跳到主要內容

臺灣博碩士論文加值系統

(44.211.239.1) 您好!臺灣時間:2023/01/31 04:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:賴季侑
研究生(外文):Chi-Yu Lai
論文名稱:微小核醣核酸周邊血液表現量:與精神分裂症、發育與老化、以及腦皮質結構之關聯
論文名稱(外文):MicroRNA expression levels in the peripheral blood: associations with schizophrenia, development and aging, and cortical structures
指導教授:陳為堅陳為堅引用關係
指導教授(外文):Wei J. Chen
口試委員:胡海國俞松良蕭朱杏曾文毅陳璿宇
口試委員(外文):Hai-Go HwuSung-Liang YuChuhsing Kate HsiaoWen-Yih TsengHsuan-Yu Chen
口試日期:2013-07-22
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:流行病學與預防醫學研究所
學門:醫藥衛生學門
學類:公共衛生學類
論文種類:學術論文
論文出版年:2013
畢業學年度:102
語文別:英文
論文頁數:177
中文關鍵詞:精神分裂症生物標誌基因表現剪影微小核醣核酸 (microRNAs)周邊血液發育與老化結構磁振造影大腦灰質結構
外文關鍵詞:schizophreniabiomarkersgene expression profilingmicroRNAsperipheral blooddevelopment and agingstructural Magnetic Resonance Imaging (MRI)cortical gray mater structure
相關次數:
  • 被引用被引用:0
  • 點閱點閱:258
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文共包含三個部分,以周邊血液微小核醣核酸(microRNAs, 簡稱miRNAs)生物標誌作為核心,探索其表現量與1) 精神分裂症表型、2) 生長發育與老化、以及3) 腦部功能與結構之關係。第一部份比較精神分裂症患者與健康對照組之周邊血液miRNAs表現量差異,以尋找精神分裂症潛在生物標記。首先,在學習組 (30位精神分裂症病人與30位性別年齡配對的健康對照組) 中,測量全基因體miRNAs表現量,共包含365個miRNAs。所選出的潛在生物標誌進一步在驗證組 (60位精神分裂症病人與30位健康對照組)中驗證其區分疾病狀態的能力。我們於2011找到七個潛在的miRNA生物標誌 (hsa-miR-34a, hsa-miR-449a, hsa-miR-564, hsa-miR-432, hsa-miR-548d, hsa-miR-572 和 hsa-miR-652) 可區別精神分裂症病人與正常人,在學習組,其ROC曲線下面積為95%,而驗證組,其曲線下面積亦達85%。這七個miRNAs當中,hsa-miR-34a在學習組與驗證組中表現量在精神分裂症患者與健康對照中皆有統計上顯著的差異。而這些微小核醣核酸並分別與病人的負性症狀、神經認知功能、事件關聯的電位波有顯著的相關。本研究顯示對於周邊血液之miRNAs表現偏差有潛力可作為精神分裂症生物標誌,但仍有多項挑戰性議題值得進一步探討與研究。第二部份欲瞭解產後嬰兒與成人之間miRNA的變化的情形,比較30位早產兒與60位成人的365個miRNA在周邊血液的表現圖譜。將近三分之一的miRNA被發現在早產兒與成人表現無差異,而另三分之一的miRNA在兩組表現量有顯著差異,剩下的三分之一則在兩組大部分的樣本中均沒有表現。基於miRNA在兩組表現的特性,將其分為五個類別。而從這五類別中選出7個miRNA在包含早產兒、兒童與成年的獨立樣本作驗證,有6個得到驗證。而比較五種類別miRNA的基因在染色體座落位置,有兩個區域被發現集中表現特定類型的miRNA,其中,隨年齡穩定表現的miRNA集中在14q32.31染色體位置,另外在成人中顯著表現量增加的miRNA則集中在9q22.21染色體位置。進一步,在成人組中,我們發現6個miRNA表現量在較老的成人比起較年輕的成人有顯著的減少。而我們選擇其中4個miRNA在驗證樣本也得到證實。最後,使用生物資訊方法進行功能性探索分析,結果顯示在嬰兒與成人之間表現量有顯著差異的miRNA,其共同參與的功能為免疫反應以及免疫相關疾病。此研究提供一個從嬰孩,成人到老年的周邊血液miRNA表現圖譜,歸類出隨年齡表現型態不同的miRNA與其可能的參與的生物功能。第三部分嘗試了解七個潛與精神分裂症相關的周邊血液miRNA的表現量 (hsa-miR-34a, hsa-miR-449a, hsa-miR-564, hsa-miR-432, hsa-miR-548d, hsa-miR-572 和 hsa-miR-652)與大腦皮質體積、厚度、以及表面積之間的相關性。研究包含35位精神分裂症病人與12位健康對照。我們分別在病人,以及健康對照樣本中,使用皮爾森相關性分析,探索每個miRNA與各腦區皮質結構之相關性。在病人組中,hsa-miR-449a與右腦後側扣帶迴體積 (posterior cingulate gyrus, r = 0.62, p = 0.0001)相關。而hsa-miR-572與hsa-miR-652分別與左腦後中前額葉皮層厚度 (caudal middle frontal cortex, r = -0.55,p = 0.0014) 以及左腦楔葉皮層厚度(cunues cortex, r = -0.55,p = 0.001) 相關。而在健康對照組中,只有hsa-miR-34a與左腦副海馬迴體積 (parahippocampal gyrus, r= -0.87, p = 0.0014)、和右腦眶部體積/表面積 (pars orbitals, r = -0.84 ~ -0.87, p <0.0006) 相關。值得注意的是,在精神分裂症患者中,大部分區域的灰質厚度以及血液miRNA表現量都隨著罹病年數的增加而下降。本研究指出某些miRNA表現量的變化可能與潛在的灰質結構異常有關,而且其與灰質厚度的相關性,在罹病年數較短的病人當中更為明顯。

This dissertation aims to evaluate the application of microRNAs (miRNAs) in the peripheral blood as biomarkers in predicting diagnosis of schizophrenia, human development and aging, and their association with cortical gray matter structures. It consists of three studies that included slightly different participants and different outcomes. Study I aimed to identify potential miRNA signature for schizophrenia by comparing genome-wide miRNA expression profiles in patients with schizophrenia vs. healthy controls. A genome-wide miRNA expression profiling was performed using a Taqman array of 365 human miRNAs in the peripheral blood mononuclear cells (PBMC) of a learning set of 30 cases and 30 controls. A seven-miRNA signature (hsa-miR-34a, hsa-miR-449a, hsa-miR-564, hsa-miR-432, hsa-miR-548d, hsa-miR-572 and hsa-miR-652) was derived from a supervised classification with internal cross-validation, with an area under the curve (AUC) of receiver operating characteristics of 93%. The putative signature was then validated in an independent testing set of 60 cases and 30 controls, with an AUC of 85%. These miRNAs were differentially correlated with patients’ negative symptoms, neurocognitive performance scores, and event-related potentials. The results indicated that the blood-based miRNA profiling is a feasible way to identify biomarkers for schizophrenia, and the seven-miRNA signature warrants further investigation. Study II aimed to investigate the changes in blood-based miRNA expression from preterm infants to adulthood. We compared 365 miRNA expression profiles in a screening set of preterm infants and adults. Approximately one-third of the miRNAs were constantly expressed from postnatal development to adulthood, another one-third were differentially expressed between preterm infants and adults, and the remaining one-third were not detectable in these two groups. Based on their expression in infants and adults, the miRNAs were categorized into five classes, and six of the seven miRNAs chosen from each class except one with age-constant expression were confirmed in a validation set containing