(3.232.129.123) 您好!臺灣時間:2021/03/06 01:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:朱婉妮
研究生(外文):Wan-Ni Chu
論文名稱:低能量雷射照射對人類牙周韌帶細胞periostin 表現的影響
論文名稱(外文):Effect of low level laser irradiation on the expression of periostin in human periodontal ligament cells
指導教授:陳羿貞
指導教授(外文):Yi-Jane Chen
口試委員:高嘉澤張美姬黃翠賢
口試日期:2014-07-08
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:臨床牙醫學研究所
學門:醫藥衛生學門
學類:牙醫學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:61
中文關鍵詞:低階能量雷射照射人類牙周韌帶細胞PeriostinPLAP-1
外文關鍵詞:periostinlow level laser irradiationPLAP-1human periodontal ligament cell
相關次數:
  • 被引用被引用:0
  • 點閱點閱:163
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
低階能量雷射照射可透過給予組織適當能量,促成抗發炎、止痛、促進傷口癒合等治療目的,近年來,低階能量雷射治療的臨床療效被應用於牙醫學的領域。細胞外間質蛋白periostin具有調控細胞附著、移動、分化等功能,其表現與牙周韌帶承受咬合力的能力及組織結構的穩定性關係密切。PLAP-1 (periodontal ligament - associated protein, PLAP-1)抑制牙周韌帶的細胞成骨分化潛力,可能與牙周韌帶能夠維持結締組織形態而免於鈣化的特性有關。
本研究探討低能量二極體雷射對人類牙周韌帶細胞活性及periostin與PLAP-1表現的影響。實驗細胞是取自齒顎矯正治療所拔除的小臼齒或智齒所培養的人類牙周韌帶細胞,雷射機型為波長970nm半導體雷射(Al-Ga-As,Arts K-Laser Professional 40E 970 nm),照射參數設定為continuous wave mode,output power:500 mW, 照射時間為4秒( 5.20 J/cm2) 、8秒( 10.40 J/cm2),照射探頭與culture plate底部距離為11 mm。雷射所引起的細胞效應分析包括: 細胞生長活性測試,periostin、PLAP-1基因的mRNA表現分析、以及periostin、Smad 2/3 蛋白質表現分析。
本研究結果顯示波長970nm之低階能量雷射照射會使牙周韌帶細胞的MTT活性明顯提升,隨著時間變化因能量密度而有不同改變。RT-PCR分析基因結果顯示在能量密度5.20 J/cm2照射一天後,periostin 及PLAP-1 mRNA表現增加。Western blot分析發現當細胞培養環境存在外加轉化生長因子TGF-β時,牙周韌帶細胞periostin表現會增強;單次低階能量雷射照射對牙周韌帶細胞之periostin的影響皆呈現先降低而後再回復至與control groups 相似的情形。重複雷射照射則在能量密度不同與照射天數不同相較於單次照射有增強或削弱的表現差異。本研究顯示低階能量雷射可能會強化牙周韌帶細胞的periostin 與PLAP-1表現進而影響牙周組織的平衡,但低階能量雷射照射是否促進TGF-β訊息路徑的活化並促成Smad 2/3磷酸化的作用尚待進一步探討。

關鍵字:低階能量雷射照射、人類牙周韌帶細胞、 Periostin、PLAP-1


Low level laser irradiation by giving proper dose application contributes to anti-inflammatory, analgesic, wound healing and other therapeutic purposes. In recent years, the clinical efficacy of the low level laser treatment is also applied to the field of dentistry. Periostin is an extracellular matrix protein highly expressed in periodontal ligament and is essential for periodontal tissue integrity. Its function is as follows regulation of cell adhesion, migration, differentiation and so on. Periostin expression is closely related with the ability of periodontal ligaments to withstand the bite force and the stability of PDL structure. PLAP-1/asporin (periodontal ligament- associated protein) plays specific roles in maintaining the homeostasis of the PDL as a negative regulator of cytodifferentiation and mineralization.
This study investigated the effects of low level laser irradiation on the expression of periostin and PLAP-1 in human PDL cells. Experimental PDL cells were collected from human wisdom teeth or premolars extracted for orthodontic reasons. 970nm semiconductor laser models (Al-Ga-As, Arts K-Laser Professional 40E 970 nm) was used in the study , irradiation parameter was set to continuous wave mode, output power was500 mW, irradiation time was 4 seconds (5.20 J/cm2) , 8 seconds (10.40 J/cm2) , the distance between the tip of the laser handpiece and the button of the culture plate was 11mm. Analysis of low level laser irradiation on PDL cells included MTT assay, expression of periostin mRNA , PLAP-1 mRNA , and periostin, Smad2/3 protein.
