Agnello, D., de Lanerolle, N. C., Cerami, C., . . . Cerami, A. (2000). Erythropoietin crosses the blood-brain barrier to protect against experimental brain injury. Proc Natl Acad Sci U S A, 97(19), 10526-10531.
Chen, D., Sun, K., Mu, H., Tang, M., Liang, R., Wang, A., . . . Liu, W. (2012). pH and temperature dual-sensitive liposome gel based on novel cleavable mPEG-Hz-CHEMS polymeric vaginal delivery system. Int J Nanomedicine, 7, 2621-2630.
Crowder, K. C., Hughes, M. S., Marsh, J. N., Barbieri, A. M., Fuhrhop, R. W., Lanza, G. M., &; Wickline, S. A. (2005). Sonic activation of molecularly-targeted nanoparticles accelerates transmembrane lipid delivery to cancer cells through contact-mediated mechanisms: implications for enhanced local drug delivery. Ultrasound Med Biol, 31(12), 1693-1700.
Deeken, J. F., &; Loscher, W. (2007). The blood-brain barrier and cancer: transporters, treatment, and Trojan horses. Clin Cancer Res, 13(6), 1663-1674.
Frenkel, V., Etherington, A., Greene, M., Quijano, J., Xie, J., Hunter, F., . . . Li, K. C. (2006). Delivery of liposomal doxorubicin (Doxil) in a breast cancer tumor model: investigation of potential enhancement by pulsed-high intensity focused ultrasound exposure. Acad Radiol, 13(4), 469-479.
Gabathuler, R. (2009). Blood-brain barrier transport of drugs for the treatment of brain diseases. CNS Neurol Disord Drug Targets, 8(3), 195-204.
Gabizon, A., Shmeeda, H., &; Barenholz, Y. (2003). Pharmacokinetics of pegylated liposomal Doxorubicin: review of animal and human studies. Clin Pharmacokinet, 42(5), 419-436.
Gan, Y., Xing, J., Jing, Z., Stetler, R. A., Zhang, F., Luo, Y., . . . Cao, G. (2012). Mutant erythropoietin without erythropoietic activity is neuroprotective against ischemic brain injury. Stroke, 43(11), 3071-3077.
Gasselhuber, A., Dreher, M. R., Partanen, A., Yarmolenko, P. S., Woods, D., Wood, B. J., &; Haemmerich, D. (2012). Targeted drug delivery by high intensity focused ultrasound mediated hyperthermia combined with temperature-sensitive liposomes: computational modelling and preliminary in vivovalidation. Int J Hyperthermia, 28(4), 337-348.
Gerstner, E. R., &; Fine, R. L. (2007). Increased permeability of the blood-brain barrier to chemotherapy in metastatic brain tumors: establishing a treatment paradigm. J Clin Oncol, 25(16), 2306-2312.
Ginsberg, M. D., &; Busto, R. (1998). Combating hyperthermia in acute stroke: a significant clinical concern. Stroke, 29(2), 529-534.
Gloor, S. M., Wachtel, M., Bolliger, M. F., Ishihara, H., Landmann, R., &; Frei, K. (2001). Molecular and cellular permeability control at the blood-brain barrier. Brain Res Brain Res Rev, 36(2-3), 258-264.
Grull, H., &; Langereis, S. (2012). Hyperthermia-triggered drug delivery from temperature-sensitive liposomes using MRI-guided high intensity focused ultrasound. J Control Release, 161(2), 317-327.
Hamby, A. M., Suh, S. W., Kauppinen, T. M., &; Swanson, R. A. (2007). Use of a poly(ADP-ribose) polymerase inhibitor to suppress inflammation and neuronal death after cerebral ischemia-reperfusion. Stroke, 38(2 Suppl), 632-636.
Hasegawa, H., Ushio, Y., Hayakawa, T., Yamada, K., &; Mogami, H. (1983). Changes of the blood-brain barrier in experimental metastatic brain tumors. J Neurosurg, 59(2), 304-310.
Hemmen, T. M., &; Lyden, P. D. (2007). Induced hypothermia for acute stroke. Stroke, 38(2 Suppl), 794-799.
