跳到主要內容

臺灣博碩士論文加值系統

(44.220.44.148) 您好!臺灣時間:2024/06/18 14:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:曾嘉川
研究生(外文):Chia-Chuan Tseng
論文名稱:以可注射性富含血小板纖維素釋放液混合骨髓幹細胞治療兔膝關節軟骨再生之研究
論文名稱(外文):A novel method for rabbit stifle joint cartilage regeneration with injectable platelet-rich fibrin releasate and bone marrow stem cell
指導教授:郭宗甫郭宗甫引用關係
指導教授(外文):Tzong-Fu Kuo
口試委員:蘇正堯吳長晉王家義
口試日期:2013-07-13
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:獸醫學研究所
學門:獸醫學門
學類:獸醫學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:69
中文關鍵詞:可注射性富含血小板纖維素釋放液骨髓幹細胞組織工程關節軟骨再生
外文關鍵詞:injectable platelet-rich fibrin releasatebone marrow stem cellstissue engineeringarticular cartilage regen
相關次數:
  • 被引用被引用:0
  • 點閱點閱:289
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
中文摘要
骨關節炎(osteoarthritis),又稱退化性關節病(degenerative joint disease),是一種非炎症性的退化性關節軟骨病變,造成細胞外基質嚴重流失發展成軟骨出現裂隙、侵蝕、軟骨下硬化甚至出現骨贅,最後導致關節功能喪失。由於成熟關節軟骨沒有血管分佈,缺乏提供軟骨再生及修補的能力,因此組織工程學應用於關節軟骨再生的研究日漸重要。
成熟間葉幹細胞可以於不同的成熟組織中發現並分離出來,其中包括:骨髓、周邊血液、臍帶血、脂肪、滑液囊膜、牙周韌帶、皮膚或其他固型間葉組織。其有能力分化成結締組織系的細胞,包括:硬骨、軟骨、脂肪和肌肉組織,在不同培養條件中被誘導分化成不同組織的細胞,因此使其臨床應用性大為增加。
此外,在醫學研究中發現血小板並非僅有凝血及止血的功能,對於組織修復和再生過程中,可幫助調節體內新陳代謝,促進組織的修復和癒合。隨著科技的發展,現在可以天然的取得血小板濃縮產物,富含血小板纖維素釋放液( Platelet-rich fibrin releasate)含有多種生長因子及細胞激素對於軟骨細胞的增生與分化很有幫助。
本研究利用可注射性富含血小板纖維素釋放液混合骨髓幹細胞達到關節軟骨組織再生,實驗分為四組,每一組各含紐西蘭白兔六隻,第一組為對照組;第二組為注射富含血小板纖維素釋放液1ml;第三組為注射富含血小板纖維素釋放液0.8ml混合骨髓幹細胞3×106cells
/0.2ml medium;第四組為注射骨髓幹細胞3×106cells/1ml medium。在經體內試驗十四周後,外觀復原程度依照新生軟骨覆蓋程度、新生軟骨的顏色、缺損邊緣及軟骨表面進行評分,實驗組與對照組間有顯著差異,以第三組外觀的復原程度最接近正常軟骨面,其次為第二組。組織學下復原程度依照軟骨表層、基質、細胞分佈、細胞族群的存活率及軟骨下硬骨與軟骨礦物質化的程度進行評分,實驗組與對照組間有顯著差異,以第三組的組織復原程度最接近正常軟骨組織,其次為第二組。綜合以上結果發現在關節軟骨經過組織工程手術後,無論是在外觀形態表現及組織學下細胞生長量以及細胞外基質都有顯著的再生結果。


Abstracts
Osteoarthritis, is a degenerative joint disease accompanied with non-inflammatory articular cartilage lesion, losing of extracellular matrix and develop into cracks, erosion, subchondral sclerosis, osteophytes and loss of joint function eventually. Unlike other connective tissues, articular cartilage does not contain blood vessels so it does not have the ability to regenerate and repair; therefore, materials that promote articular cartilage regeneration are important in tissue engineering studies.