The results of this study showed that MTT activity of periodontal ligament cells under 970-nm low level laser irradiation increased significantly over time at different energy density. RT-PCR analysis of gene showed that after one-day low level laser irradiation at energy density of 5.20 J/cm2, periostin mRNA and PLAP-1 mRNA expression increased. Western blot analysis showed that periostin expression of periodontal ligament cells was enhanced with the presence of TGF-β. The impact of a single low-level laser irradiation on periostin protein expression in periodontal ligament cells were decreased first and then back to a similar situation compared with the control groups.
The performance of repeated laser irradiation on periostin expression at different energy density and irradiation days were enhanced or weakened, which were different from those of single irradiation application. This study showed that low-level laser irradiation may enhance the expression of periostin and PLAP-1 in the periodontal ligament cells and thus may affect the homeostasis of periodontal tissue. However, whether the low level laser irradiation activate TGF-β signaling pathway and contribute to the phosphorylation of Smad2/3 remains to be further explored.
Key word: low level laser irradiation、human periodontal ligament cell、Periostin、PLAP-1


口試委員會審定書………………………………………………………………….i
誌謝………………………………………………………………………………….ii
中文摘要…………………………………………………………………………….iii
英文摘要…………………………………………………………………………….v
第一章 導論……………………………………………………………………….1
1.1低階雷射光療 (Low Level Laser Therapy) ………………………………1
1.2 低階雷射照射的作用機制………………………………………………..1
1.3 低階雷射光療對細胞的作用………………………………………………3
1.4 低階雷射光療對傷口癒合中的細胞作用…………………………………4
1.5 低階雷射光療的臨床應用…………………………………………………6
1.6 Periostin ………………………………………………………………… 6
1.7 PALP-1(periodontal-ligament-associated protein-1) ……………………10
第二章 研究目的.. ……………………………………………………………….12
第三章 研究材料與方法….……………………………………………………..13
3.1 細胞培養( cell culture ) ………………………………………………….13
3.2 雷射照射的設計…………………………………………………………13
3.3 細胞生長測試( MTT Assay)…………………………………………….13
3.4 調控人類牙周韌帶細胞 Periostin、PLAP-1基因表現 …………… 14
3.4.1 Total RNA的萃取及定量………………………………………..14
3.4.2 反轉錄聚合&;#37238;連鎖反應( Reverse Transcription
Polymerase Chain Reaction ,RT-PCR) …………………15
3.4.3瓊脂凝膠電泳分析( Agarose gel electrophoresis) ……………. 15
3.5 調控人類牙周韌帶細胞Periostin、Smad 2/3 蛋白質表現 ……….. 16
3.5.1 細胞內蛋白質分離 ……………………………………………16
3.5.2 總蛋白質( total protein)定量 ……………………………….. 16
3.5.3西方點墨法( Western blot) ………………………………… 16
3.6 統計分析……………………………………………………………. 17
第四章 結果 ………………………………………………………………….... 18
4.1 MTT 活性測試結果……………………………………………………. 18
4.2 不同濃度轉化生長因子(TGF-β)對POSTN,PLAP-1基因表現 ...... 18
4.3 低能量雷射照射對POSTN,PLAP-1基因表現 …………………….. 18
4.4 Periostin 蛋白質表現 …………………………………………….. 19
4.5 Smad2/3 蛋白磷酸化的表現 ……………………………………….. 20
第五章 討論 ………………………………………………………………… 22
5.1 實驗裝置探討 ……………………………………………………….. 22
5.2 低階能量雷射照射的參數探討 …………………………………….. 23
5.3 雷射照射後細胞活性分析 ………………………………………….. 24
5.4 Periostin 的調控因子 ……………………………………………….. 25
5.5 低階能量雷射照射對Periostin表現的影響 ……………………….. 28
5.6 低階能量雷射照射與轉化生長因子( TGF-β)對PLAP-1
基因表現的影響……………………………………………………. 28
第六章 結論…………………………………………………………………... 30
第七章 未來研究方向 ……………………………………………………... 32
參考文獻…………………………………………………………………………. 33
附錄(表與圖) ……………………………………………………………………. 39

Reference

A, Kudo (2011). "Periostin in fibrillogenesis for tissue regeneration: Periostin actions
inside and outside the cell. ." Cell Mol Life Sci 68: 3201-3207.
