(3.238.186.43) 您好!臺灣時間:2021/02/28 15:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:施政楷
研究生(外文):Jheng-Kai Shih
論文名稱:經皮神經電刺激應用於主要動作皮質對於動作學習時皮質興奮性與前額葉活化之影響:經顱磁刺激與近紅外線吸收光譜研究
論文名稱(外文):Effect of Transcutaneous Electrical Nerve Stimulation on Primary Motor Cortex to Modulate Cortical Excitability and Prefrontal Activation during Motor Learning: A TMS and NIRS Study
指導教授:陸哲駒陸哲駒引用關係
指導教授(外文):Jer-Juhn Luh
口試委員:邱銘章黃正雅周立偉
口試委員(外文):Ming-Jang ChiuCheng-Ya HuangLi-Wei Chou
口試日期:2014-07-11
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:物理治療學研究所
學門:醫藥衛生學門
學類:復健醫學學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:78
中文關鍵詞:經皮神經電刺激經顱磁刺激近紅外線吸收光譜內隱式順序性動作學習神經塑性
外文關鍵詞:transcutaneous electrical nerve stimulationtranscranial magnetic stimulationimplicit sequential motor learningnear-infrared spectroscopyneuroplasticity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:245
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
中文摘要
前言:根據先前的實驗結果所發現,經皮神經電刺激對於主要動作皮質的活性所造成的影響,無法與動作學習所產生的興奮性神經塑性有所區別,因此本實驗主要是為了瞭解頭顱經皮神經電刺激以及動作學習所產生去抑制現象之間的交互關係,而本實驗主要藉由量測在執行內隱式順序性動作學習的受試者主要動作皮質興奮性的改變,而本實驗另外使用近紅外線吸收光譜來量測前額葉在動作學習的過程中血液動力學反應的改變。方法:本實驗總共從社區以及大學徵招了48位年輕受試者,而受試者將會被隨機分配到電刺激組與電刺激伴隨動作學習測試組,而受試者需要完成兩次實驗,包含經皮神激電刺激和假刺激,而兩次測試則是隨機分配,試驗的間隔則需要大於一周,而本實驗成果測試項目包括:動作誘發電位、皮質內誘發、皮質內抑制、前額葉血液動力學變化以及順序性反應性動作測試中的反應時間長度,綜合以上神經生理或是行為科學上的量測來觀察經皮神經電刺激的效果。結果:在動作電位上則是發現有接受經皮神經電刺激的兩種試驗顯著上升,包含單純接受電刺激介入以及電刺激介入伴隨動作表現量測之情形,發現動作學習對於經皮神經電刺激所產生的效果產生協同作用,而在有動作執行的兩組(動作執行伴隨電刺激或假刺激)則是發現皮質內抑制所產生的抑制量明顯上升,而有電刺激伴隨動作執行量測的組別改變抑制的百分比顯著較假刺激明顯,而皮質內誘發則是在有電刺激的兩組(有無動作執行)顯著下降,但是組間的比較則是沒有明顯差異,而順序性反應時間測試中則是兩組(電刺激/假刺激)隨著練習的次數增加時明顯的降低反應時間,但是電刺激介入並沒有顯著影響動作表現,因此兩組間則是沒有顯著差異,而在前額葉血液動力學變化中則是只有在電刺激介入的情形有顯著效應,而在初始練習時發現有活性明顯上升的情形,而在30分鐘後測時發現顯著低於初始值的活性,因此代表電刺激的組別有一定的幫助學習固化的現象。討論:經皮神經電刺激顯著對皮質脊髓神經元產生明顯的興奮性誘發,但是同時間則發現皮質內抑制也有明顯增加的情形,而皮質內抑制上升則是被認為會干擾皮質重組或是去覆蓋現象(unmasking),而顯著動作的電位上升伴隨皮質內誘發明顯的下降則是有可能在皮質內誘發的量測中發生天花板效應,而在動作表現上則沒有發現明顯電刺激造成的效應,結論:本實驗證實經皮神經電刺激明顯增加主要動作皮質內之興奮性,而且動作練習對於經皮神經電刺激所產生的效果產生聯合反應,需要更進一步大於24小時的長期追蹤,或是增加電刺激介入的劑量,來進一步討論經皮神經電刺激的效應。


AIM: The relationship between cranial transcutaneous electrical nerve stimulation (TENS) stimulation and cortical excitability change during motor learning process is unknown. This study aims to explore the effects of cranial TENS application on cortical excitability of primary motor cortex (M1) during implicit sequential motor learning process in normal subjects. Prefrontal activation pattern in learning process was also monitored by Near-infrared spectroscopy (NIRS). METHODS: 48 volunteers were recruited from colleges and communities. Subjects were randomized into TENS stimulation group (Stimulus-TENS/Sham) and TENS stimulation with motor task group (Motor-TENS/Sham). Subjects in both groups need to accomplish two trials (TENS or sham stimulation), the interval between trials was more than 1 week. Motor evoked potential (MEP), intracortical inhibition (ICI) and intracortical facilitation (ICF), Serial reaction time task and NIRS were measured to monitor physiological and behavioral change process in motor learning. RESULTS: MEPs amplitude in both Motor-TENS and Stimulus-TENS group increased significantly. MEP amplitude of Motor-TENS were significantly higher than Stimulus-TENS in followed up 60 mins. Motor task induced synergistic effect on enhancement of MEP amplitude. Higher suppression effects of ICI were also found in both Motor-TENS and Motor-Sham. Motor-TENS go higher suppression of ICI than Motor-Sham