Mesenchymal stem cells (MSCs) can be found and isolated in different tissue including bone marrow, peripheral blood, umbilical cord blood, fat, synovial capsule, periodontal ligament, skin or solid mesenchymal tissues. The ability to transform into connective tissue system including hard bone, cartilage, fat and muscle tissue, which were cultured in several conditions that may induced to different tissues.
Furthermore, functions of the platelets in medical research are not only coagulation and hemostasis, in the process of tissue repair and regeneration, the platelets can help regulate body metabolism, and promote tissue repair and healing. With the development of technology, we can get the concentrated platelet, platelet-rich fibrin releasate , which contains a variety of growth factor that maybe promote proliferation and differentiation of chondrocytes.
In this study, an injectable platelet-rich fibrin releasate combine bone marrow stem cells was used for articular cartilage regeneration. New Zealand white rabbits were divided into four groups for treatment (n=6 per group): (1) control group; (2) injected platelet-rich fibrin releasate 1ml; (3) injected platelet-rich fibrin releasate 0.8 ml combine bone marrow stem cells 3×106 cells/0.2 ml medium; (4) injected bone marrow stem cells 3×106 cells/1 ml medium. After fourteen weeks, the bone appearance of healing was evaluated including coverage, color, cartilage surface defect edge and surface smooth. Histological investigation including cartilage surface, matrix, cell distribution, cell population viability, subchondral bone and cartilage mineralization. A statistically significant difference between the experimental and control groups was observed. The third group closest to the normal cartilage tissue structure, then followed by the second group. It was concluded that the promising experimental data are beginning to emerge in support of the use of platelet-rich fibrin relesate combine bone marrow stem cells for regenerative applications.


論文題目………………………………I
口試委員審定書………………………II
致謝……………………………………III
目錄……………………………………IV
表次……………………………………VII
圖次……………………………………VIII
中文摘要………………………………X
Abstracts ……………………………XII
第一章 前言…………………………1
第二章 文獻探討……………………3
第一節 軟骨的介紹與分類……3
1.1 關節軟骨的組成份…………3
1.2 關節軟骨的結構……………4
1.3 關節軟骨的損傷……………4
第二節 血小板之介紹與應用…7
2.1 高濃度血小板血漿…………7
2.2 富含血小板纖維素…………8
2.2.1 富含血小板纖維素製作方式……8
2.3 富含血小板纖維素釋放液…9
第三節 幹細胞之介紹與應用……9
3.1 幹細胞之應用…………………10
3.2 間葉幹細胞之介紹……………11
3.3 間葉幹細胞免疫調節功能……11
3.4 間葉幹細胞臨床治療應用……13
第四節 組織工程學於關節軟骨修復之應用…13
4.1 關節軟骨修復組織之要素……14
第三章 材料與方法……………………16
第一節 實驗材質製備……………16
1.1 富含血小板纖維素釋放液製備……16
1.2 骨髓間葉幹細胞製備………………16
第二節 組織切片儀器器材及相關藥品……17
2.1 儀器與材料………………………………17
2.2 相關藥品…………………………………17
第三節 實驗動物……………………………17
3.1 實驗動物來源及飼養管理………………17
3.2 實驗動物分組……………………………18
第四節 實驗動物麻醉及手術………………18
4.1 實驗動物麻醉……………………………18
4.2 實驗動物手術步驟………………………18
第五節 注射實驗材質………………………18
第六節 犧牲實驗動物………………………18
第七節 關節軟骨再生之評估………………19
7.1 關節軟骨外觀再生之評估………………19
7.2 關節軟骨組織學再生之評估……………19
第四章 實驗結果…………………………………20
第一節 富含血小板纖維素釋放液製備結果…20
第二節 骨髓間葉幹細胞製備結果…………20
第三節 關節軟骨外觀再生之評估…………20
第四節 關節軟骨組織學再生之評估………21
第五章 討論………………………………………23
第六章 參考文獻…………………………………27


1.包庸宣。利用關節軟骨碎片混合富血小板纖維素進行自豬之關節軟骨組織工程再生。國立台灣大學碩士論文。2009。
2.林欣其。明膠軟骨素透明質酸三重聚合物支架配合牙胚細胞&;#20482;用下顎骨骨髓幹細胞移植之組織工程。國立台灣大學碩士論文。2007。
3.張至宏、黃彗婷、方旭偉、林峰輝、郭宗甫、劉華昌。綜述:軟骨組織工程的回顧與展望。中華創傷骨科雜誌。Vol.8, No.10, P970-973, 2006.
