(3.231.229.89) 您好!臺灣時間:2019/12/15 20:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
本論文永久網址: 
line
研究生:郭庭赫
研究生(外文):Ting-Ho Kuo
論文名稱:評估生物氣膠活性之噴墨霧化器特性研究
論文名稱(外文):Characterization of an inkjet aerosol generator for bioaerosol survivability study
指導教授:陳志傑陳志傑引用關係
口試委員:林文印吳文中賴全裕郭玉梅
口試日期:2013-12-20
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:職業醫學與工業衛生研究所
學門:醫藥衛生學門
學類:公共衛生學類
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:60
中文關鍵詞:壓電噴墨氣膠微粒產生器生物氣膠
外文關鍵詞:piezoelectric inkjetaerosol generatorbioaerosol
相關次數:
  • 被引用被引用:0
  • 點閱點閱:200
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
環境中的生物氣膠可透過感染方式對人體造成不良影響,懸浮於空氣中的致病微生物主要藉由人類呼吸而進入人體,而此微生物在存活的情況下,才能造成人類感染。由於對人體健康的不良影響,故空氣中微生物濃度與活性表現顯得十分重要,若能模擬出微生物飛行於空氣中的真實狀態,可對其活性的表現做出更進一步的探討。
本研究使用壓電噴墨系統(Piezoelectric inkjet)作為微生物的霧化設備,探討各種影響噴墨參數與產生氣膠微粒的粒徑分布和輸出量,同時建立微生物自然沉降的暴露艙,控制艙中的溫度、溼度和暴露時間,對微生物進行活性分析。本研究使用酵母菌(Saccharomyces cerevisiae)作為主要分析的微生物,以Marple Cascade Impactor 多階衝擊器、gelatin filter 和SKC Biosampler液體衝擊瓶採樣,並以亞甲基藍染色法分析酵母菌的活性。
研究中的壓電噴墨裝置可以順利噴出懸浮溶液,在懸浮溶液濃度等於4.6×106 顆/ml 下,噴出的液滴有74%未包含懸浮固體顆粒,在含有懸浮固體顆粒的26%液滴中,有86%只包含單一顆粒,其餘為包含兩顆以上。
酵母菌暴露在高濕度(RH=86%)和低濕度(RH=20%)的空氣環境下,存活率沒有顯著的差異。隨著沉降時間延長至39 分鐘,存活率也沒有顯著的下降,此結果說明酵母菌微粒飄浮於空氣中時,短時間內幾乎不受空氣中濕度高低影響。酵母菌的存活率在不同採樣方法下呈現很大差異,以濾紙過濾或衝擊方式採樣得到的存活率(15%, 10%)比液體衝擊瓶採樣(65%)低很多,顯示生物氣膠採樣方法對微生物的造成的影響更為劇烈。

he survival characteristics of bioaerosols needed to be considered because they influenced the effectiveness of infection. The survivability of bioaerosols was found to depend on a number of interacting factors, and was not easy to predict. Although there have been many publications on the effect of environmental factors on the survivability of airborne infectious organisms, the results were difficult to compare. Therefore, this work aimed to establish a robust approach to characterizing the survivability of bioaerosols.
In the present study, an inkjet system was employed to generate monodisperse aerosols. Potassium sodium tartrate solution and suspensions of polystyrene latex and yeast were used as test agent. An appropriate driving signal, i.e., a square wave with voltage 14 -18 V and pulse width 14 - 20 μs under frequency 3000 Hz, was used to squeeze the suspension out of a 50-μm nozzle. A high resolution camera was used to monitor and assure that the droplets were uniform in size. Dispersion air was required to reduce droplet coagulation, especially under high generation frequency. The droplets were introduced into a 3-m vertical chamber (diameter 20 cm) to investigate the effect of relative humidity and airborne time on yeast survivability. An aerodynamic particle sizer was used to monitor the size distribution and number concentration of aerosol particles coming out the inkjet generator. A Marple cascade impactor, a SKC bio-sampler, and gelatin filters were used to sample the challenging yeast particles.