Hong, R. L., Huang, C. J., Tseng, Y. L., Pang, V. F., Chen, S. T., Liu, J. J., &; Chang, F. H. (1999). Direct comparison of liposomal doxorubicin with or without polyethylene glycol coating in C-26 tumor-bearing mice: is surface coating with polyethylene glycol beneficial? Clin Cancer Res, 5(11), 3645-3652.
Hurley, L. H. (2002). DNA and its associated processes as targets for cancer therapy. Nat Rev Cancer, 2(3), 188-200.
Hynynen, K. (2010). MRI-guided focused ultrasound treatments. Ultrasonics, 50(2), 221-229.
Hynynen, K., McDannold, N., Clement, G., Jolesz, F. A., Zadicario, E., Killiany, R., . . . Rosen, D. (2006). Pre-clinical testing of a phased array ultrasound system for MRI-guided noninvasive surgery of the brain--a primate study. Eur J Radiol, 59(2), 149-156.
Hynynen, K., McDannold, N., Sheikov, N. A., Jolesz, F. A., &; Vykhodtseva, N. (2005). Local and reversible blood-brain barrier disruption by noninvasive focused ultrasound at frequencies suitable for trans-skull sonications. Neuroimage, 24(1), 12-20.
Hynynen, K., McDannold, N., Vykhodtseva, N., &; Jolesz, F. A. (2001). Noninvasive MR imaging-guided focal opening of the blood-brain barrier in rabbits. Radiology, 220(3), 640-646.
Hynynen, K., McDannold, N., Vykhodtseva, N., Raymond, S., Weissleder, R., Jolesz, F. A., &; Sheikov, N. (2006). Focal disruption of the blood-brain barrier due to 260-kHz ultrasound bursts: a method for molecular imaging and targeted drug delivery. J Neurosurg, 105(3), 445-454.
Ishii, T., Asai, T., Urakami, T., &; Oku, N. (2010). Accumulation of macromolecules in brain parenchyma in acute phase of cerebral infarction/reperfusion. Brain Res, 1321, 164-168.
Issels, R. D., Lindner, L. H., Verweij, J., Wust, P., Reichardt, P., Schem, B. C., . . . European Society for Hyperthermic, O. (2010). Neo-adjuvant chemotherapy alone or with regional hyperthermia for localised high-risk soft-tissue sarcoma: a randomised phase 3 multicentre study. Lancet Oncol, 11(6), 561-570.
Jordao, J. F., Ayala-Grosso, C. A., Markham, K., Huang, Y., Chopra, R., McLaurin, J., . . . Aubert, I. (2010). Antibodies targeted to the brain with image-guided focused ultrasound reduces amyloid-beta plaque load in the TgCRND8 mouse model of Alzheimer''s disease. PLoS One, 5(5), e10549.
Kinoshita, M., McDannold, N., Jolesz, F. A., &; Hynynen, K. (2006a). Noninvasive localized delivery of Herceptin to the mouse brain by MRI-guided focused ultrasound-induced blood-brain barrier disruption. Proc Natl Acad Sci U S A, 103(31), 11719-11723.
Kinoshita, M., McDannold, N., Jolesz, F. A., &; Hynynen, K. (2006b). Targeted delivery of antibodies through the blood-brain barrier by MRI-guided focused ultrasound. Biochem Biophys Res Commun, 340(4), 1085-1090.
Kong, G., Anyarambhatla, G., Petros, W. P., Braun, R. D., Colvin, O. M., Needham, D., &; Dewhirst, M. W. (2000). Efficacy of liposomes and hyperthermia in a human tumor xenograft model: importance of triggered drug release. Cancer Res, 60(24), 6950-6957.
Kong, G., Braun, R. D., &; Dewhirst, M. W. (2000). Hyperthermia enables tumor-specific nanoparticle delivery: effect of particle size. Cancer Res, 60(16), 4440-4445.
Kong, G., Braun, R. D., &; Dewhirst, M. W. (2001). Characterization of the effect of hyperthermia on nanoparticle extravasation from tumor vasculature. Cancer Res, 61(7), 3027-3032.