4.鄒明惠、黃慧芳、郭宗甫。關節軟骨之受損與修復之中西醫療法。中華傳統獸醫學會會刊。Vol.15, No.1, P71-87, 2011。
5.蘇正堯。血小板的新角色:組織修復及再生。科學發展,379期:P48-51, 2004。
6.Abukawa H, Papadaki M, Abulikemu M, Leaf J, Vacanti JP, Kaban LB, Troulis MJ. The engineering of craniofacial tissues in the laboratory: a review of biomaterials for scaffolds and implant coatings. Dent Clin North Am 50: 205-16, viii, 2006.
7.Agung M, Ochi M, Yanada S, Adachi N, IzutaY, Yamasaki T, Toda K. Mobilization of bone marrow-derived mesenchymal stem cells into the injured tissues after intraarticular injection and their contribution to tissue regeneration. Knee Surg Sports Traumatol Arthrosc 14:1307-1314, 2006.
8.Aichroth PM, Patel DV, Moyes ST. A prospective review of arthroscopic debridement for degenerative joint disease of the knee. International Orthopaedics , Volume 15, Issue 4, pp 351-355, 1991.
9.Akers RM, Denbow DM. Anatomy and physiology of domestic animal. Bone and skeletal system, 1ed 161-168, 2008.
10.Anitua E, Sanchez M, Nurden AT, Nurden P, Orive G, Andia I. New insights into and novel applications for platelet-rich fibrin therapies. Trends Biotechnology 24: 227-234, 2006.
11.Askew MJ, Mow VC. The biomechanical function of the collagen fibril ultrastructure of articular cartilage. J Biomech Eng 100: 105-115, 1978.
12.Athanasiou KA, Darling EM, Hu JC. Hyaline artiline articular cartilage;Athanasiou KA, Darling EM, Hu JC. In vitro tissue engineering of hyaline articular cartilage. In:Athanasiou KA, ed. Artiline articular tissue engineering. USA, Morgan & Claypool publishers, 1-12;33-53, 2009.
13.Barry F, Boynton RE, Liu B, Murphy JM. Chondrogenic differentiation of mesenchymal stem cells from bone marrow: differentiation-dependent gene expression of matrix components. Exp Cell Res 268: 189-200, 2001.
14.Barry FP. Biology and clinical applications of mesenchymal stem cells. Birth Defects Res C Embryo Today 69: 250-6, 2003.
15.Beiser IH, Kanat IO. Subchondral bone Drilling:a treatment for cartilage defects. The Journal of Foot Surgery, 29(6):595-601, 1990.
16.Blair Price, Flaumenhaft Robert . Platelet a-granules: Basic biology and clinical correlates. Blood Reviews 23 177–189, 2009.
17.Brehm W, Aklin B, Yamashita T, Rieser F, Trub T, Jacob RP, Mainil-Varlet P. Repair of superficial osteochondral defects with an autologous scaffold-free cartilage construct in a caprine model: implantation method and short-term results, Osteoarthritis and Cartilage 14: 1214-1226, 2006.
18.Bruder SP. Mesenchymal stem cells in osteobiology and applied bone regneration. Clin. Orthop Rel Res 355:247-256, 1998.
19.Buckwalter JA, Mankin HJ. Articular cartilage:degeneration and osteoarthritis, repair, regeneration, and transplantation. Instructional Course Lectures, 47:487-504, 1998.
20.Burnouf T, Su CY, Radosevich M, Goubran H, El-Ekiaby M. Blood-derived biomaterials: fibrin sealant, platelet gel and platelet fibrin glue. SBT Science Series
4, 136–142, 2009.
21.Capito RM, Spector M. Collagen scaffolds for nonviral IGF-1 gene delivery in articular cartilage tissue engineering. Gene Therapy 14: 721-732, 2007.
22.Caplan AI. Mesenchymal stem cells. Handbook of Stem Cell 299-308, 2004.