infants, children, and adults. Furthermore, six miRNAs detectable in adults were down-regulated in older adults, and four chosen for individual quantification were verified in the validation set. Our results provide an overview on the regulation pattern of blood miRNAs throughout life and the possible biological functions performed by different classes of miRNAs. Study III aimed to investigate whether the expression levels of the seven PBMC-based schizophrenia-associated miRNAs were associated with gray matter volume, thickness, surface area, as well as subcortical volume in schizophrenia patients in a sample of 35 patients with schizophrenia and 12 healthy controls. Hsa-miR-449a showed moderate positive association with the volume of right posterior cingulate cortex in cases. Hsa-miR-572 and hsa-miR-652 showed moderate negative association with the thickness of left caudal middle frontal gyrus and left cuneus cortex. Whereas in healthy controls, only hsa-miR-34a was negatively associated with left parahimppocamal gyrus and right pars orbitalis in volume/surface area structures. The reduction of most regions of thickness structures as well as PBMC-miRNA expressions were correlated with increasing duration of illness in schizophrenia patients. These findings indicate that the miRNA expression alteration in PBMC may be related to the cortical structural changes that occur with disease progression in patients with schizophrenia.

中文摘要 I
Abstract V
Contents VII
List of tables VIII
List of figures X
Chapter 1 Overview 1
Chapter 2 Study I-MicroRNA expression aberration as potential peripheral blood biomarkers for schizophrenia 7
2.1 Introduction 7
2.2 Results 9
2.3 Discussion 12
2.4 Materials and methods 16
2.5 References 23
2.6 Tables and Figures 31
Chapter 3 Study II-Modulated expression of human peripheral blood microRNAs from infancy to adulthood and its role in aging 52
3.1 Introduction 52
3.2 Results 52
3.3 Discussion 59
3.4 Materials and methods 65
3.5 References 70
3.6 Tables and Figures 75
Chapter 4 Study III-Association between miRNA expressions of peripheral blood mononuclear leukocytes and cortical gray matter structures in patients with schizophrenia and health controls 120
4.1 Introduction 120
4.2 Results 123
4.3 Discussion 125
4.4 Material and methods 130
4.5 References 134
4.6 Tables and Figures 144
Chapter 5 Conclusion and Implication 173
Appendix: Other publications by Chi-Yu Lai 176



Study I
1. Tamminga CA, Holcomb HH (2005) Phenotype of schizophrenia: a review and formulation. Mol Psychiatry 10: 27-39.
2. Joyce EM, Roiser JP (2007) Cognitive heterogeneity in schizophrenia. Curr Opin Psychiatry 20: 268-272.
3. Turetsky BI, Calkins ME, Light GA, Olincy A, Radant AD, et al. (2007) Neurophysiological endophenotypes of schizophrenia: the viability of selected candidate measures. Schizophr Bull 33: 69-94.
4. van Os J, Kenis G, Rutten BPF (2010) The environment and schizophrenia. Nature 468: 203-212.
5. Harrison PJ, Weinberger DR (2005) Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol Psychiatry 10: 40-68.
6. Gottesman, II, Gould TD (2003) The endophenotype concept in psychiatry: etymology and strategic intentions. Am J Psychiatry 160: 636-645.
7. Keshavan MS, Tandon R, Boutros NN, Nasrallah HA (2008) Schizophrenia, "just the facts": what we know in 2008 Part 3: neurobiology. Schizophr Res 106: 89-107.
8. Ozdemir V, Williams-Jones B, Glatt SJ, Tsuang MT, Lohr JB, et al. (2006) Shifting emphasis from pharmacogenomics to theragnostics. Nat Biotechnol 24: 942-946.
9. Schwarz E, Bahn S (2008) The utility of biomarker discovery approaches for the detection of disease mechanisms in psychiatric disorders. Br J Pharmacol 153 Suppl 1: S133-136.
10. Vawter MP, Ferran E, Galke B, Cooper K, Bunney WE, et al. (2004) Microarray screening of lymphocyte gene expression differences in a multiplex schizophrenia pedigree. Schizophr Res 67: 41-52.
11. Glatt SJ, Everall IP, Kremen WS, Corbeil J, Sasik R, et al. (2005) Comparative gene expression analysis of blood and brain provides concurrent validation of SELENBP1 up-regulation in schizophrenia. Proc Natl Acad Sci USA 102: 15533-15538.
12. Sullivan PF, Fan C, Perou CM (2006) Evaluating the comparability of gene expression in blood and brain. Am J Med Genet B Neuropsychiatr Genet 141: 261-268.
13. Kuzman MR, Medved V, Terzic J, Krainc D (2009) Genome-wide expression analysis of peripheral blood identifies candidate biomarkers for schizophrenia. J Psychiatr Res 43: 1073-1077.
14. Allen NC, Bagade S, McQueen MB, Ioannidis JP, Kavvoura FK, et al. (2008) Systematic meta-analyses and field synopsis of genetic association studies in schizophrenia: the SzGene database. Nat Genet 40: 827-834.
15. Gladkevich A, Kauffman HF, Korf J (2004) Lymphocytes as a neural probe: potential for studying psychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry 28: 559-576.