Abi-Ramiaa, Luciana Baptista Pereira, et al. (2010). "Effects of Low-Level Laser
Therapy and Orthodontic Tooth Movement on Dental Pulps in Rats" Angle Orthod 80: 116-122.
AC-H, Chen, et al. (2009). Low level laser therapy activates NF-κB via generation of
reactive oxygen species in mouse embryonic fibroblasts. . Proc SPIE in press:.
AD, Agaiby, et al. (2000). "Laser modulation of angiogenic factor production
by T-lymphocytes. Lasers Surg Med 26:357-63." Lasers Surg Med 26: 357-363.
AR, Medrado, et al. (2003). "Influence of low level laser therapy on wound healing and its biological action upon myofibroblasts. ." Lasers Surg Med 32: 239-244.
Arany, Praveen R. (2011). "Laser Photobiomodulation: Models and Mechanisms." J Laser Dent 2011;19(2):231-237 19(2): 231-237.
Aukkarasongsup, Paveenarat, et al. (2013). "Periostin inhibits hypoxia-induced apoptosis in human periodontal ligament cells via TGF-b signaling." Biochemical and Biophysical Research Communications 441: 126-132.
B, Merle and Garnero P (2012). "The multiple facets of periostin in bone metabolism. ." Osteoporos Int 23: 1199-1212.
D, Bisht, et al. (1999). " Effect of helium-neon laser on wound healing." 37: 187-189.
DW, Hamilton (2008). " Functional role of periostin in development and wound repair: Implications for connective tissue disease. ." J Cell Commun Signal 2: 9-17.
E, Afanador, et al. (2005). "Messenger RNA expression of periostin and Twist transiently decrease by occlusal hypofunction in mouse periodontal ligament. ." Arch Oral Biol 50: 1023-1031.
E, Alexandratou, et al. (2002). "Human fibroblast alterations induced by low power laser irradiation at the single cell level using confocal microscopy.
" Photochem Photobiol Sci 1: 547-552.
EL, Laakso, et al. (1993). " Factors affecting low level laser therapy.
" Aust J Physio 39: 95-99.
Galli, C., et al. (2013). "Periostin improves cell adhesion to implantable biomaterials and osteoblastic differentiation on implant titanium surfaces in a topography-dependent fashion." JOURNAL OF BIOMEDICAL MATERIALS RESEARCH A: 1-6.
Gao, Xuejuan and Da Xing (2009). "Molecular mechanisms of cell proliferation induced by low power laser irradiation." Journal of Biomedical Science 16: 1-16.
GC, Brown (2001). "Regulation of mitochondrial respiration by nitric oxide inhibition of cytochrome c oxidase." Biochim Biophys Acta 1504: 46-57.
GK, Reddy, et al. (2001). " Laser photostimulation accelerates wound healing in
diabetic rats." Wound Repair Regen 1(9): 248-255.
H, Suzuki, et al. (2004). "Immunohistochemical localization of periostin in tooth and its surrounding tissues in mouse mandibles during development.
" Anat Rec A Discov Mol Cell Evol Biol 281: 1264-1275.
Hashmi, Javad T., et al. (2010). "Effect of Pulsing in Low-Level Light Therapy." Lasers in Surgery and Medicine 42: 450-466.
HF, Rios, et al. (2008). "Periostin is essential for the integrity and function of the periodontal ligament during occlusal loading in mice." J Periodontol 79: 1480-1490.
HF, Rios, et al. (2005). "Periostinnull mice exhibit dwarfism,incisor enamel defects, and an early-onset periodontal disease-like phenotype. ." Mol Cell Biol 25: 11131-11144.
Huang, Tsui Hsien, et al. (2012). "Low-level diode laser therapy reduces lipopolysaccharide(LPS)-induced bone cell inflammation." Lasers Med Sci 27(621-27).
I, Kii, et al. (2006). "Periostin is an extracellular matrix protein required for eruption of incisors in mice." Biochem Biophys Res Commun 342: 766-772.
J, Wilde, et al. (2003). "The divergent expression of periostin mRNA in the periodontal ligament during experimental tooth movement. " Cell Tissue Res 312(3): 345-351.
JC, Sutherland (2002). "Biological effects of polychromatic light " Photochem Photobiol 76: 164-170.
JM, Bjordal, et al. (2007). "Short-term efficacy of physical interventions in osteoarthritic knee pain. A systematic review and metaanalysis
of randomised placebo-controlled trials. ." BMC Musculoskelet Disord 8: 51.