Kovacs, Z., Werner, B., Rassi, A., Sass, J. O., Martin-Fiori, E., &; Bernasconi, M. (2014). Prolonged survival upon ultrasound-enhanced doxorubicin delivery in two syngenic glioblastoma mouse models. J Control Release, 187C, 74-82.
Kroll, R. A., &; Neuwelt, E. A. (1998). Outwitting the blood-brain barrier for therapeutic purposes: osmotic opening and other means. Neurosurgery, 42(5), 1083-1099; discussion 1099-1100.
Leighton, T. G. (2007). What is ultrasound? Prog Biophys Mol Biol, 93(1-3), 3-83.
Leist, M., Ghezzi, P., Grasso, G., Bianchi, R., Villa, P., Fratelli, M., . . . Brines, M. (2004). Derivatives of erythropoietin that are tissue protective but not erythropoietic. Science, 305(5681), 239-242.
Li, L., ten Hagen, T. L., Haeri, A., Soullie, T., Scholten, C., Seynhaeve, A. L., . . . Koning, G. A. (2014). A novel two-step mild hyperthermia for advanced liposomal chemotherapy. J Control Release, 174, 202-208.
Li, L., ten Hagen, T. L., Hossann, M., Suss, R., van Rhoon, G. C., Eggermont, A. M., . . . Koning, G. A. (2013). Mild hyperthermia triggered doxorubicin release from optimized stealth thermosensitive liposomes improves intratumoral drug delivery and efficacy. J Control Release, 168(2), 142-150.
Lin, C. Y., Tseng, H. C., Shiu, H. R., Wu, M. F., Chou, C. Y., &; Lin, W. L. (2012). Ultrasound sonication with microbubbles disrupts blood vessels and enhances tumor treatments of anticancer nanodrug. Int J Nanomedicine, 7, 2143-2152.
Liu, H. L., Hua, M. Y., Chen, P. Y., Chu, P. C., Pan, C. H., Yang, H. W., . . . Wei, K. C. (2010). Blood-brain barrier disruption with focused ultrasound enhances delivery of chemotherapeutic drugs for glioblastoma treatment. Radiology, 255(2), 415-425.
Liu, H. L., Hua, M. Y., Yang, H. W., Huang, C. Y., Chu, P. C., Wu, J. S., . . . Wei, K. C. (2010). Magnetic resonance monitoring of focused ultrasound/magnetic nanoparticle targeting delivery of therapeutic agents to the brain. Proc Natl Acad Sci U S A, 107(34), 15205-15210.
Liu, H. L., Wai, Y. Y., Chen, W. S., Chen, J. C., Hsu, P. H., Wu, X. Y., . . . Wang, J. J. (2008). Hemorrhage detection during focused-ultrasound induced blood-brain-barrier opening by using susceptibility-weighted magnetic resonance imaging. Ultrasound Med Biol, 34(4), 598-606.
Lockman, P. R., Mittapalli, R. K., Taskar, K. S., Rudraraju, V., Gril, B., Bohn, K. A., . . . Smith, Q. R. (2010). Heterogeneous blood-tumor barrier permeability determines drug efficacy in experimental brain metastases of breast cancer. Clin Cancer Res, 16(23), 5664-5678.
Lyass, O., Uziely, B., Ben-Yosef, R., Tzemach, D., Heshing, N. I., Lotem, M., . . . Gabizon, A. (2000). Correlation of toxicity with pharmacokinetics of pegylated liposomal doxorubicin (Doxil) in metastatic breast carcinoma. Cancer, 89(5), 1037-1047.
Maeda, H. (2012). Macromolecular therapeutics in cancer treatment: the EPR effect and beyond. J Control Release, 164(2), 138-144.
Marquet, F., Tung, Y. S., Teichert, T., Ferrera, V. P., &; Konofagou, E. E. (2011). Noninvasive, transient and selective blood-brain barrier opening in non-human primates in vivo. PLoS One, 6(7), e22598.