16. Marques-Deak A, Cizza G, Sternberg E (2005) Brain-immune interactions and disease susceptibility. Mol Psychiatry 10: 239-250.
17. Marazziti D, Catena Dell''Osso M, Baroni S, Masala I, Dell''Osso B, et al. (2010) Alterations of the dopamine transporter in resting lymphocytes of patients with different psychotic disorders. Psychiatry Res 175: 54-57.
18. Liu L, Jia F, Yuan G, Chen Z, Yao J, et al. (2010) Tyrosine hydroxylase, interleukin-1beta and tumor necrosis factor-alpha are overexpressed in peripheral blood mononuclear cells from schizophrenia patients as determined by semi-quantitative analysis. Psychiatry Res 176: 1-7.
19. Yao Y, Schroder J, Karlsson H (2008) Verification of proposed peripheral biomarkers in mononuclear cells of individuals with schizophrenia. J Psychiatr Res 42: 639-643.
20. Ambros V (2004) The functions of animal microRNAs. Nature 431: 350-355.
21. Perkins DO, Jeffries C, Sullivan P (2005) Expanding the ''central dogma'': the regulatory role of nonprotein coding genes and implications for the genetic liability to schizophrenia. Mol Psychiatry 10: 69-78.
22. Cheng H-YM, Papp JW, Varlamova O, Dziema H, Russell B, et al. (2007) microRNA modulation of circadian-clock period and entrainment. Neuron 54: 813-829.
23. Kocerha J, Faghihi MA, Lopez-Toledano MA, Huang J, Ramsey AJ, et al. (2009) MicroRNA-219 modulates NMDA receptor-mediated neurobehavioral dysfunction. Proc Natl Acad Sci USA 106: 3507-3512.
24. Coyle JT (2009) MicroRNAs suggest a new mechanism for altered brain gene expression in schizophrenia. Proc Natl Acad Sci USA 106: 2975-2976.
25. Miller BH, Wahlestedt C (2010) MicroRNA dysregulation in psychiatric disease. Brain Res 1338: 89-99.
26. Perkins DO, Jeffries CD, Jarskog LF, Thomson JM, Woods K, et al. (2007) microRNA expression in the prefrontal cortex of individuals with schizophrenia and schizoaffective disorder. Genome Biol 8: R27.
27. Beveridge NJ, Tooney PA, Carroll AP, Gardiner E, Bowden N, et al. (2008) Dysregulation of miRNA 181b in the temporal cortex in schizophrenia. Hum Mol Genet 17: 1156-1168.
28. Beveridge NJ, Gardiner E, Carroll AP, Tooney PA, Cairns MJ (2010) Schizophrenia is associated with an increase in cortical microRNA biogenesis. Mol Psychiatry 15: 1176-1189.
29. Hassan SS, Romero R, Pineles B, Tarca AL, Montenegro D, et al. (2010) MicroRNA expression profiling of the human uterine cervix after term labor and delivery. Am J Obstet Gynecol 202: 80 e81-88.
30. Hsu SD, Chu CH, Tsou AP, Chen SJ, Chen HC, et al. (2008) miRNAMap 2.0: genomic maps of microRNAs in metazoan genomes. Nucleic Acids Res 36: D165-169.
31. Wheeler G, Ntounia-Fousara S, Granda B, Rathjen T, Dalmay T (2006) Identification of new central nervous system specific mouse microRNAs. FEBS Lett 580: 2195-2200.
32. Guyon I, Weston J, Barnhill S, Vapnik V (2002) Gene selection for cancer classification using support vector machines. Mach Learn 46: 389-422.
33. Kay SR (1991) Positive and Negative Syndromes in Schizophrenia: Assessment and Research. New York: Brunner/Mazel.
34. Chen WJ, Liu SK, Chang CJ, Lien YJ, Chang YH, et al. (1998) Sustained attention deficit and schizotypal personality features in nonpsychotic relatives of schizophrenic patients. Am J Psychiatry 155: 1214-1220.
35. Chen WJ, Hsiao CK, Hsiao LL, Hwu HG (1998) Performance of the Continuous Performance Test among community samples. Schizophr Bull 24: 163-174.
36. Lin CCH, Chen WJ, Yang H-J, Hsiao CK, Tien AY (2000) Performance on the Wisconsin Card Sorting Test among adolescents in Taiwan: Norms, factorial structure, and relation to schizotypy. J Clin Exp Neuropsychol 22: 69-79.
37. Freedman R, Adler LE, Myles-Worsley M, Nagamoto HT, Miller C, et al. (1996) Inhibitory gating of an evoked response to repeated auditory stimuli in schizophrenic and normal subjects. Human recordings, computer simulation, and an animal model. Arch Gen Psychiatry 53: 1114-1121.
38. Light GA, Braff DL (2005) Mismatch negativity deficits are associated with poor functioning in schizophrenia patients. Arch Gen Psychiatry 62: 127-136.
39. MAMI-Meta prediction of microRNA targets: < http://mami.med.harvard.edu/>.
40. Sethupathy P, Megraw M, Hatzigeorgiou AG (2006) A guide through present computational approaches for the identification of mammalian microRNA targets. Nat Methods 3: 881-886.
41. Jasinska AJ, Service S, Choi OW, DeYoung J, Grujic O, et al. (2009) Identification of brain transcriptional variation reproduced in peripheral blood: an approach for mapping brain expression traits. Hum Mol Genet 18: 4415-4427.
42. Tsuang MT, Nossova N, Yager T, Tsuang MM, Guo SC, et al. (2005) Assessing the validity of blood-based gene expression profiles for the classification of schizophrenia and bipolar disorder: a preliminary report. Am J Med Genet B Neuropsychiatr Genet 133: 1-5.
43. van Heerden JH, Conesa A, Stein DJ, Montaner D, Russell V, et al. (2009) Parallel changes in gene expression in peripheral blood mononuclear cells and the brain after maternal separation in the mouse. BMC Res Notes 2: 195.
44. Kim AH, Reimers M, Maher B, Williamson V, McMichael O, et al. (2010) MicroRNA expression profiling in the prefrontal cortex of individuals affected with schizophrenia and bipolar disorders. Schizophr Res 124: 183-191.
45. Zhou R, Yuan P, Wang Y, Hunsberger JG, Elkahloun A, et al. (2009) Evidence for selective microRNAs and their effectors as common long-term targets for the actions of mood stabilizers. Neuropsychopharmacology 34: 1395-1405.