which revealed synergistic effect of TENS stimulation. The ICF was also decreased in Motor-TENS and Stimulus TENS. However, between group comparison showed no significant different. In SRTT performance, reaction times significantly improved both in Motor-TENS/Sham but no difference between TENS and sham stimulation. Prefrontal activation showed significant time effect in TENS-Motor only. Increment activation in initial learning and following decrease activation in retention test was observed. Consolidation effect in Motor-TENS than Motor-Sham was also noted. DISSCUSSION: TENS intervention increased corticospinal neuron excitability. However, significant increase suppression induced by ICI may indicate disruption of cortical representation. Increment of ICF concurrent with increment MEP showed ceiling effect existed in ICF measurement. TENS intervention showed weak effect to altered motor learning process. CONCLUSION: TENS stimulation increase cortical excitability and inhibitory shift of intracortical circuits. Motor practice played a facilitation role to altered cortical excitability which induced synergistic effect on TENS intervention. Further study should be done to investigate the effect of TENS with long-term (more than 24 hour) effect or increase times of stimulus program.

CONTENTS TABLE
口試委員審會定書 &;#8560;
誌謝 &;#8561;
中文摘要 &;#8563;
Abstract &;#8565;
List of abbreviations &;#8567;
Contents table &;#8569;
Figures list xii
Tables list xiii
Chapter 1: Introduction 1
1.1 Background 1
1.2 Purpose 4
1.3 Question and hypothesis 6
1.4 Significance 7
Chapter 2: Literature review 9
2.1 Historical view of transcranial electrical stimulation 9
2.2 Comparison stimulation parameter of transcranial electricl stimution 11
2.3 Cranial electrotherapy stimulation (CES) 13
2.2.1 Research in animal model 14
2.2.2 Rresearch in human model 15
2.4 Transcranial magnetic stimulation (TMS) 18
2.4.1 Motor threshold 20
2.4.2 Motor evoked potential 21
2.4.3 Intracortcial facilitation and intracortcial inhibition 22
2.5 Near infrared spectroscopy (NIRS) 23
2.5.1 Mechanism of NIRS 23
2.5.2 Psychometric studies of NIRS 26
2.6 Serial reaction time task (SRTT) 29
2.6.1 Implicit sequential motor learning process 29
2.6.2 Brain activation pattern during SRTT 30
Chapter 3: Methods 32
3.1 Participants 32
3.2 Study design 33
3.3 Experimental procedure 33
3.4 Experimental assessment 36
3.5 Statistical analysis 37
Chapter 4 : Results 39
4.1 Basic data and baseline measurements 39
4.2 Effect of cranial ten interventions 39
4.2.1 Results of motor evoked potential 39
4.2.2 Results of pair pulsed stimulation 40
4.2.3 Results of prefrontal hemodynamic response 41
4.2.4 Results of serial reaction time task 42
Chapter 5: Discussion 43
5.1 Neurophysiological outcomes after cranial tens intervention 43
5.1.1 Motor evoked potential 44
5.1.2 Intracortical inhibition 45
5.1.3 Intracortical facilitation 46
5.1.4 Prefrontal hemodynamic response 47
5.1.5 Serial reaction time task 48
5.2 Possible clinical application of cranial tens intervention 48
5.3 Limitation 49
5.4 Future studies 50
Chapter 6: Conclusion 51
Reference 52
Figures 64
Tables 72
Appendix 78
&;#8195;



Reference
1.Zaghi S, Acar M, Hultgren B, Boggio PS, Fregni F. Noninvasive brain stimulation with low-intensity electrical currents: putative mechanisms of action for direct and alternating current stimulation. Neuroscientist 2010;16:285-307.