The results showed that using inkjet printing method to generate bioaerosols was feasible. The generated droplets were ideally 50 μm with a GSD of 1.06. The optimal concentration of suspension to form droplets was about 4.6×106 #/ml. The fractions of droplets with particle to total droplets, and droplets with one particle to all droplets with particles were about 0.26 and 0.86, respectively. Viability test results showed no significant difference between low humidity (20%) and high humidity (86%). Airborne time up to 39 min under the dried condition of RH 20% did not affect the yeast viability, showing that yeast is resistant to low humidity environmental. However, the viability data from different sampling methods were significantly different: impactor 10%, gelatin filter 15%, and impinger 65%. Accordingly, the bioaerosol sampling methods were more influential on the viability of microorganisms.

誌謝 .............................................................................................................. i
摘要 .............................................................................................................. ii
Abstract ........................................................................................................ iii
目錄 ................................................................................................................iv
表目錄 .......................................................................................................... vi
圖目錄 ......................................................................................................... vii
第1 章、研究背景與目的 .................................................................................... 1
1.1 研究背景 ................................................................................................... 1
1.2 研究目的 ................................................................................................... 2
第2 章、文獻回顧 ............................................................................................ 3
2.1 感染性生物氣膠 ....................................................................................... 3
2.2 環境因子對生物氣膠的影響 ................................................................... 3
2.3 實驗室生物氣膠的產生 ........................................................................... 4
2.4 噴墨系統發展 ........................................................................................... 6
2.5 影響壓電噴墨的參數 ............................................................................... 7
第3 章、實驗材料及方法 .................................................................................... 9
3.1 噴墨系統建置 ........................................................................................... 9
3.1.1 噴頭訊號驅動 ................................................................................. 9
3.1.2 墨滴影像觀測 ................................................................................. 9
3.1.3 輸送壓力控制 ............................................................................... 10
3.1.4 採樣系統與控制參數 ................................................................... 10
3.2 噴墨液滴分析 ......................................................................................... 11
3.2.1 測試溶液 ....................................................................................... 11
3.2.2 粒徑分析 ....................................................................................... 11
3.3 菌液製備及產生 ..................................................................................... 12
3.3.1 懸浮液配製 ................................................................................... 12
3.3.2 染色活性分析 ............................................................................... 13
3.3.3 生物氣膠產生 ............................................................................... 13
3.4 微生物沉降實驗 ..................................................................................... 14
3.4.1 沉降腔 ........................................................................................... 14
3.4.2 飛行時間和距離 ........................................................................... 14
3.4.3 微粒採樣 ....................................................................................... 15
第4 章、結果與討論 ................................................................................ 16
4.1 噴墨系統操作條件 ................................................................................. 16
4.1.1 壓電噴墨頭工作範圍 ................................................................... 16
4.1.2 分散氣流設計 ............................................................................... 17
4.1.3 溶液濃度的影響 ........................................................................... 17
4.1.4 懸浮液濃度的影響 ....................................................................... 17
4.1.5 液滴組成分析 ............................................................................... 18
4.2 酵母菌活性實驗 ..................................................................................... 20
4.2.1 染色濃度 ....................................................................................... 20
4.2.2 氣膠產生器的影響 ....................................................................... 20
4.2.3 溫、溼度及飛行時間的影響 ....................................................... 20
4.2.4 採樣方式的影響 ........................................................................... 21
第5 章、結論與建議 .................................................................................. 22
參考文獻 ...................................................................................................... 23
附錄 ................................................................................................................ 53

Agranovski, V., Ristovski, Z., Hargreaves, M., J Blackall, P., &; Morawska, L. (2003).
Performance evaluation of the UVAPS: influence of physiological age of
airborne bacteria and bacterial stress. Journal of aerosol Science, 34(12):
1711-1727.
Calvert, P. (2001). Inkjet printing for materials and devices. Chemistry of Materials,
13(10): 3299-3305.
Chen, Y. S., Huang, Y. L., Kuo, C. H., &; Chang, S. H. (2007). Investigation of design
parameters for droplet generators driven by piezoelectric actuators.