46. Shibata H, Tani A, Chikuhara T, Kikuta R, Sakai M, et al. (2009) Association study of polymorphisms in the group III metabotropic glutamate receptor genes, GRM4 and GRM7, with schizophrenia. Psychiatry Res 167: 88-96.
47. Schipper HM, Maes OC, Chertkow HM, Wang E (2007) MicroRNA expression in Alzheimer blood mononuclear cells. Gene Regul Syst Bio 1: 263-274.
48. Abu-Elneel K, Liu T, Gazzaniga FS, Nishimura Y, Wall DP, et al. (2008) Heterogeneous dysregulation of microRNAs across the autism spectrum. Neurogenetics 9: 153-161.
49. Cogswell JP, Ward J, Taylor IA, Waters M, Shi Y, et al. (2008) Identification of miRNA changes in Alzheimer''s disease brain and CSF yields putative biomarkers and insights into disease pathways. J Alzheimers Dis 14: 27-41.
50. Xiao F, Zuo Z, Cai G, Kang S, Gao X, et al. (2009) miRecords: an integrated resource for microRNA-target interactions. Nucleic Acids Res 37: D105-110.
51. Cheung ZH, Fu AK, Ip NY (2006) Synaptic roles of Cdk5: implications in higher cognitive functions and neurodegenerative diseases. Neuron 50: 13-18.
52. Glatt SJ, Faraone SV, Lasky-Su JA, Kanazawa T, Hwu HG, et al. (2009) Family-based association testing strongly implicates DRD2 as a risk gene for schizophrenia in Han Chinese from Taiwan. Mol Psychiatry 14: 885-893.
53. Kerns D, Vong GS, Barley K, Dracheva S, Katsel P, et al. (2010) Gene expression abnormalities and oligodendrocyte deficits in the internal capsule in schizophrenia. Schizophr Res 120: 150-158.
54. Hoh NZ, Wagner AK, Alexander SA, Clark RB, Beers SR, et al. (2010) BCL2 genotypes: functional and neurobehavioral outcomes after severe traumatic brain injury. J Neurotrauma 27: 1413-1427.
55. Dwivedi Y, Rizavi HS, Zhang H, Roberts RC, Conley RR, et al. (2009) Aberrant extracellular signal-regulated kinase (ERK)1/2 signalling in suicide brain: role of ERK kinase 1 (MEK1). Int J Neuropsychopharmacol 12: 1337-1354.
56. Lize M, Pilarski S, Dobbelstein M (2009) E2F1-inducible microRNA 449a/b suppresses cell proliferation and promotes apoptosis. Cell Death Differ 17: 452-458.
57. American Psychiatric Association (2000) Diagnostic and Statistical Manual of Mental Disorders. Washington, DC: American Psychiatric Association.
58. Nurnberger JI, Jr., Blehar MC, Kaufmann CA, York-Cooler C, Simpson SG, et al. (1994) Diagnostic interview for genetic studies. Rationale, unique features, and training. NIMH Genetics Initiative. Arch Gen Psychiatry 51: 849-859.
59. Chang C-J, Chen WJ, Liu S-K, Cheng JJ, Ou Yang W-C, et al. (2002) Morbidity risk of psychiatric disorders among the first degree relatives of schizophrenia patients in Taiwan. Schizophr Bull 28: 379-392.
60. Cheng JJ, Ho H, Chang CJ, Lan SY, Hwu HG (1996) Positive and Negative Syndrome Scale (PANSS): establishment and reliability study of a Mandarin Chinese language version. Chinese Psychiatry 10: 251-258.
61. Liu SK, Hwu HG, Chen WJ (1997) Clinical symptom dimensions and deficits on the Continuous Performance Test in schizophrenia. Schizophr Res 25: 211-219.
62. Heaton RK, Chelune GJ, Talley JL, Kay GG, Curtiss G (1993) Wisconsin Card Sorting Test Manual: Revised and Expanded: Psychological Assessment Resources Odessa, FL.
63. Hunter MP, Ismail N, Zhang X, Aguda BD, Lee EJ, et al. (2008) Detection of microRNA expression in human peripheral blood microvesicles. PLoS One 3: e3694.
64. Schmittgen TD, Lee EJ, Jiang J, Sarkar A, Yang L, et al. (2008) Real-time PCR quantification of precursor and mature microRNA. Methods 44: 31-38.
65. Simon R, Radmacher MD, Dobbin K, McShane LM (2003) Pitfalls in the use of DNA microarray data for diagnostic and prognostic classification. J Natl Cancer Inst 95: 14-18.
66. Miettinen OS (1976) Stratification by a multivariate confounder score. Am J Epidemiol 104: 609-620.
67. Wu HM, Tien YJ, Chen C (2010) GAP: A graphical environment for matrix visualization and cluster analysis. Comput Stat Data Anal 54: 767-778.
68. Kiriakidou M, Nelson PT, Kouranov A, Fitziev P, Bouyioukos C, et al. (2004) A combined computational-experimental approach predicts human microRNA targets. Genes Dev 18: 1165-1178.
69. Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, et al. (2005) Combinatorial microRNA target predictions. Nat Genet 37: 495-500.
70. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120: 15-20.
71. Wang X (2006) Systematic identification of microRNA functions by combining target prediction and expression profiling. Nucleic Acids Res 34: 1646-1652.
72. Betel D, Wilson M, Gabow A, Marks DS, Sander C (2008) The microRNA.org resource: targets and expression. Nucleic Acids Res 36: D149-153.
73. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Statist Soc Ser B57: 289-300.


Study II
1. Martini FH, Nath J (2009) Fundamentals of Anatomy and Physiology (8th Editon) San Francisco, Pearson and Benjamin Cummings Publishing.
2. Piwien-Pilipuk G, Huo JS, Schwartz J (2002) Growth hormone signal transduction. J Pediatr Endocrinol Metab 15: 771-786.
3. Alvarez-Garcia I, Miska EA (2005) MicroRNA functions in animal development and human disease. Development 132: 4653-4662.
4. Sayed D, Abdellatif M (2011) MicroRNAs in development and disease. Physiol Rev 91: 827-887.
5. Elsharawy A, Keller A, Flachsbart F, Wendschlag A, Jacobs G, et al. (2012) Genome-wide miRNA signatures of human longevity. Aging Cell 11: 607-616.