2.Schutter DJ, Hortensius R. Brain oscillations and frequency-dependent modulation of cortical excitability. Brain Stimul 2011;4:97-103.
3.Zaghi S, de Freitas Rezende L, de Oliveira LM, El-Nazer R, Menning S, Tadini L, et al. Inhibition of motor cortex excitability with 15Hz transcranial alternating current stimulation (tACS). Neurosci Lett 2010;479:211-214.
4.Antal A, Boros K, Poreisz C, Chaieb L, Terney D, Paulus W. Comparatively weak after-effects of transcranial alternating current stimulation (tACS) on cortical excitability in humans. Brain Stimul 2008;1:97-105.
5.Wach C, Krause V, Moliadze V, Paulus W, Schnitzler A, Pollok B. Effects of 10 Hz and 20 Hz transcranial alternating current stimulation (tACS) on motor functions and motor cortical excitability. Behav Brain Res 2013;241:1-6.
6.Kanai R, Paulus W, Walsh V. Transcranial alternating current stimulation (tACS) modulates cortical excitability as assessed by TMS-induced phosphene thresholds. Clin Neurophysiol 2010;121:1551-1554.
7.Turi Z, Ambrus GG, Janacsek K, Emmert K, Hahn L, Paulus W, et al. Both the cutaneous sensation and phosphene perception are modulated in a frequency-specific manner during transcranial alternating current stimulation. Restor Neurol Neurosci 2013;31:275-285.
8.Datta A, Dmochowski JP, Guleyupoglu B, Bikson M, Fregni F. Cranial electrotherapy stimulation and transcranial pulsed current stimulation: a computer based high-resolution modeling study. Neuroimage 2013;65:280-287.
9.Warner RL, Johnston C, Hamilton R, Skolnick, M.H., Wilson OB. Transcranial electrostimulation effects on rat opioid and neurotransmitter levels. Life Sci. 1994;54:481-490.
10.Feusner JD, Madsen S, Moody TD, Bohon C, Hembacher E, Bookheimer SY, et al. Effects of cranial electrotherapy stimulation on resting state brain activity. Brain Behav 2012;2:211-220.
11.Alon G, Yungher DA, Shulman LM, Rogers MW. Safety and immediate effect of noninvasive transcranial pulsed current stimulation on gait and balance in Parkinson disease. Neurorehabil Neural Repair 2012;26:1089-1095.
12.Bolognini N, Vallar G, Casati C, Latif LA, El-Nazer R, Williams J, et al. Neurophysiological and behavioral effects of tDCS combined with constraint-induced movement therapy in poststroke patients. Neurorehabil Neural Repair 2011;25:819-829.
13.Ochi M, Saeki S, Oda T, Matsushima Y, Hachisuka K. Effects of anodal and cathodal transcranial direct current stimulation combined with robotic therapy on severely affected arms in chronic stroke patients. J Rehabil Med 2013;45:137-140.