International journal of mechanical sciences, 49(6): 733-740.
Clark, S., Hall, Y., Kelly, D., Hatch, G., &; Williams, A. (2011). Survival of
Mycobacterium tuberculosis during experimental aerosolization and
implications for aerosol challenge models. Journal of applied microbiology,
111(2): 350-359.
Cole, E. C., &; Cook, C. E. (1998). Characterization of infectious aerosols in health
care facilities: An aid to effective engineering controls and preventive
strategies. American Journal of Infection Control, 26(4): 453-464.
Cox, C. S. (1989). Airborne bacteria and viruses. Science progress, 73(292): 469-499.
Dougherty, G., Hadley, D., O’Connor, P., &; Bottiger, J. (2007). Engineered Aerosol
Production for Laboratory Scale Chemical/Biological Test and Evaluation:
Report no. UCRL-TR-230829, Lawrence Livermore National Laboratory,
Livermore, CA, USA.
Douwes, J. (2003). Bioaerosol Health Effects and Exposure Assessment: Progress and
Prospects. Annals of Occupational Hygiene, 47(3): 187-200.
Douwes, J., Eduard, W., &; Thorne, P. S. (2008). Bioaerosols. In H.
Editor-in-Chief: Kris (Ed.), International Encyclopedia of Public Health (pp.
287-297). Oxford: Academic Press.
Griffiths, W., Stewart, I., Clark, J., &; Holwill, I. (1999). Procedures for the
characterisation of bioaerosol particles. Part I: Aerosolisation and recovery
agent effects. Aerobiologia, 15(4): 267-280.
Griffiths, W., Stewart, I., Clark, J., &; Holwill, I. (2001). Procedures for the
characterisation of bioaerosol particles. Part II: Effects of environment on
culturability. Aerobiologia, 17(2): 109-119.
Griffiths, W., Stewart, I., Reading, A., &; Futter, S. (1996). Effect of aerosolisation,
growth phase and residence time in spray and collection fluids on the
culturability of cells and spores. Journal of aerosol science, 27(5): 803-820.
Hasegawa, N., Yamasaki, S., &; Horiguchi, Y. (2011). A study of bacterial culturability
during bioaerosol challenge test using a test chamber. Journal of Aerosol
Science, 42(6): 397-407.
Heidelberg, J., Shahamat, M., Levin, M., Rahman, I., Stelma, G., Grim, C., et al.
(1997). Effect of aerosolization on culturability and viability of gram-negative
bacteria. Applied and Environmental Microbiology, 63(9): 3585-3588.
Hinds, W. C. (1999). Aerosol technology: properties, behavior, and measurement of
airborne particles: John Wiley &; Sons.
Jo, B. W., Lee, A., Ahn, K. H., &; Lee, S. J. (2009). Evaluation of jet performance in
drop-on-demand (DOD) inkjet printing. Korean Journal of Chemical
Engineering, 26(2): 339-348.
Kwon, K. S. (2010). Experimental analysis of waveform effects on satellite and
ligament behavior via in situ measurement of the drop-on-demand drop
formation curve and the instantaneous jetting speed curve. Journal of
Micromechanics and Microengineering, 20(11): 115005.
Le, H. P. (1998). Progress and trends in ink-jet printing technology. Journal of
Imaging Science and Technology, 42(1): 49-62.
Liou, T. M., Chan, C. Y., &; Shih, K. C. (2010). Effects of actuating waveform, ink
property, and nozzle size on piezoelectrically driven inkjet droplets.
Microfluidics and Nanofluidics, 8(5): 575-586.
Liu, Y. F., Pai, Y. F., Tsai, M. H., &; Hwang, W. S. (2012). Investigation of driving
waveform and resonance pressure in piezoelectric inkjet printing. Applied
Physics A, 109(2): 323-329.
Liu, Y. F., Tsai, M. H., Pai, Y. F., &; Hwang, W. S. (2013). Control of droplet
formation by operating waveform for inks with various viscosities in
piezoelectric inkjet printing. Applied Physics A: 1-8.