Mayer, L. D., Dougherty, G., Harasym, T. O., &; Bally, M. B. (1997). The role of tumor-associated macrophages in the delivery of liposomal doxorubicin to solid murine fibrosarcoma tumors. J Pharmacol Exp Ther, 280(3), 1406-1414.
McDannold, N., Vykhodtseva, N., &; Hynynen, K. (2006). Targeted disruption of the blood-brain barrier with focused ultrasound: association with cavitation activity. Phys Med Biol, 51(4), 793-807.
McDannold, N., Vykhodtseva, N., Jolesz, F. A., &; Hynynen, K. (2004). MRI investigation of the threshold for thermally induced blood-brain barrier disruption and brain tissue damage in the rabbit brain. Magn Reson Med, 51(5), 913-923.
McDannold, N., Vykhodtseva, N., Raymond, S., Jolesz, F. A., &; Hynynen, K. (2005). MRI-guided targeted blood-brain barrier disruption with focused ultrasound: histological findings in rabbits. Ultrasound Med Biol, 31(11), 1527-1537.
Menzies, S. A., Betz, A. L., &; Hoff, J. T. (1993). Contributions of ions and albumin to the formation and resolution of ischemic brain edema. J Neurosurg, 78(2), 257-266.
Menzies, S. A., Hoff, J. T., &; Betz, A. L. (1992). Middle cerebral artery occlusion in rats: a neurological and pathological evaluation of a reproducible model. Neurosurgery, 31(1), 100-106; discussion 106-107.
Miller, D. L. (2007). Overview of experimental studies of biological effects of medical ultrasound caused by gas body activation and inertial cavitation. Prog Biophys Mol Biol, 93(1-3), 314-330.
Mohan, P., &; Rapoport, N. (2010). Doxorubicin as a molecular nanotheranostic agent: effect of doxorubicin encapsulation in micelles or nanoemulsions on the ultrasound-mediated intracellular delivery and nuclear trafficking. Mol Pharm, 7(6), 1959-1973.
Morioka, T., Kalehua, A. N., &; Streit, W. J. (1991). The microglial reaction in the rat dorsal hippocampus following transient forebrain ischemia. J Cereb Blood Flow Metab, 11(6), 966-973.
Mulvagh, S. L., DeMaria, A. N., Feinstein, S. B., Burns, P. N., Kaul, S., Miller, J. G., . . . Villanueva, F. S. (2000). Contrast echocardiography: current and future applications. J Am Soc Echocardiogr, 13(4), 331-342.
Nagao, M., Suga, H., Okano, M., Masuda, S., Narita, H., Ikura, K., &; Sasaki, R. (1992). Nucleotide sequence of rat erythropoietin. Biochim Biophys Acta, 1171(1), 99-102.
Nagasawa, H., &; Kogure, K. (1989). Correlation between cerebral blood flow and histologic changes in a new rat model of middle cerebral artery occlusion. Stroke, 20(8), 1037-1043.
Nayak, L., Lee, E. Q., &; Wen, P. Y. (2012). Epidemiology of brain metastases. Curr Oncol Rep, 14(1), 48-54.
Pardridge, W. M. (2005). The blood-brain barrier: bottleneck in brain drug development. NeuroRx, 2(1), 3-14.
Park, E. J., Zhang, Y. Z., Vykhodtseva, N., &; McDannold, N. (2012). Ultrasound-mediated blood-brain/blood-tumor barrier disruption improves outcomes with trastuzumab in a breast cancer brain metastasis model. J Control Release, 163(3), 277-284.
Park, J., Zhang, Y., Vykhodtseva, N., Jolesz, F. A., &; McDannold, N. J. (2012). The kinetics of blood brain barrier permeability and targeted doxorubicin delivery into brain induced by focused ultrasound. J Control Release, 162(1), 134-142.
Partanen, A., Yarmolenko, P. S., Viitala, A., Appanaboyina, S., Haemmerich, D., Ranjan, A., . . . Dreher, M. R. (2012). Mild hyperthermia with magnetic resonance-guided high-intensity focused ultrasound for applications in drug delivery. Int J Hyperthermia, 28(4), 320-336.
