(3.236.214.19) 您好!臺灣時間:2021/05/06 22:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李政旻
研究生(外文):Cheng-min Lee
論文名稱:鋯基金屬玻璃薄膜應用於Ti6Al4V合金與316L不鏽鋼疲勞性質提升機制之研究
論文名稱(外文):Fatigue Property Improvements of Ti6Al4V and 316L Stainless Steel by Coating with Zr-based Thin Film Metallic Glass
指導教授:朱瑾朱瑾引用關係
指導教授(外文):Jinn Chu
口試委員:朱瑾
口試委員(外文):Jinn Chu
口試日期:2013-11-06
學位類別:博士
校院名稱:國立臺灣科技大學
系所名稱:應用科技研究所
學門:自然科學學門
學類:其他自然科學學類
論文種類:學術論文
論文出版年:2013
畢業學年度:102
語文別:英文
論文頁數:120
中文關鍵詞:金屬玻璃薄膜鈦合金316L不鏽鋼四點抗彎疲勞性質拉伸疲勞性質
外文關鍵詞:Thin film metallic glassesTi6Al4V316L stainless steelFour-point bending fatigueTension fatigue test.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:150
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
金屬玻璃薄膜具有優良的機械性質如高強度、硬度,且具有可撓性,近十年來已有大量的研究投入金屬玻璃薄膜的應用。例如鋯基金屬玻璃薄膜已被應用於在各類合金如316L不鏽鋼、鎳機合金等的表面改質上以提升其疲勞性質。這對於金屬玻璃薄膜在疲勞性質上的影響是一個重大的發現。鈦合金(Ti6Al4V)在航太工業與醫療器具上已被廣泛使用,例如航空器零件及生醫上植入人體之組織,因此本研究進一步利用鋯基金屬玻璃膜應用在鈦合金上改善其表面性質以提升其疲勞特性。本研究中將鈦合金切割成3x3x25 釐米,以濺鍍的方式在試片表面鍍上200奈米的鋯基薄膜,利用四點抗彎測試比較鍍膜與未鍍膜試片的疲勞壽命。實驗結果顯示在675 MPa應力下,Ti6Al4V合金疲勞壽命由未鍍膜的 3.1x10^5 次,鍍膜後提升至5.3x10^6 次,疲勞壽命提升約17.3倍。疲勞限強度由未鍍膜之575 MPa增加到鍍膜後675 MPa。相同厚度的TiN陶瓷硬膜對於疲勞性質的提升沒有金屬玻璃薄膜來得明顯。
另一方面,在本研究中鋯基金屬玻璃薄膜也應用在316L不鏽鋼拉伸疲勞測試,結果顯示,不鏽鋼標準拉伸試驗棒在350 MPa應力下,鍍有500奈米的不鏽鋼其疲勞壽命由原先未鍍膜2.3 x 10^5次增加到6.0 x 10^6次,明顯提升25倍。
濺鍍鋯基薄膜後Ti6Al4V合金與不鏽鋼疲勞壽命明顯增加,可歸功於幾項主要原因:鋯基金屬玻璃具有延展性等優異的機械性質,對於基材而言為一硬膜保護層,疲勞試驗中能阻止缺陷在表面生成與傳播。濺鍍薄膜後基材表面粗糙度改善,因此減少缺陷在表面成核成長機會。然而薄膜與基材間的附著力也扮演關鍵性的角色,有良好的附著性薄膜,優良的性質才能在基材上表現出來,進而提升基材疲勞性質。在本論文中我們亦將提出提升疲勞性質的機制,藉由FIB與TEM等各項儀器的分析了解薄鍍層的特性。
In this study, we propose the use of the Zr-based thin film metallic glass (TFMG) as a promising coating for enhancing fatigue property of Ti6Al4V alloy and 316L stainless steel. 200 nm-thick Zr50Cu27Al16Ni7 and TiN thin films are prepared by sputtering on Ti6Al4V substrate. The four-point bending fatigue life is improved from 3.1 x 10^5 cycles for the uncoated sample by ~17.3 times to 5.3 x 10^6 cycles at a stress level of 675 MPa. The improvement in fatigue limit increases from 575 to 675 MPa as well. TFMG has a better performance than the TiN coating. On the other hand, the fatigue life of tension-tension fatigue 316L stainless steel is increased by ~25 times from 2.3 x 10^5 cycles of the bare sample to 6.0 x 10^6 cycles of TFMG coated sample at a loading stress of 350 MPa. The fatigue property improvements could be attributed to the several reasons, for instance, good mechanical property of Zr-based TFMG, specifically high strength and flexibility. After coating, Zr-based TFMG yields a decrease in surface roughness of substrates, hence reducing the crack initiations and propagations on the surface. Furthermore, the good adhesion property of TFMG also plays an important role. The mechanism of the film to prolong the fatigue life is examined by FIB and TEM. It has been proven that the coatings restrain the defects propagate to the surface during the fatigue cycles. The above-mentioned are the key factors that improve the fatigue resistance of the coated materials. Thus, this study demonstrates the metallic glass film as a promising coating material for improving the fatigue properties of materials.