23.Chang CH, Kuo TF, Lin CC, Chou CH, Chen KH, Lin FH, Liu HC. Tissue engineering-based cartilage repair with allogenous chondrocytes and gelatin-chondroitin-hyaluronan tri-copolymer scaffold: A porcine model assessed at 18, 24, and 36 weeks. Biomaterials 27: 1876-1888, 2006.
24.Chang CH, Kuo TF, Lin FH, Wang JH, Hsu YM, Huang HT, Loo ST, Fang HW, Liu HC, Wang WC. Tissue Engineering-Based Cartilage Repair with Mesenchymal Stem Cells in a Porcine Model. Journal of Orthopaedic Research 29:18741880, 2011.
25.Chang CH, Liu HC, Lin CC, Chou CH, Lin FH. Gelatin-chondroitin-
hyaluronan tri-copolymer scaffold for cartilage tissue engineering. Biomaterials 24: 4853-4858, 2003.
26.Chiang H, Jiang C. Repair of Articular Cartilage Defects:Review and Perspectives. Journal of Formosan Medical Association Vo1.108No.2:87-101, 2009.
27.Chiang H, Kuo TF, Tsai CC, Lin MC, She BR, Huang YY, Lee HS, Shieh CS, Chen MH, Ramshow JAM, Werkmeister JA, Tuan RS, Jiang CC. Repair of porcine articular cartilage defect with autologous chondrocyte transplantation. J of Ortho Res 23: 584-593, 2005.
28.Chou CH, Cheng WTK, Kuo TF, Sun JS, Lin FH, Tsai JC. Fibrin glue mixed with gelatin/ hyaluronic acid/ chondroitin-6-sulfate tri-copolymer for articular cartilage tissue engineering: the result of real-time polymerase chain reaction. J Biomed Mater Res 82A: 757-767, 2007.
29.Choukroun J, Diss A, Simonpieri A, Girard MO, Schoeffler C, Dohan SL, Dohan AJJ, Mouhyi J, Doham DM. Platelet-rich fibrin (PRF): A second-generation platelet concentrate. Part IV: Clinical effects on tissue healing. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 101: e50-e60, 2006.
30.Choukroun J, Diss A, Simonpieri A, Girard MO, Schoeffler C, Dohan SL, Dohan AJJ, Mouhyi J, Doham DM. Platelet-rich fibrin (PRF): A second-generation platelet concentrate. Part V: Histological evaluation of PRF effects on bone allograft maturation in sinus lift. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 101: 299-303, 2006.
31.Dellmann HD, Eurell J. Veterinary histology. Connective and supportive tissue. 5ed 32-61, 1998.
32.Dohan DM. Safety issue associated with platelet-rich fibrin method. Oral Med Oral Radiol Endod 103: 587-592, 2007.
33.Dohan DM, Choukroun J, Diss A, Dohan SL, Dohan AJ, Mouhyi J, Gogly B. Platelet-rich fibrin (PRF): a second- generation platelet concentrate. Part I: technological concepts and evolution. Oral Med Oral Radiol Endod 101: E45-50, 2006.
34.Dohan DM, Choukroun J, Diss A, Dohan SL, Dohan AJ, Mouhyi J, Gogly B. Platelet-rich fibrin (PRF): a second- generation platelet concentrate. Part II: platelet-related biologic features. Oral Med Oral Radiol Endod 101: E45-50, 2006.
35.Dohan DM, Choukroun J, Diss A, Dohan SL, Dohan AJ, Mouhyi J, Gogly B. Platelet-rich fibrin (PRF): a second- generation platelet concentrate. Part III: leucocyte activation: a new feature for platelet concentrates? Oral Med Oral Radiol Endod 101: E45-50, 2006.
36.Dohan DM, Rasmusson L, Alberktsson T. Classification of platelet concentrates: from pure platelet-rich plasma (P-PRP) to leucocyte- and platelet-rich fibrin (L-PRF). Trends in Biotechology 27: 158-167, 2009.
37.Friedenstein AJ, Piatetzky S, Petrakova KV. Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol 16: 381-90, 1966.