Jurukovski, Vladimir, et al. (2009). Fibrosis Research: Methods and Protocols
JW, Choi, et al. (2011). "Fiber system degradation and periostin and connective tissue growth factor level reduction, in the periodontal ligament of teeth in the absence of masticatory load. " J Periodontal Res 46: 513-521.
K, Bolton, et al. (2006). Periostin, a novel secreted protein involved in the pathogenesis of obesity and type 2 diabetes. In: IDF: 19th World Diabetes Congress, Blackwell Publishing Ltd.
Kajikawa, T., et al. (2014). "Inhibitory Effects of PLAP-1/ asporin on Periodontal Ligament Cells." J Dent Res 93(4): 400-405.
LJ, Walsh (1997). " The current status of low level laser therapy in dentistry. I. Soft tissue applications. ." Aust Dent J 42: 247-254.
Lv, Shengyu, et al. (2014). "Histochemical examination of cathepsin K, MMP1 and MMP2 in compressed periodontal ligament during orthodontic tooth
movement in periostin deficient mice." J Mol Hist 45: 303-309.
M, Greco, et al. (1989). "Increase in RNA and protein synthesis by mitochondria irradiated with helium-neon laser." Biochem Biophys Res Commun 163: 1428-1434.
M, Padial-Molina, et al. (2012). "TNF-alpha and P. gingivalis lipopolysaccharides decrease periostin in human PDL fibroblasts. " J Periodontol 84: 694-703.
M., Khalid, et al. (2012). "Low-level laser therapy: a useful technique for enhancing the proliferation of various cultured cells." Lasers Med Sci 27: 237-249.
Marchesan, Julie Teresa and Christina Springstead Scanlon (2011). "Implications of cultured periodontal ligament cells for the clinical and experimental setting: A review." a r c h i v e s o f o r a l b i o l o g y 56: 933-943.
MD, Skopin and Molitor SC (2009). "Effects of nearinfrared laser exposure in a cellular model of wound healing." Photodermatol Photoimmunol Photomed 25: 75-80.
MT, Shiva S and Gladwin (2009). "Shining a light on tissue NO stores: near infrared release of NO from nitrite and nitrosylated hemes. ." J Mol Cell Cardiol 46: 1-3.
N, Bonnet, et al. (2009). " The matricellular protein periostin is required for sost inhibition and the anabolic response to mechanical loading and physical activity. " J Biol Chem 284: 35939-35950.
N, Grossman, et al. (1998). "780 nm low power diode laser irradiation stimulates proliferation of keratinocyte cultures: involvement of reactive oxygen species. ." Lasers Surg Med 22: 212-218.
N, Lane (2006). "Cell biology: power games." Nature 443: 901-903.
N, Pourreau-Schneider, et al. (1990). " Helium-Neon laser treatment transforms fibroblasts into myofibroblasts. " Am J Pathol 137: 171-178.
P, Brondon, et al. (2005). " A study of the effects of phototherapy dose interval on photobiomodulation of cell cultures. ." Lasers Surg Med 36: 409-413.
P, Moore, et al. (2005). " Effect of wavelength on lowintensity laser irradiation-stimulated cell proliferation in vitro. ." Lasers Surg Med 36: 8-12.
Padial-Molina, M., et al. (2012). "Periostin is Down-regulated during Periodontal Inflammation." J Dent Res 91(11): 1078-1084.
PB, Noble, et al. (1992). "Locomotory characteristics of fibroblasts
within a three-dimensional collagen lattice: Modulation by a Helium/Neon soft laser." Lasers Surg Med 12: 669-674.
Peplow, Philip V., et al. (2010). "Laser Photobiomodulation of Proliferation of Cells
in Culture: A Review of Human and Animal Studies." Photomedicine and Laser Surgery 28: s23-61.
R, Lubart, et al. (1992). " Effects of visible and nearinfrared lasers on cell cultures. ." J Photochem Photobiol B 12: 305-310.
RA, Norris, et al. (2007). "Periostin regulates collagen fibrillogenesis and the biomechanical properties of connective tissues. ." J Cell Biochem 101: 695-711.
RF, Lyons, et al. (1987). " Biostimulation of wound healing in vivo by a helium-neon laser ." Ann Plast Surg 18(1): 47-50.
Rosselli-Murai, Luciana K. and Luciana O. Almeida (2013). "Periostin Responds to Mechanical Stress and Tension by Activating the MTOR Signaling Pathway,." PLOS ONE 8(12): e83580 -83591.
RP, Abergel, et al. (1987). "Biostimulation of wound healing by lasers: experimental approaches in animal models and in fibroblast cultures. ." J Dermatol Surg Oncol 13: 127-133.