14.Cameron M, Lonergan E, Lee H. Transcutaneous electrical nerve stimulation (TENS) for dementia. Cochrane Database Syst Rev 2003:CD004032.
15.Liao YH. Effect of trancutaneous electrical nerve stimulation on cortical excitability and motor performance in the primary motor cortex. School and graduate institude of physical therapy: National Taiwan Univiersity, 2013
16.Bergman H, Deuschl G. Pathophysiology of Parkinson''s disease: from clinical neurology to basic neuroscience and back. Mov Disord 2002;17 Suppl 3:S28-40.
17.Traversa R, Cicinelli P, Pasqualetti P, Filippi M, Rossini PM. Follow-up of interhemispheric differences of motor evoked potentials from the ''affected'' and ''unaffected'' hemispheres in human stroke. Brain Res. 1998;24:1-8.
18.Guleyupoglu B, Schestatsky P, Edwards D, Fregni F, Bikson M. Classification of methods in transcranial electrical stimulation (tES) and evolving strategy from historical approaches to contemporary innovations. J Neurosci Methods 2013;219:297-311.
19.Feurra M, Bianco G, Santarnecchi E, Del Testa M, Rossi A, Rossi S. Frequency-dependent tuning of the human motor system induced by transcranial oscillatory potentials. J Neurosci 2011;31:12165-12170.
20.Angelakis E, Liouta E, Andreadis N, Leonardos A, Ktonas P, Stavrinou LC, et al. Transcranial alternating current stimulation reduces symptoms in intractable idiopathic cervical dystonia: a case study. Neurosci Lett 2013;533:39-43.
21.Scherder E, Knol D, van Someren E, Deijen JB, Binnekade R, Tilders F, et al. Effects of low-frequency cranial electrostimulation on the rest-activity rhythm and salivary cortisol in Alzheimer''s disease. Neurorehabil Neural Repair. 2003;17:101-108.
22.Lopes S, Davies N, Toumazou C, Grossman N. Theoretical Investigation of Transcranial Alternating Current Stimulation using Laminar Model. Conf Proc IEEE Eng Med Biol Soc. 2012:4152-4155.
23.Manoli Z, Grossman N, Samaras T. Theoretical Investigation of Transcranial Alternating Current Stimulation using Realistic Head Model. IEEE EMBS, 2012
24.Neuling T, Wagner S, Wolters CH, Zaehle T, Herrmann CS. Finite-Element Model Predicts Current Density Distribution for Clinical Applications of tDCS and tACS. Front Psychiatry 2012;3:83.
25.Manganotti P, Formaggio E, Felice AD, Storti SF, Zamboni A, Bertoldo A, et al. Time-frequency analysis of short-lasting modulation of EEG induced by TMS during wake, sleep deprivation and sleep. Front Hum Neurosci 2013;7:767.
26.Habib D, Dringenberg HC. Alternating low frequency stimulation of medial septal and commissural fibers induces NMDA-dependent, long-lasting potentiation of hippocampal synapses in urethane-anesthetized rats. Hippocampus 2009;19:299-307.
27.Kirsch DL, Smith RB. The use of cranial electrotherapy stimulation in the management of chronic pain: A review. NeurorRehabilitation. 2000;14:85-94.
28.Heffernan M. The effect of variable microcurrent on EEG spectrum and pain control. canadian journal of clinical medicine 1997;4:4-11.
29.Heffernan MS. Comparative effects of microcurrent stimulation on EEG spectrum and correlation dimension. Integr Physiol Behav Sci. 1996;31:202-209.
30.Schroeder MJ, Barr RE. Quantitative analysis of the electroencephalogram during cranial electrotherapy stimulation. Clin Neurophysiol. 2001;112:2075-2083.
31.Hallett M. Transcranial magnetic stimulation: a primer. Neuron 2007;55:187-199.
32.Horvath JC, Perez JM, Forrow L, Fregni F, Pascual-Leone A. Transcranial magnetic stimulation: a historical evaluation and future prognosis of therapeutically relevant ethical concerns. J Med Ethics 2011;37:137-143.