Peereboom, D. M. (2005). Chemotherapy in brain metastases. Neurosurgery, 57(5 Suppl), S54-65; discusssion S51-54.
Pinzon-Daza, M. L., Campia, I., Kopecka, J., Garzon, R., Ghigo, D., &; Riganti, C. (2013). Nanoparticle- and liposome-carried drugs: new strategies for active targeting and drug delivery across blood-brain barrier. Curr Drug Metab, 14(6), 625-640.
Raymond, S. B., Treat, L. H., Dewey, J. D., McDannold, N. J., Hynynen, K., &; Bacskai, B. J. (2008). Ultrasound enhanced delivery of molecular imaging and therapeutic agents in Alzheimer''s disease mouse models. PLoS One, 3(5), e2175.
Roger, V. L., Go, A. S., Lloyd-Jones, D. M., Benjamin, E. J., Berry, J. D., Borden, W. B., . . . Stroke Statistics, S. (2012). Heart disease and stroke statistics--2012 update: a report from the American Heart Association. Circulation, 125(1), e2-e220.
Sadamoto, Y., Igase, K., Sakanaka, M., Sato, K., Otsuka, H., Sakaki, S., . . . Sasaki, R. (1998). Erythropoietin prevents place navigation disability and cortical infarction in rats with permanent occlusion of the middle cerebral artery. Biochem Biophys Res Commun, 253(1), 26-32.
Sakanaka, M., Wen, T. C., Matsuda, S., Masuda, S., Morishita, E., Nagao, M., &; Sasaki, R. (1998). In vivo evidence that erythropoietin protects neurons from ischemic damage. Proc Natl Acad Sci U S A, 95(8), 4635-4640.
Schallert, T., Fleming, S. M., Leasure, J. L., Tillerson, J. L., &; Bland, S. T. (2000). CNS plasticity and assessment of forelimb sensorimotor outcome in unilateral rat models of stroke, cortical ablation, parkinsonism and spinal cord injury. Neuropharmacology, 39(5), 777-787.
Sheikov, N., McDannold, N., Vykhodtseva, N., Jolesz, F., &; Hynynen, K. (2004). Cellular mechanisms of the blood-brain barrier opening induced by ultrasound in presence of microbubbles. Ultrasound Med Biol, 30(7), 979-989.
Siren, A. L., Fratelli, M., Brines, M., Goemans, C., Casagrande, S., Lewczuk, P., . . . Ghezzi, P. (2001). Erythropoietin prevents neuronal apoptosis after cerebral ischemia and metabolic stress. Proc Natl Acad Sci U S A, 98(7), 4044-4049.
Soffietti, R., Ruda, R., &; Trevisan, E. (2008). Brain metastases: current management and new developments. Curr Opin Oncol, 20(6), 676-684.
Song, C. W. (1984). Effect of local hyperthermia on blood flow and microenvironment: a review. Cancer Res, 44(10 Suppl), 4721s-4730s.
Song, C. W., Park, H. J., Lee, C. K., &; Griffin, R. (2005). Implications of increased tumor blood flow and oxygenation caused by mild temperature hyperthermia in tumor treatment. Int J Hyperthermia, 21(8), 761-767.
Sperduto, P. W., Chao, S. T., Sneed, P. K., Luo, X., Suh, J., Roberge, D., . . . Mehta, M. (2010). Diagnosis-specific prognostic factors, indexes, and treatment outcomes for patients with newly diagnosed brain metastases: a multi-institutional analysis of 4,259 patients. Int J Radiat Oncol Biol Phys, 77(3), 655-661.
Treat, L. H., McDannold, N., Vykhodtseva, N., Zhang, Y., Tam, K., &; Hynynen, K. (2007). Targeted delivery of doxorubicin to the rat brain at therapeutic levels using MRI-guided focused ultrasound. Int J Cancer, 121(4), 901-907.