6. Noren Hooten N, Abdelmohsen K, Gorospe M, Ejiogu N, Zonderman AB, et al. (2010) microRNA expression patterns reveal differential expression of target genes with age. PLoS One 5: e10724.
7. Kosaka N, Iguchi H, Ochiya T (2010) Circulating microRNA in body fluid: a new potential biomarker for cancer diagnosis and prognosis. Cancer Sci 101: 2087-2092.
8. Lai CY, Yu SL, Hsieh MH, Chen CH, Chen HY, et al. (2011) MicroRNA expression aberration as potential peripheral blood biomarkers for schizophrenia. PLoS One 6: e21635.
9. Liang Y, Ridzon D, Wong L, Chen C (2007) Characterization of microRNA expression profiles in normal human tissues. BMC Genomics 8: 166.
10. Somel M, Guo S, Fu N, Yan Z, Hu HY, et al. (2010) MicroRNA, mRNA, and protein expression link development and aging in human and macaque brain. Genome Res 20: 1207-1218.
11. Ibanez-Ventoso C, Yang M, Guo S, Robins H, Padgett RW, et al. (2006) Modulated microRNA expression during adult lifespan in Caenorhabditis elegans. Aging Cell 5: 235-246.
12. Campisi J, d''Adda di Fagagna F (2007) Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol 8: 729-740.
13. Maes OC, An J, Sarojini H, Wang E (2008) Murine microRNAs implicated in liver functions and aging process. Mech Ageing Dev 129: 534-541.
14. Williams AE, Perry MM, Moschos SA, Lindsay MA (2007) microRNA expression in the aging mouse lung. BMC Genomics 8: 172.
15. Drummond MJ, McCarthy JJ, Fry CS, Esser KA, Rasmussen BB (2008) Aging differentially affects human skeletal muscle microRNA expression at rest and after an anabolic stimulus of resistance exercise and essential amino acids. American Journal of Physiology-Endocrinology And Metabolism 295: E1333-E1340.
16. Zhang J, Liu Q, Zhang W, Li J, Li Z, et al. (2010) Comparative profiling of genes and miRNAs expressed in the newborn, young adult, and aged human epididymides. Acta Biochim Biophys Sin (Shanghai) 42: 145-153.
17. Lukiw WJ (2007) Micro-RNA speciation in fetal, adult and Alzheimer''s disease hippocampus. Neuroreport 18: 297-300.
18. Chang TC, Mendell JT (2007) microRNAs in vertebrate physiology and human disease. Annu Rev Genomics Hum Genet 8: 215-239.
19. Lazar L, Nagy B, Molvarec A, Szarka A, Rigo J, Jr. (2012) Role of hsa-miR-325 in the etiopathology of preeclampsia. Mol Med Rep 6: 597-600.
20. Chen JF, Mandel EM, Thomson JM, Wu Q, Callis TE, et al. (2006) The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet 38: 228-233.
21. Koutsoulidou A, Mastroyiannopoulos NP, Furling D, Uney JB, Phylactou LA (2011) Expression of miR-1, miR-133a, miR-133b and miR-206 increases during development of human skeletal muscle. BMC Dev Biol 11: 34.
22. Cheng Y, Tan N, Yang J, Liu X, Cao X, et al. (2010) A translational study of circulating cell-free microRNA-1 in acute myocardial infarction. Clinical Science 119: 87-95.
23. Moncini S, Salvi A, Zuccotti P, Viero G, Quattrone A, et al. (2011) The role of miR-103 and miR-107 in regulation of CDK5R1 expression and in cellular migration. PLoS One 6: e20038.
24. Thornton JE, Gregory RI (2012) How does lin28 let-7 control development and disease? Trends Cell Biol 22: 474-482.
25. Benetatos L, Hatzimichael E, Londin E, Vartholomatos G, Loher P, et al. (2013) The microRNAs within the DLK1-DIO3 genomic region: involvement in disease pathogenesis. Cellular and Molecular Life Sciences 70: 795-814.
26. Gattolliat C, Thomas L, Ciafre S, Meurice G, Le Teuff G, et al. (2011) Expression of miR-487b and miR-410 encoded by 14q32.31 locus is a prognostic marker in neuroblastoma. British journal of cancer 105: 1352-1361.
27. Haller F, von Heydebreck A, Zhang JD, Gunawan B, Langer C, et al. (2010) Localization- and mutation-dependent microRNA (miRNA) expression signatures in gastrointestinal stromal tumours (GISTs), with a cluster of co-expressed miRNAs located at 14q32.31. J Pathol 220: 71-86.
28. Bang C, Fiedler J, Thum T (2012) Cardiovascular importance of the microRNA-23/27/24 family. Microcirculation 19: 208-214.
29. Dimitriadis G, Mitrou P, Lambadiari V, Maratou E, Raptis SA (2011) Insulin effects in muscle and adipose tissue. Diabetes Res Clin Pract 93 Suppl 1: S52-59.
30. Lofqvist C, Andersson E, Gelander L, Rosberg S, Hulthen L, et al. (2005) Reference values for insulin-like growth factor-binding protein-3 (IGFBP-3) and the ratio of insulin-like growth factor-I to IGFBP-3 throughout childhood and adolescence. J Clin Endocrinol Metab 90: 1420-1427.
31. Kail RV, Barnfield A (2012) Children and Their Development: Pearson Education International.
32. Chen LH, Chiou GY, Chen YW, Li HY, Chiou SH (2010) MicroRNA and aging: a novel modulator in regulating the aging network. Ageing Res Rev 9 Suppl 1: S59-66.
33. Brosh R, Shalgi R, Liran A, Landan G, Korotayev K, et al. (2008) p53-repressed miRNAs are involved with E2F in a feed-forward loop promoting proliferation. Mol Syst Biol 4: 229.
34. Li J, Donath S, Li Y, Qin D, Prabhakar BS, et al. (2010) miR-30 regulates mitochondrial fission through targeting p53 and the dynamin-related protein-1 pathway. PLoS Genet 6: e1000795.
35. Le MT, Teh C, Shyh-Chang N, Xie H, Zhou B, et al. (2009) MicroRNA-125b is a novel negative regulator of p53. Genes Dev 23: 862-876.
36. Hermeking H (2012) MicroRNAs in the p53 network: micromanagement of tumor suppression. Nat Rev Cancer 12: 613-626.
37. Liston A, Papadopoulou AS, Danso-Abeam D, Dooley J (2012) MicroRNA-29 in the adaptive immune system: setting the threshold. Cell Mol Life Sci 69: 3533-3541.