S, Ikegawa (2008). " Expression, regulation and function of asporin, a susceptibility
gene in common bone and joint diseases. ." Curr Med Chem 15: 724-728.
S, Passarella, et al. (1984). " Increase of proton electrochemical potential and ATP synthesis in rat liver mitochondria irradiated in vitro by helium-neon laser. ." FEBS Lett 175: 95-99.
S, Takeshita, et al. (1993). "Osteoblast-specific factor 2: Cloning of a putative bone adhesion protein with homology with the insect protein fasciclin I." Biochem J Am Geriatr Soc 294: 271-278.
S, Yamada, et al. (2007). " PLAP-1/asporin, a novel negative regulator of periodontal ligament mineralization." J Biol Chem 282: 23070-23080.
S, Yamada, et al. (2001). "Expression profile of active genes in human
periodontal ligament and isolation of PLAP-1, a novel SLRP family gene. ." Gene 275: 279-286.
SO, El Sayed and Dyson M (1990). "A comparison of the effect of multiwavelength light produced by a cluster of semi-conductor diodes and of each individual diode on mast cell number and degranulation in intact and injured skin. ." Lasers Surg Med 10: 1-10.
SP, Ho, et al. (2007). " The tooth attachment mechanism defined by structure, chemical composition and mechanical properties of collagen fibers in the
periodontium. ." Biomaterials 28: 5238-5245.
Suzuki H, Amizuka N, Kii I, Kawano Y, Nozawa-Inoue K, Suzuki A, Yoshie H, Kudo A, Maeda and Chippendale T ". 2004. Immunohistochemical localization of periostin in tooth and its surrounding tissues in mouse mandibles during development. Anat Rec A Discov Mol Cell Evol Biol 281:1264–1275.".
T, Karu (1999). "Primary and secondary mechanisms of action of visible to near-IR radiation on cells." J Photochem Photobiol(49): 1-17.
T, Maruhashi, et al. (2010). " Interaction between periostin and BMP-1 promotes proteolytic activation of lysyloxidase." J Biol Chem 285: 13294-13303.
T, Watanabe, et al. (2012). " PERIOSTIN regulates MMP-2 expression via the avb3 integrin/ERK pathway in human periodontal ligament cells. ." Arch Oral Biol 57(1): 52-59.
TI, Karu (1987). " Photobiological fundamentals of low-power laser therapy." IEEE J Quant Electron QE-2 3(1703-17).
TI, Karu (1988). " Molecular mechanism of the therapeutic effect of low-intensity laser radiation " Lasers Life Sci 2: 53-74.
TI, Karu (1989). "Photobiology of low-power laser effects. ." Hlth Phys 56: 691-704.
TI, Karu (1989). Photobiology of low-power laser therapy. London: Harwood Academic Publishers.
TI, Karu and Afanas''eva NI (1995). "Cytochrome c oxidase as the primary photoacceptor upon laser exposure of cultured cells to visible and near IR-range light.." Dokl Akad Nauk 342: 693-695.
Tortamano, Andre&;acute;, et al. (2009). "Low-level laser therapy for pain caused by placement of the first orthodontic archwire: A randomized clinical trial." American Journal of Orthodontics and Dentofacial Orthopedics 136(5): 662-667.
W, Yu, et al. (1994). "The effect of laser irradiation on the release of bFGF from 3T3 fibroblasts. ." Photochem Photobiol 59: 167-170.
W, Yu, et al. (1994). "The effect of laser irradiation on the release of bFGF from
3T3 fibroblasts. ." Photochem Photobiol 59: 167-170.
W, Yu, et al. (1997). " Effects of photostimulation on wound healing in diabetic mice.
" Lasers Surg Med 20: 56-63.
Walsh LJ, Lavker RM, Murphy GF (1990). "Determinants of immune cell trafficking in the skin." Lab Invest 63: 592-600.
Wen, W., et al. (2010). "TGF-β1 and FAK Regulate Periostin Expression in PDL Fibroblasts." J Dent Res 89(12): 1439-1443.
Yamada S, Ozawa Y, Tomoeda M, Matoba R, Matsubara K, Murakami S (2006). "Regulation of PLAP-1 expression in peri" J Dent Res 85: 447-451.
Yoshida, T, et al. (2009). "Low-energy laser irradiation accelerates the velocity of tooth movement via stimulation of the alveolar bone remodeling." orthodontics and craniofacial research 12: 289-298.
odontal ligament cells.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