38.Frisbie DD, Kisiday JD, Kawacak CE, Werpy NM, Wayne McIlwraith C. Evaluation of Adipose-Derived Stromal Vascular Fraction or Bone Marrow-Derived Mesenchymal Stem Cells for Treatment of Osteoarthritis. J Orthop Res 27:1675-1680, 2009.
39.Gazitt Y, Reading CC, Hoffman R, Wickrema A, Vesole DH, Jagannath S, Condino J, Lee B, Barlogie B, Tricot G. Purified CD34+ Lin- Thy+ stem cells do not contain clonal myeloma cells. Blood 86, 381-389, 1995.
40.Gelghorn JP, Jones ARC, Flannery CR, Bonassar LJ. Alteration of articular cartilage frictional properties by transforming growth growth factor, interleukin-1, and oncostatin M. Arthritis Rheum 60: 440-449, 2009.
41.Ghannam S, Bouffi C, Djouad F, Jorgensen C, Noel D. Immunosuppression by masenchymal stem cells:mechanisms and clinical applications. Stem cell Research&Therapy 1:2, 2010.
42.Gillogly SD, Voight M, Blackburn T. Treatment of articular cartilage defects of the knee with autologous chondrocytes implantation. J Orthop Sports Phys Ther 28: 241-251, 1998.
43.Grigolo B, Lisignoli G, Desando 1G, Cavallo C, Marconi E, Facchini A, Osteoarthritis Treated with Mesenchymal Stem Cells on Hyaluronan-Based Scaffold in Rbbbit. TISSUE ENGINEERING:Part C Volume 15, Number 4, 2009.
44.Gronthos S, Franklin DM, Leddy HA. Surface protein characterization of human adipose tissue-deriver stromal cell. JcellPhysiol 189:57-63, 2001.
45.Gross DE, Brenner SL, Esformes I, Gross ML. Arthroscopic treatment of degenerative joint disease of the knee. Orthopedics , 14(12):1317-1321, 1991.
46.Haynesworth SE, Baber MA, Caplan AI. Cytokine expression by human-marrow derived mesenchymal progenitor cells in vitro:effects of dexamethason and IL-alpha. J Cell Physiol 166:585-592, 1999.
47.Hedlund CS, Hulse DA, Johnson AL, Seim HB, Willard MD, Carroll GL. Small animal surgery. Disease of the joint, 2ed 1110-1142, 2002.
48.Horwits EM, Transplantability and therapeutic sffects of bone marrow-derived mesenchymal cells in children with osteogensis imperfect. Nat Med 5:309-313, 1999.
49.Haspl M, Pe&;#263;ina M, Bojani&;#263; I. Microfracture: surgical technique and rehabilitation to treat chondral defects. Clin Orthop Relat Res, vol. 391(Suppl), pp. S362-9. 18, 2001.
50.Iannotti J, Goldstein S, Kuhn J, Lipiello L, Kaplan F, Zaleske D. The formation and growth of skeletal tissues. Orthopedic basic science, 77-109, 2000.
51.Im GI, Kim DY, Shin JH, Hyun CW, Cho WH. Repair of cartilage defect in the rabbit with cultured mesenchymal stem cells from bone marrow. J Bone Joint Surg [Br] ;83-B:289-94, 2001.
52.Ito K, Yamada Y, Nagasaka T, Baba S, Ueda M. Osteogenic potential of injectable tissue-engineered bone: a comparison among autogenous bone, bone substitute (Bio-oss), platelet-rich plasma, and tissue-engineered bone with respect to their mechanical properties and histological findinfs. J Biomed Mater Res 73A: 63-72, 2005.
53.Javazon EH. Rat marrow stromal cells are more sensitive to plating density and expand more rapidly from single-cell-derived colonies than marrow stromal cells. Stem cell 19:219-225, 2001.
54.Jenniskens YM, Koevoet W, Bart ACW, Weinans H, Jahr H, Verhaar JAN, DeGroot J, Osch GJVM. Biochemical and functional modulation of the cartilage collagen network by IGF1, TGF-2 and FGF2. Osteoarthritis and Cartilage 14: 1136-1146, 2006.