38. Seeger T, Haffez F, Fischer A, Koehl U, Leistner DM, et al. (2013) Immunosenescence-associated microRNAs in age and heart failure. European Journal of Heart Failure 15: 385-393.
39. de Magalhaes JP, Curado J, Church GM (2009) Meta-analysis of age-related gene expression profiles identifies common signatures of aging. Bioinformatics 25: 875-881.
40. Wu YT, Chen WJ, Hsieh WS, Tsao PN, Yu SL, et al. (2013) MicroRNA expression aberration associated with bronchopulmonary dysplasia in preterm infants: a preliminary study. Respiratory Care 58: 1527-1535.
41. Hsieh CJ, Hsieh WS, Su YN, Liao HF, Jeng SF, et al. (2011) The Taiwan Birth Panel Study: a prospective cohort study for environmentally- related child health. BMC Res Notes 4: 291.
42. Schmittgen TD, Lee EJ, Jiang J, Sarkar A, Yang L, et al. (2008) Real-time PCR quantification of precursor and mature microRNA. Methods 44: 31-38.
43. Shephard RJ (1998) Aging and exercise. Encyclopedia of Sports Medicine and Science, TDFahey (Editor) Internet Society for Sport Science: http://sportsci.org.
44. Benjamini Y, Drai D, Elmer G, Kafkafi N, Golani I (2001) Controlling the false discovery rate in behavior genetics research. Behavioural Brain Research 125: 279-284.
45. Wu H-M, Tien Y-J, Chen C-h (2010) GAP: A graphical environment for matrix visualization and cluster analysis. Computational Statistics &; Data Analysis 54: 767-778.


Study III
1. Insel TR (2010) Rethinking schizophrenia. Nature 468: 187-193.
2. Vita A, De Peri L, Silenzi C, Dieci M (2006) Brain morphology in first-episode schizophrenia: a meta-analysis of quantitative magnetic resonance imaging studies. Schizophrenia Research 82: 75-88.
3. Vita A, de Peri L (2007) Hippocampal and amygdala volume reductions in first-episode schizophrenia. Br J Psychiatry 190: 271.
4. Steen RG, Mull C, McClure R, Hamer RM, Lieberman JA (2006) Brain volume in first-episode schizophrenia: systematic review and meta-analysis of magnetic resonance imaging studies. Br J Psychiatry 188: 510-518.
5. Meyer-Lindenberg A (2010) From maps to mechanisms through neuroimaging of schizophrenia. Nature 468: 194-202.
6. Wright IC, Rabe-Hesketh S, Woodruff PW, David AS, Murray RM, et al. (2000) Meta-analysis of regional brain volumes in schizophrenia. Am J Psychiatry 157: 16-25.
7. Shenton ME, Dickey CC, Frumin M, McCarley RW (2001) A review of MRI findings in schizophrenia. Schizophrenia Research 49: 1-52.
8. Lawrie SM, Abukmeil SS (1998) Brain abnormality in schizophrenia. A systematic and quantitative review of volumetric magnetic resonance imaging studies. Br J Psychiatry 172: 110-120.
9. Honea R, Crow TJ, Passingham D, Mackay CE (2005) Regional deficits in brain volume in schizophrenia: a meta-analysis of voxel-based morphometry studies. Am J Psychiatry 162: 2233-2245.
10. Ellison-Wright I, Glahn DC, Laird AR, Thelen SM, Bullmore E (2008) The anatomy of first-episode and chronic schizophrenia: an anatomical likelihood estimation meta-analysis. Am J Psychiatry 165: 1015-1023.
11. Thompson PM, Vidal C, Giedd JN, Gochman P, Blumenthal J, et al. (2001) Mapping adolescent brain change reveals dynamic wave of accelerated gray matter loss in very early-onset schizophrenia. Proc Natl Acad Sci U S A 98: 11650-11655.
12. Nenadic I, Sauer H, Smesny S, Gaser C (2012) Aging effects on regional brain structural changes in schizophrenia. Schizophr Bull 38: 838-844.
13. Schuster C, Schuller AM, Paulos C, Namer I, Pull C, et al. (2012) Gray matter volume decreases in elderly patients with schizophrenia: a voxel-based morphometry study. Schizophr Bull 38: 796-802.
14. Gogtay N, Vyas NS, Testa R, Wood SJ, Pantelis C (2011) Age of onset of schizophrenia: perspectives from structural neuroimaging studies. Schizophr Bull 37: 504-513.
15. Winkler AM, Kochunov P, Blangero J, Almasy L, Zilles K, et al. (2010) Cortical thickness or grey matter volume? The importance of selecting the phenotype for imaging genetics studies. Neuroimage 53: 1135-1146.
16. Ehrlich S, Brauns S, Yendiki A, Ho BC, Calhoun V, et al. (2012) Associations of cortical thickness and cognition in patients with schizophrenia and healthy controls. Schizophr Bull 38: 1050-1062.
17. Garey L (2010) When cortical development goes wrong: schizophrenia as a neurodevelopmental disease of microcircuits. J Anat 217: 324-333.
18. Glantz LA, Lewis DA (2000) Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. Arch Gen Psychiatry 57: 65-73.
19. Antonova E, Sharma T, Morris R, Kumari V (2004) The relationship between brain structure and neurocognition in schizophrenia: a selective review. Schizophrenia Research 70: 117-145.
20. Karlsgodt KH, Bachman P, Winkler AM, Bearden CE, Glahn DC (2011) Genetic influence on the working memory circuitry: behavior, structure, function and extensions to illness. Behav Brain Res 225: 610-622.
21. Thompson P, Cannon TD, Toga AW (2002) Mapping genetic influences on human brain structure. Ann Med 34: 523-536.
22. Thompson PM, Cannon TD, Narr KL, van Erp T, Poutanen VP, et al. (2001) Genetic influences on brain structure. Nat Neurosci 4: 1253-1258.
23. Goghari VM, Rehm K, Carter CS, Macdonald AW (2007) Sulcal thickness as a vulnerability indicator for schizophrenia. British Journal of Psychiatry 191: 229-233.
24. Gogtay N, Greenstein D, Lenane M, Clasen L, Sharp W, et al. (2007) Cortical brain development in nonpsychotic siblings of patients with childhood-onset schizophrenia. Arch Gen Psychiatry 64: 772-780.