33.Kobayashi M, Pascual-Leone A. Transcranial magnetic stimulation in neurology. The Lancet Neurology 2003;2:145-156.
34.Groppa S, Oliviero A, Eisen A, Quartarone A, Cohen LG, Mall V, et al. A practical guide to diagnostic transcranial magnetic stimulation: report of an IFCN committee. Clin Neurophysiol 2012;123:858-882.
35.Rossi S, Hallett M, Rossini PM, Pascual-Leone A, Safety of TMSCG. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol 2009;120:2008-2039.
36.Rossini PM, Barker AT, Berardelli A, Caramia MD, Caruso G, Cracco RQ, et al. Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application. Report of an IFCN committee. Electroencephalogr Clin Neurophysiol 1994;91:79-92.
37.Tranulis C, Gueguen B, Pham-Scottez A, Vacheron MN, Cabelguen G, Costantini A, et al. Motor threshold in transcranial magnetic stimulation: comparison of three estimation methods. Neurophysiol Clin 2006;36:1-7.
38.List J, Kubke JC, Lindenberg R, Kulzow N, Kerti L, Witte V, et al. Relationship between excitability, plasticity and thickness of the motor cortex in older adults. Neuroimage 2013;83:809-816.
39.Elahi B, Hutchison WD, Daskalakis ZJ, Gunraj C, Chen R. Dose response curve of Associative Plasticity in human motor cortex and interactions with motor learning. J Neurophysiol 2013
40.Di Lazzaro V, Oliviero A, Meglio M, Cioni B, Tamburrini G, Tonali P, et al. Direct demonstration of the effect of lorazepam on the excitability of the human motor cortex. Clin Neurophysiol. 2000;111:794-799.
41.Ziemann U, Chen R, Cohen LG, Hallett M. Dextromethorphan decreases the excitability of the human motor cortex. Neurology. 1998;51:1320-1324.
42.Butler AJ, Wolf SL. Putting the brain on the map: use of transcranial magnetic stimulation to assess and induce cortical plasticity of upper-extremity movement. Phys Ther 2007;87:719-736.
43.Strangman G, Goldstein R, Rauch SL, Stein J. Near-infrared spectroscopy and imaging for investigating stroke rehabilitation: test-retest reliability and review of the literature. Arch Phys Med Rehabil 2006;87:S12-19.
44.Strangman G, Culver JP, Thompson JH, Boas DA. A Quantitative Comparison of Simultaneous BOLD fMRI and NIRS Recordings during Functional Brain Activation. NeuroImage 2002;17:719-731.
45.Haeussinger FB, Heinzel S, Hahn T, Schecklmann M, Ehlis AC, Fallgatter AJ. Simulation of near-infrared light absorption considering individual head and prefrontal cortex anatomy: implications for optical neuroimaging. PLoS One 2011;6:e26377.
46.Mehagnoul-Schipper DJ, van der Kallen BF, Colier WN, van der Sluijs MC, van Erning LJ, Thijssen HO, et al. Simultaneous measurements of cerebral oxygenation changes during brain activation by near-infrared spectroscopy and functional magnetic resonance imaging in healthy young and elderly subjects. Hum Brain Mapp 2002;16:14-23.
47.Okamoto M, Dan H, Shimizu K, Takeo K, Amita T, Oda I, et al. Multimodal assessment of cortical activation during apple peeling by NIRS and fMRI. Neuroimage 2004;21:1275-1288.
48.Nissen MJ, Bullemer P. Attentional requirements of learning: evidence from performance measures. Cogn. Psychol. 1987;19:1-32.
49.Robertson EM. The serial reaction time task: implicit motor skill learning? J Neurosci 2007;27:10073-10075.
50.Berns GS. Brain Regions Responsive to Novelty in the Absence of Awareness. Science 1997;276:1272-1275.
51.Censor N, Dayan E, Cohen LG. Cortico-subcortical neuronal circuitry associated with reconsolidation of human procedural memories. Cortex 2013
52.Lin CH, Knowlton BJ, Chiang MC, Iacoboni M, Udompholkul P, Wu AD. Brain-behavior correlates of optimizing learning through interleaved practice. Neuroimage 2011;56:1758-1772.