55.Jiang HC, Chiang H, Liao CJ, Lin YJ, Kuo TF, Shieh CS, Huang YY, Tuan RS. Repair of porcine articular cartilage defect with biphasic osteochondral composite. J Ortho Res 10: 1277-1290, 2007.
56.Kajiwara R, Ishida O, Kawasaki K, Adachi N, Yasunaga Y, Ochi M. Effective repair of a fresh osteochondral sefect in the rabbit knee joint by articulated joint distraction following subchondral drilling. Journal of Orthopaedic Research 23 909-915, 2005.
57.Kerker JT, Leo AJ, Sgaglione NA. Cartilage repair: synthetics and scaffolds. Sports Med Arthrosc Rev 16: 208-216, 2008.
58.Kuo TF, Lin MF, Lin YH, Lin YC, Su RJ, Lin HW,Chan WP. Implantation of platele-rich fibrin and cartilage granules can facilitate cartilage repair in the injured rabbit knee:preliminary report. Clinics(Sao Paulo)66(10):1835-1838, 2011.
59.Lanza RP, Cibelli JB, West MD. Prospects for the use of nuclear transfer in human transplantation. Nature Biotechnology 17, 1171-1174, 1999.
60.Laurens N, Koolwijk P, de Maat MP. Fibrin structure and wound healing. J Thromb Haemost 4: 932-939, 2006.
61.Lee KBL, Hui JHP, Song IC, Ardany L, Lee EH. Injectable Mesenchymal Stem Cell Therapy for Large Cartilage Defects-A Porcine Model. STEM CELLS 25:2964-2971, 2007.
62.Leitner GC, Gruber R, Neumuller J, Wagner A, Kloimstein P, Hocker P, Kormoczi GF, Buchta C. Platelet content and growth factor release in platelet-rich plasma: a comparison of four different system. Vox Sang 91: 135-139, 2006.
63.Lind M, Larsen A, Clausen C, Osther K, Eveeland H. Cartilage repair with chondrocytes in fibrin hydrogel and MPEG polylactide scaffold: an in vivo study in goats. Knee Surg Sports Traumatol Arthrosc 2: 69-71, 2008.
64.Lu Y, Dhanaraj S, Wang Z, Bradley DM, Boeman SM, Cole BJ, Binette F. Minced cartilage without cell culture serves as an effective intraoperative cell source for cartilage repair. J Ortho Res 24: 1261-1270, 2006.
65.Lunquist R, Dziegiel MH, Agren MS. Bioactivity and stability of endogenous fibrinogen factors in platelet-rich fibrin. Wound Rep Reg 16: 356-363, 2008.
66.Mainil-Varlet P, Aigner T, Brittberg M, Bullough P, Hollander A, Hunziker E, Kandel R, Nehrer S, Pritzker K, Roberts S, Stauffer E. Histologicla assessment of cartilage repair: a report by the Histology Endpoint Committee of the Cartilage Repair Society (ICRS). J Bone Joint Surg Am 85: 45-57, 2003.
67.Majumdar MK, Thieda MA, Mosca JD, Moorman M, Gerson SL. Phenotype and functional comparison stem cells (MSC) and stromal cells. J Cell Physio 176:57-66, 1988.
68.Marmotti A, Bruzzonal M, Bonasial DE, Castoldi F, Degerfeld MMV. AUTOLOGOUS CARTILAGE FRAGMENTS IN A COMPOSITE SCAFFOLD FOR ONE STAGE OSTEOCHONDRAL REPAIR IN A GOAT MODEL. Nuropean Cell and Materials Vol.26 15-32, 2013.
69.Marmotti A, Bruzzone M, Castoldi F, Bossi R, Piras L, Maiello A, Realmuto C,Peretti GM. One-step osteochondral repair with cartilage fragments in a composite scaffold. Knee Surg Sports Traumatol Arthrosc 20:2590–2601, 2012.
70.McCormick F, Yanke A, Provencher MT, Cole BJ. Minced articular cartilage-basic science, surgical technique, and clinical application. Sports Med Arthrosc Rev 16: 217-220, 2008.
71.Mcllwraith CW. Current concepts in equine degenerative joint disease. Jurnal of American Veterinary Medical Association, 180(3):239-250, 1982.