25. Goldman AL, Pezawas L, Mattay VS, Fischl B, Verchinski BA, et al. (2009) Widespread reductions of cortical thickness in schizophrenia and spectrum disorders and evidence of heritability. Arch Gen Psychiatry 66: 467-477.
26. Boos HB, Aleman A, Cahn W, Hulshoff Pol H, Kahn RS (2007) Brain volumes in relatives of patients with schizophrenia: a meta-analysis. Arch Gen Psychiatry 64: 297-304.
27. Goldman AL, Pezawas L, Mattay VS, Fischl B, Verchinski BA, et al. (2008) Heritability of brain morphology related to schizophrenia: a large-scale automated magnetic resonance imaging segmentation study. Biol Psychiatry 63: 475-483.
28. Peper JS, Brouwer RM, Boomsma DI, Kahn RS, Hulshoff Pol HE (2007) Genetic influences on human brain structure: a review of brain imaging studies in twins. Hum Brain Mapp 28: 464-473.
29. Li M, Luo XJ, Rietschel M, Lewis CM, Mattheisen M, et al. (2013) Allelic differences between Europeans and Chinese for CREB1 SNPs and their implications in gene expression regulation, hippocampal structure and function, and bipolar disorder susceptibility. Mol Psychiatry.
30. Tan HY, Nicodemus KK, Chen Q, Li Z, Brooke JK, et al. (2008) Genetic variation in AKT1 is linked to dopamine-associated prefrontal cortical structure and function in humans. J Clin Invest 118: 2200-2208.
31. Lai CY, Yu SL, Hsieh MH, Chen CH, Chen HY, et al. (2011) MicroRNA Expression Aberration as Potential Peripheral Blood Biomarkers for Schizophrenia. Plos One 6.
32. Lett TA, Chakavarty MM, Felsky D, Brandl EJ, Tiwari AK, et al. (2013) The genome-wide supported microRNA-137 variant predicts phenotypic heterogeneity within schizophrenia. Mol Psychiatry.
33. Beveridge NJ, Cairns MJ (2011) MicroRNA dysregulation in schizophrenia. Neurobiol Dis.
34. Beveridge NJ, Gardiner E, Carroll AP, Tooney PA, Cairns MJ (2010) Schizophrenia is associated with an increase in cortical microRNA biogenesis. Mol Psychiatry 15: 1176-1189.
35. Kang HJ, Kawasawa YI, Cheng F, Zhu Y, Xu X, et al. (2011) Spatio-temporal transcriptome of the human brain. Nature 478: 483-489.
36. Somel M, Guo S, Fu N, Yan Z, Hu HY, et al. (2010) MicroRNA, mRNA, and protein expression link development and aging in human and macaque brain. Genome Res 20: 1207-1218.
37. Zhang R, Su B (2008) MicroRNA regulation and the variability of human cortical gene expression. Nucleic Acids Res 36: 4621-4628.
38. Gladkevich A, Kauffman HF, Korf J (2004) Lymphocytes as a neural probe: potential for studying psychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry 28: 559-576.
39. Marques-Deak A, Cizza G, Sternberg E (2005) Brain-immune interactions and disease susceptibility. Mol Psychiatry 10: 239-250.
40. Guan Z, Fang J (2006) Peripheral immune activation by lipopolysaccharide decreases neurotrophins in the cortex and hippocampus in rats. Brain Behav Immun 20: 64-71.
41. van Heerden JH, Conesa A, Stein DJ, Montaner D, Russell V, et al. (2009) Parallel changes in gene expression in peripheral blood mononuclear cells and the brain after maternal separation in the mouse. BMC Res Notes 2: 195.
42. Jasinska AJ, Service S, Choi OW, DeYoung J, Grujic O, et al. (2009) Identification of brain transcriptional variation reproduced in peripheral blood: an approach for mapping brain expression traits. Hum Mol Genet 18: 4415-4427.
43. Glatt SJ, Everall IP, Kremen WS, Corbeil J, Sasik R, et al. (2005) Comparative gene expression analysis of blood and brain provides concurrent validation of SELENBP1 up-regulation in schizophrenia. Proc Natl Acad Sci USA 102: 15533-15538.
44. Sullivan PF, Fan C, Perou CM (2006) Evaluating the comparability of gene expression in blood and brain. Am J Med Genet B Neuropsychiatr Genet 141: 261-268.
45. Kim AH, Reimers M, Maher B, Williamson V, McMichael O, et al. (2010) MicroRNA expression profiling in the prefrontal cortex of individuals affected with schizophrenia and bipolar disorders. Schizophr Res 124: 183-191.
46. Santarelli DM, Beveridge NJ, Tooney PA, Cairns MJ (2011) Upregulation of dicer and microRNA expression in the dorsolateral prefrontal cortex Brodmann area 46 in schizophrenia. Biol Psychiatry 69: 180-187.
47. Haznedar MM, Buchsbaum MS, Hazlett EA, Shihabuddin L, New A, et al. (2004) Cingulate gyrus volume and metabolism in the schizophrenia spectrum. Schizophrenia Research 71: 249-262.
48. Tendolkar I, Weis S, Guddat O, Fernandez G, Brockhaus-Dumke A, et al. (2004) Evidence for a dysfunctional retrosplenial cortex in patients with schizophrenia: a functional magnetic resonance imaging study with a semantic-perceptual contrast. Neurosci Lett 369: 4-8.
49. Leech R, Braga R, Sharp DJ (2012) Echoes of the brain within the posterior cingulate cortex. The Journal of Neuroscience 32: 215-222.
50. Bioque M, Garcia-Bueno B, Mac-Dowell KS, Meseguer A, Saiz PA, et al. (2013) Peripheral endocannabinoid system dysregulation in first-episode psychosis. Neuropsychopharmacology.
51. Leweke FM, Giuffrida A, Wurster U, Emrich HM, Piomelli D (1999) Elevated endogenous cannabinoids in schizophrenia. Neuroreport 10: 1665-1669.
52. Newell KA, Deng C, Huang XF (2006) Increased cannabinoid receptor density in the posterior cingulate cortex in schizophrenia. Exp Brain Res 172: 556-560.
53. Cannon TD, Hennah W, van Erp TG, Thompson PM, Lonnqvist J, et al. (2005) Association of DISC1/TRAX haplotypes with schizophrenia, reduced prefrontal gray matter, and impaired short- and long-term memory. Arch Gen Psychiatry 62: 1205-1213.