Treat, L. H., McDannold, N., Zhang, Y., Vykhodtseva, N., &; Hynynen, K. (2012). Improved anti-tumor effect of liposomal doxorubicin after targeted blood-brain barrier disruption by MRI-guided focused ultrasound in rat glioma. Ultrasound Med Biol, 38(10), 1716-1725.
van der Zee, J., Gonzalez Gonzalez, D., van Rhoon, G. C., van Dijk, J. D., van Putten, W. L., &; Hart, A. A. (2000). Comparison of radiotherapy alone with radiotherapy plus hyperthermia in locally advanced pelvic tumours: a prospective, randomised, multicentre trial. Dutch Deep Hyperthermia Group. Lancet, 355(9210), 1119-1125.
Vandeputte, C., Taymans, J. M., Casteels, C., Coun, F., Ni, Y., Van Laere, K., &; Baekelandt, V. (2010). Automated quantitative gait analysis in animal models of movement disorders. BMC Neurosci, 11, 92.
Villa, P., Bigini, P., Mennini, T., Agnello, D., Laragione, T., Cagnotto, A., . . . Ghezzi, P. (2003). Erythropoietin selectively attenuates cytokine production and inflammation in cerebral ischemia by targeting neuronal apoptosis. J Exp Med, 198(6), 971-975.
Villa, P., van Beek, J., Larsen, A. K., Gerwien, J., Christensen, S., Cerami, A., . . . Torup, L. (2007). Reduced functional deficits, neuroinflammation, and secondary tissue damage after treatment of stroke by nonerythropoietic erythropoietin derivatives. J Cereb Blood Flow Metab, 27(3), 552-563.
Vykhodtseva, N., McDannold, N., &; Hynynen, K. (2008). Progress and problems in the application of focused ultrasound for blood-brain barrier disruption. Ultrasonics, 48(4), 279-296.
Wang, Y., Bontempi, B., Hong, S. M., Mehta, K., Weinstein, P. R., Abrams, G. M., &; Liu, J. (2008). A comprehensive analysis of gait impairment after experimental stroke and the therapeutic effect of environmental enrichment in rats. J Cereb Blood Flow Metab, 28(12), 1936-1950.
Weis, S. M., &; Cheresh, D. A. (2011). alphaV integrins in angiogenesis and cancer. Cold Spring Harb Perspect Med, 1(1), a006478.
Wen, D., Boissel, J. P., Tracy, T. E., Gruninger, R. H., Mulcahy, L. S., Czelusniak, J., . . . Bunn, H. F. (1993). Erythropoietin structure-function relationships: high degree of sequence homology among mammals. Blood, 82(5), 1507-1516.
Weng, J. C., Wu, S. K., Lin, W. L., &; Tseng, W. Y. (2011). Detecting blood-brain barrier disruption within minimal hemorrhage following transcranial focused ultrasound: a correlation study with contrast-enhanced MRI. Magn Reson Med, 65(3), 802-811.
Yanamoto, H., Nagata, I., Niitsu, Y., Xue, J. H., Zhang, Z., &; Kikuchi, H. (2003). Evaluation of MCAO stroke models in normotensive rats: standardized neocortical infarction by the 3VO technique. Exp Neurol, 182(2), 261-274.
Yang, F. Y., Wong, T. T., Teng, M. C., Liu, R. S., Lu, M., Liang, H. F., &; Wei, M. C. (2012). Focused ultrasound and interleukin-4 receptor-targeted liposomal doxorubicin for enhanced targeted drug delivery and antitumor effect in glioblastoma multiforme. J Control Release, 160(3), 652-658.
Yang, Y., Yang, Y., Xie, X., Cai, X., Zhang, H., Gong, W., . . . Mei, X. (2014). PEGylated liposomes with NGR ligand and heat-activable cell-penetrating peptide-doxorubicin conjugate for tumor-specific therapy. Biomaterials, 35(14), 4368-4381.
Zhang, F., Xing, J., Liou, A. K., Wang, S., Gan, Y., Luo, Y., . . . Cao, G. (2010). Enhanced Delivery of Erythropoietin Across the Blood-Brain Barrier for Neuroprotection against Ischemic Neuronal Injury. Transl Stroke Res, 1(2), 113-121.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