72.Mcllwraith CW, Vachon A. Review of pathogenesis and treatment of degenerative joint disease. Equine Veterunary Journal Volume20, Issue Supplement s6, pages3-11, 1988.
73.Messner K, Gillquist J. Synthetic implants for the repair of osteochondral defects of the medial femoral condyle—A biomechanical and histological evaluation in the rabbit knee. Biomaterials; 14: 513-521, 1993.
74.Milano G, Passino ES, Deriub L, Careddu G, Manunta L, Manunta A,Saxxomannoy MF. The effect of platelet rich plasma combined with microfractures on the treatment of chondral defects: an experimental study in a sheep model. Osteoarthritis and Cartilage 18 971-980, 2010.
75.Miura M, Gronthos S, Zhoa M. SHED:stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci U.S.A 100:5807-5812, 2003.
76.Mosca JD. Mesenchymal stem cells as vehicles for gene therapy. Clin. Orthop Rel Res 379-S:71-90, 2000.
77.Munirah S, Kim SH, Ruszymah BHI, Khang G. The use of fibrin and POLY (lactic-co-glycolic acid) hybrid scaffold for articular cartilage tissue engineering: an in vivo analysis. Eur Cel Mat 15: 41-52, 2008.
78.Muraglia A, Cancedda R, Quarto R. Clonal mesenchymal progenitors from human bone marrow differentiate in vitro according to a hierarchical model. J Cell Sci 113 ( Pt 7): 1161-6, 2000.
79.Murata M, Yudoh K, Masuko K. The potential role of vascular endothelial growth factor (VEGF) in cartilage: how the angiogenic factor could be involved in the pathogenesis of osteoarthritis? Osteoarthritis and cartilage 16: 279-286, 2008.
80.Nakashima M, Reddi AH. The application of bone morphogenetic proteins to dental tissue engineering. Nat Biotechnol 21: 1025-1032, 2003.
81.Nesic D, Whiteside R, Brittberg M, Wendt D, Martin I, Mainil-Varlet P. Cartilage tissue engineering for degenerative joint disease. Advanced Drug Delivery Reviews Volume58, Issue2, 20, Pages300-322, 2006.
82.Nishimori M, Deie M, Kanaya A, Exham H, Adachi N, Ochi M. Repair of chronic osteochondral defects in the rat. J Bone Joint Surg﹝Br﹞88-B:1236-44, 2006.
83.Nizolek DJ, White KK. Corticosteroid and hyaluronic acid treatments in equine degenerative joint disease. A review. The Cornell Veterinarian, 71(4):355-375, 1981.
84.Noth U, Osyczka AM, Tuli R. Multilineage mesenchymal differentiation potential of human trabecular bone-derived cells. J orthop Res 20:1061-1069, 2002.
85.Ochi M, Uchio Y, Tobita M, Kuriwaka M. Current Concepts in Tissue Engineering Technique for Repair of Cartilage Defect. Artificial Organs 25(3):172-179, 2001.
86.O’Connell SM, Impeduglia T, Hessler K, Wang XJ, Carroll RJ, Dardik H. Autologous platelet-rich fibrin matrix as cell therapy in the healing of chronic lower-extremity ulcers. Wound Rep Reg 16: 749-756, 2008.
87.Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li B, Pickel J, McKay R, Nadal-Ginard B, Bodine DM, Leri A, Anversa P. Bone marrow cells regenerate infarcted myocardium. Nature 410: 701-5, 2001.
88.Osch-Gerjo JVM, Mandl EW, Marijnissen-Willem JCM, Veen-Simone W, Verwoerd-Verhoef HL, Verhaar JAN. Growth factors in cartilage tissue engineering. Bioheology 39: 215-220, 2002.
89.Pierdomenico L, Bonsi L, Calvitti M, Rondelli D, Arpinati M, Chirumbolo G, Becchetti E, Marchionni C, Alviano F, Fossati V, Staffolani N, Franchina M, Grossi A, Bagnara GP. Multipotent mesenchymal stem cells with immunosuppressive activity can be easily isolated from dental pulp. Transplantation 80: 836-842, 2005.