54. Garrity AG, Pearlson GD, McKiernan K, Lloyd D, Kiehl KA, et al. (2007) Aberrant "default mode" functional connectivity in schizophrenia. Am J Psychiatry 164: 450-457.
55. Kim DI, Mathalon DH, Ford JM, Mannell M, Turner JA, et al. (2009) Auditory oddball deficits in schizophrenia: an independent component analysis of the fMRI multisite function BIRN study. Schizophr Bull 35: 67-81.
56. Dean B, Gibbons A, Scarr E, Thomas EA (2011) Changes in Gene Expression in Subjects with Schizophrenia Associated with Disease Progression. Handbook of Schizophrenia Spectrum Disorders, Volume I: Springer. pp. 237-251.
57. Dean B, Keriakous D, Scarr E, Thomas EA (2007) Gene expression profiling in Brodmann''s area 46 from subjects with schizophrenia. Aust N Z J Psychiatry 41: 308-320.
58. Gur RE, Petty RG, Turetsky BI, Gur RC (1996) Schizophrenia throughout life: sex differences in severity and profile of symptoms. Schizophrenia Research 21: 1-12.
59. Moberg PJ, Doty RL, Turetsky BI, Arnold SE, Mahr RN, et al. (1997) Olfactory identification deficits in schizophrenia: correlation with duration of illness. Am J Psychiatry 154: 1016-1018.
60. Kosmidis MH, Bozikas VP, Vlahou CH, Kiosseoglou G, Giaglis G, et al. (2005) Verbal fluency in institutionalized patients with schizophrenia: age-related performance decline. Psychiatry Res 134: 233-240.
61. Premkumar P, Fannon D, Kuipers E, Cooke MA, Simmons A, et al. (2008) Association between a longer duration of illness, age and lower frontal lobe grey matter volume in schizophrenia. Behav Brain Res 193: 132-139.
62. Nestor PG, Shenton ME, McCarley RW, Haimson J, Smith RS, et al. (1993) Neuropsychological correlates of MRI temporal lobe abnormalities in schizophrenia. Am J Psychiatry 150: 1849-1855.
63. Sanfilipo M, Lafargue T, Rusinek H, Arena L, Loneragan C, et al. (2002) Cognitive performance in schizophrenia: relationship to regional brain volumes and psychiatric symptoms. Psychiatry Res 116: 1-23.
64. Beveridge NJ, Tooney PA, Carroll AP, Gardiner E, Bowden N, et al. (2008) Dysregulation of miRNA 181b in the temporal cortex in schizophrenia. Hum Mol Genet 17: 1156-1168.
65. Gur RE, Turetsky BI, Cowell PE, Finkelman C, Maany V, et al. (2000) Temporolimbic volume reductions in schizophrenia. Arch Gen Psychiatry 57: 769-775.
66. Kringelbach ML (2005) The human orbitofrontal cortex: linking reward to hedonic experience. Nat Rev Neurosci 6: 691-702.
67. Lucantonio F, Stalnaker TA, Shaham Y, Niv Y, Schoenbaum G (2012) The impact of orbitofrontal dysfunction on cocaine addiction. Nat Neurosci 15: 358-366.
68. Gur RE, Cowell PE, Latshaw A, Turetsky BI, Grossman RI, et al. (2000) Reduced dorsal and orbital prefrontal gray matter volumes in schizophrenia. Arch Gen Psychiatry 57: 761-768.
69. Mellios N, Huang HS, Grigorenko A, Rogaev E, Akbarian S (2008) A set of differentially expressed miRNAs, including miR-30a-5p, act as post-transcriptional inhibitors of BDNF in prefrontal cortex. Hum Mol Genet 17: 3030-3042.
70. Navari S, Dazzan P (2009) Do antipsychotic drugs affect brain structure? A systematic and critical review of MRI findings. Psychol Med 39: 1763.
71. Weinberger DR, Lipska BK (1995) Cortical maldevelopment, anti-psychotic drugs, and schizophrenia: a search for common ground. Schizophrenia Research 16: 87-110.
72. American Psychiatric Association (2000) Diagnostic and Statistical Manual of Mental Disorders. Washington, DC: American Psychiatric Association.
73. Chen WJ, Liu SK, Chang CJ, Lien YJ, Chang YH, et al. (1998) Sustained attention deficit and schizotypal personality features in nonpsychotic relatives of schizophrenic patients. Am J Psychiatry 155: 1214-1220.
74. Nurnberger JI, Jr., Blehar MC, Kaufmann CA, York-Cooler C, Simpson SG, et al. (1994) Diagnostic interview for genetic studies. Rationale, unique features, and training. NIMH Genetics Initiative. Arch Gen Psychiatry 51: 849-859.
75. Chang C-J, Chen WJ, Liu S-K, Cheng JJ, Ou Yang W-C, et al. (2002) Morbidity risk of psychiatric disorders among the first degree relatives of schizophrenia patients in Taiwan. Schizophrenia Bulletin 28: 379-392.
76. Kay SR (1991) Positive and negative syndromes in schizophrenia: assessment and research. New York: Brunner/Mazel.
77. Liu SK, Hwu HG, Chen WJ (1997) Clinical symptom dimensions and deficits on the Continuous Performance Test in schizophrenia. Schizophrenia Research 25: 211-219.
78. Dale AM, Fischl B, Sereno MI (1999) Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage 9: 179-194.
79. Fischl B, Sereno MI, Dale AM (1999) Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system. Neuroimage 9: 195-207.
80. Desikan RS, Segonne F, Fischl B, Quinn BT, Dickerson BC, et al. (2006) An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31: 968-980.
81. Fischl B, Salat DH, Busa E, Albert M, Dieterich M, et al. (2002) Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 33: 341-355.
82. Benjamini Y, Drai D, Elmer G, Kafkafi N, Golani I (2001) Controlling the false discovery rate in behavior genetics research. Behav Brain Res 125: 279-284.
83. Genovese CR, Lazar NA, Nichols T (2002) Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage 15: 870-878.
84. Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin JC, et al. (2012) 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn Reson Imaging 30: 1323-1341.
85. Wu H-M, Tien Y-J, Chen C-h (2010) GAP: A graphical environment for matrix visualization and cluster analysis. Computational Statistics &; Data Analysis 54: 767-778.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