Macher, J., Ammann, H. M., Burge, H., Milton, D., &; Morey, P. (1999). Bioaerosols:
assessment and control: ACGIH Cincinnati, Ohio.
Mainelis, G., Berry, D., Reoun An, H., Yao, M., DeVoe, K., Fennell, D. E., et al.
(2005). Design and performance of a single-pass bubbling bioaerosol
generator. Atmospheric Environment, 39(19): 3521-3533.
Reponen, T., Willeke, K., Ulevicius, V., Grinshpun, S. A., &; Donnelly, J. (1997).
Techniques for dispersion of microorganisms into air. Aerosol science and
technology, 27(3): 405-421.
Rule, A. M., Schwab, K. J., Kesavan, J., &; Buckley, T. J. (2009). Assessment of
bioaerosol generation and sampling efficiency based on Pantoea agglomerans.
Aerosol Science and Technology, 43(6): 620-628.
Sami, M., Ikeda, M., &; Yabuuchi, S. (1994). Evaluation of the alkaline methylene
blue staining method for yeast activity determination. Journal of fermentation
and bioengineering, 78(3): 212-216.
Shaman, J., &; Kohn, M. (2009). Absolute humidity modulates influenza survival,
transmission, and seasonality. Proceedings of the National Academy of
Sciences, 106(9): 3243-3248.
Shin, P., Sung, J., &; Lee, M. H. (2011). Control of droplet formation for low viscosity
fluid by double waveforms applied to a piezoelectric inkjet nozzle.
Microelectronics Reliability, 51(4): 797-804.
Simon, X., &; Duquenne, P. (2013). Feasibility of Generating Peaks of Bioaerosols for
Laboratory Experiments. Aerosol and Air Quality Research, 13(3): 877-886.
Singh, M., Haverinen, H. M., Dhagat, P., &; Jabbour, G. E. (2010). Inkjet
printing—process and its applications. Advanced materials, 22(6): 673-685.
Stewart, S. L., Grinshpun, S. A., Willeke, K., Terzieva, S., Ulevicius, V., &; Donnelly,
J. (1995). Effect of impact stress on microbial recovery on an agar surface.
Applied and Environmental Microbiology, 61(4): 1232-1239.
Tang, J. W. (2009). The effect of environmental parameters on the survival of airborne
infectious agents. J R Soc Interface, 6 Suppl 6: S737-746.
Thomson, C., Chanter, N., &; Wathes, C. (1992). Survival of toxigenic Pasteurella
multocida in aerosols and aqueous liquids. Applied and environmental
microbiology, 58(3): 932-936.
Tsai, M. H., &; Hwang, W. S. (2008). Effects of pulse voltage on the droplet formation
of alcohol and ethylene glycol in a piezoelectric inkjet printing process with
bipolar pulse. Materials transactions, 49(2): 331-338.
Ulevicius, V., Willeke, K., Grinshpun, S. A., Donnelly, J., Lin, X., &; Mainelis, G.
(1997). Aerosolization of particles from a bubbling liquid: characteristics and
generator development. Aerosol science and technology, 26(2): 175-190.
Verkouteren, R. M., &; Verkouteren, J. R. (2011). Inkjet metrology II: resolved effects
of ejection frequency, fluidic pressure, and droplet number on reproducible
drop-on-demand dispensing. Langmuir, 27(15): 9644-9653.
Walker, C. M., &; Ko, G. (2007). Effect of ultraviolet germicidal irradiation on viral
aerosols. Environmental science &; technology, 41(15): 5460-5465.
Wijshoff, H. (2006). Manipulating drop formation in piezo acoustic inkjet. Paper
presented at the NIP &; Digital Fabrication Conference.
Wu, H. C., Shan, T. R., Hwang, W. S., &; Lin, H. J. (2004). Study of micro-droplet
behavior for a piezoelectric inkjet printing device using a single pulse voltage
pattern. Materials transactions., 45(5): 1794-1801.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