90.Piermattei DL, Flo GL, Decamp CE. Arthrology. In:Piermattei DL, ed. Brinker, Piermattei, and Flo,s handbook of small animal orthopedics and fracture repair. 4th ed. USA, Saunders Elservier, 185-205, 2006.
91.Pountos I, Giannoudis PV. Biology of mesenchymal stem cells. Care Injured 36 S, S8-S12, 2005.
92.Pufe T, Kurz B, Petersen W, Varoga D, Mentlein R, Kulow S, Lemke A, Tillmann B. The influence of biomechanical parameters on the expression of VEGF and endostatin in the bone and joint system. Ann Anat 187: 461-472, 2005.
93.Ratcliffe A, Mow VC. Articular cartilage. In: Comper WD et al.. Extracellular matrix, Vol. 1, Tissue function. Amsterdam, NL: Hardwood Academic Publishers: 234-302, 1996.
94.Richards EM, Baglin TP. Quantitation of reticulated platelets: methodology and clinical application. British Journal of Haematology Volume 91, Issue 2, pages 445–451, 1995.
95.Riew KD. Induction of bone formation using a recombinant adenoviral vector carrying the human BMP-2 geng in a rabbit spinal fusion model. Calcif Tissue Int 63:357-360, 1988.
96.Ross MH, Pawlina W. Cartilage. In:Ross MH, ed. Histology, a text and atlas with correlated cell and molecular biology. 4th ed. USA, Lippincott Williams& Wilkins, 182-191, 2006.
97.Sharma B, Elisseeff JH. Engineering structurally organized cartilage and bone tissues. Ann Biomed Eng 32: 148-59, 2004.
98.Snyder EY, Vescovi AL. The possibilities/perplexities of stem cells. Nature biotechnology 18, 827-828. 2000.
99.Stamm C, Westphal B, Kleine HD, Petzsch M, Kittner C, Klinge H, Schumichen C, Nienaber CA, Freund M, Steinhoff G. Autologous bone-marrow stem-cell transplantation for myocardial regeneration. Lancet 361: 45-6, 2003.
100. Steadman JR, Rodkey WG, Rodrigo JJ. Microfracture: surgical technique and rehabilitation to treat chondral defects. Clin Orthop Relat Res; 391 Suppl: S362-369. 2001.
101. Steinmeyer J, Konttinen YT. Oral treatment options for degenerative joint disease-presence and future. Advanced Drug Delivery Reviews Volume58, Issue2, 20, 2006.
102. Stock UA, Vacanti JP. Tissue engineering:current state and prospects. Annu Rev Med 52:443-451, 2001.
103. Su CY, Kuo YP, Nieh HL, Tseng YH, Burnouf T. Quantitative assessment of the kinetics of growth factors release from platelet gel. TRANSFUSION Volume 48:2414-2420, 2008.
104. Su CY, Kuo YP, Tseng YH, Su CH, Burnouf T. In vitro release of growth factors from platelet-rich fibrin (PRF): a proposal to optimize the clinical applications of PRF. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2009.
105. Toghraie FS, Chenari N, Gholipour MA, Faghih Z, Torabinejad S, Dehghani S, Ghaderi A. Treatment of osteoarthritis with infrapatellar fat pad derived mesenchymal stem cells in Rabbit. The Knee 18 71-75, 2011.
106. Yamada Y, Ueda M, Naiki T, Takahashi M, Hata K, Nagasaka T. Autogenous injectable bone for regeneration with dog mesenchymal stem cell (dMSC) and platelet-rich plasma (PRP) tissue engineered bone regeneration. Tiss Eng 10: 955-964, 2004.
107. Yamada Y, Ueda M, Naiki T, Nagasaka T. Tissue- engineered injectable bone regeneration for osseointegrated dental implants. CLIN Oral Impl Res 15: 589-597, 2004.
108. Zumstein MA, Bielecki T, Dohan Ehrenfest DM. The Future of Platelet Concentrates in Sports Medicine: Platelet-Rich Plasma, Platelet-Rich Fibrin, and the Impact of Scaffolds and Cells on the Long-term Delivery of Growth Factors. Oper Tech Sports Med 19:190-197, 2011.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