53.Lin CH, Chiang MC, Wu AD, Iacoboni M, Udompholkul P, Yazdanshenas O, et al. Age related differences in the neural substrates of motor sequence learning after interleaved and repetitive practice. Neuroimage 2012;62:2007-2020.
54.Galea JM, Albert NB, T. D, Miall RC. Disruption of the Dorsolateral Prefrontal Cortex Facilitates the Consolidation of Procedural Skills. J Cogn Neurosci. 2010;22
55.Paul F, Vermeij A, van Beek AHEA, Olde Rikkert MGM, Claassen JAHR, Kessels RPC. Effects of Aging on Cerebral Oxygenation during Working-Memory Performance: A Functional Near-Infrared Spectroscopy Study. PLoS ONE 2012;7:e46210.
56.Okamoto M, Dan H, Sakamoto K, Takeo K, Shimizu K, Kohno S, et al. Three-dimensional probabilistic anatomical cranio-cerebral correlation via the international 10–20 system oriented for transcranial functional brain mapping. NeuroImage 2004;21:99-111.
57.Rosenkranz K, Kacar A, Rothwell JC. Differential modulation of motor cortical plasticity and excitability in early and late phases of human motor learning. J Neurosci 2007;27:12058-12066.
58.Camus M, Ragert P, Vandermeeren Y, Cohen LG. Mechanisms controlling motor output to a transfer hand after learning a sequential pinch force skill with the opposite hand. Clin Neurophysiol 2009;120:1859-1865.
59.Chen R. Interactions between inhibitory and excitatory circuits in the human motor cortex. Exp Brain Res 2004;154:1-10.
60.Perez MA, Wise SP, Willingham DT, Cohen LG. Neurophysiological mechanisms involved in transfer of procedural knowledge. J Neurosci 2007;27:1045-1053.
61.Marker RJ, Stephenson JL, Kluger BM, Curran-Everett D, Maluf KS. Modulation of intracortical inhibition in response to acute psychosocial stress is impaired among individuals with chronic neck pain. J Psychosom Res 2014;76:249-256.
62.Smyth C, Summers JJ, Garry MI. Differences in motor learning success are associated with differences in M1 excitability. Hum Mov Sci 2010;29:618-630.
63.Strafella AP, T. P. Cerebral blood-flow changes induced by paired-pulse transcranial magnetic stimulation of the primary motor cortex. J Neurophysiol. 2001;85:2624-2629.
64.Sidhu SK, Lauber B, Cresswell AG, Carroll TJ. Sustained cycling exercise increases intracortical inhibition. Med Sci Sports Exerc 2013;45:654-662.
65.Donchin O, Sawaki L, Madupu G, Cohen LG, R. S. Mechanisms Influencing Acquisition and Recall of Motor Memories. J Neurophysiol. 2002;88:2114-2123.
66.Kantak SS, Sullivan KJ, Fisher BE, Knowlton BJ, Winstein CJ. Neural substrates of motor memory consolidation depend on practice structure. Nat Neurosci 2010;13:923-925.
67.Shadmehr R. Neural Correlates of Motor Memory Consolidation. Science 1997;277:821-825.
68.Williams PS, Hoffman RL, Clark BC. Cortical and spinal mechanisms of task failure of sustained submaximal fatiguing contractions. PLoS One 2014;9:e93284.
69.Vacherot F, Attarian S, Eusebio A, Azulay JP. Excitability of the lower-limb area of the motor cortex in Parkinson''s disease. Neurophysiologie Clinique/Clinical Neurophysiology 2010;40:201-208.
70.Ni Z, Bahl N, Gunraj CA, Mazzella F, R. C. Increased motor cortical facilitation and decreased inhibition in Parkinson disease. Neurology. 2013;80:1746-1753.
71.Bares M, Kanovsky P, Rektor I. Disturbed intracortical excitability in early Parkinson''s disease is l-DOPA dose related: a prospective 12-month paired TMS study. Parkinsonism Relat Disord 2007;13:489-494.



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