摘要............................................................. I
Abstract........................................................II
Acknowledgment.................................................III
Contents........................................................IV
List of Figures...............................................XIII
List of Tables.................................................XIX
Chapter 1 Introduction...........................................1
Chapter 2 Background.............................................3
2.1 METALLIC GLASSES.............................................3
2.1.1 Bulk metallic glasses (BMGs)...............................3
2.1.2 Thin film metallic glasses (TFMGs).........................5
2.2 PROPERTIES OF METALLIC GLASSES...............................6
2.2.1 Supercooled liquid region (SCLR)...........................6
2.2.2 Thermal properties.........................................7
2.2.3 Mechanical properties.....................................12
2.2.3.1 Free volume.............................................13
2.2.3.2 Deformation mechanisms..................................17
2.2.3.3 Electrical resistivity..................................19
2.2.3.4 Stress in the thin film.................................20
2.2.4 Applications of TFMG......................................21
2.3 SPUTTERING PROCESS OF PHYSICAL VAPOR DEPOSITION TECHNIQUE...23
2.3.1 RF sputtering processes...................................24
2.3.2 DC magnetron sputtering processes.........................26
2.3.3 Growth of as-sputtered thin films.........................28
2.4 FATIGUE IN METALS...........................................30
2.4.1 Ti6Al4V...................................................31
2.4.2 316L stainless steel......................................33
2.5 OBJECTIVE OF THIS STUDY.....................................36
Chapter 3 Experimental Procedures...............................37
3.1 TARGET PREPARATION..........................................37
3.2 SUBSTRATE PREPARATION.......................................38
3.2.1 316L stainless steel......................................38
3.2.2 Ti6Al4V...................................................40
3.3 THIN FILM DEPOSITION........................................41
3.3.1 TFMG......................................................41
3.3.2 TiN film..................................................44
3.4 FATIGUE TEST................................................45
3.4.1 Four-point bending........................................45
3.4.2 Tension-tension fatigue test..............................47
3.4.3 Monotonic tensile test....................................48
3.5 MATERIAL CHARACTERIZATIONS..................................49
3.5.1 Electron Probe Micro-Analysis (EPMA)......................49
3.5.2 Dual-Beam Focused Ion Beam (DB-FIB).......................49
3.5.3 Transmission electron microscopy (TEM)....................51
3.5.4 Surface morphology measurements...........................51
3.5.4.1 Atomic Force Microscopy (AFM)...........................51
3.5.4.2 Coherence correlation interferometry (CCI)..............52
3.5.5 X-ray diffractometry (XRD)................................53
3.5.6 Thermal analysis (differential scanning calorimetry, DSC).54
3.6 ADHESION MEASUREMENT........................................55
3.6.1 Pull-off strength of coatings.............................55
3.6.3 Rockwell-C Hardness Test (HRC)............................55
3.7 RESIDUAL STRESS.............................................56
3.8 ANSYS SIMULATION............................................57
Chapter 4 Results and Discussion................................58
4.1 CHARACTERISTICS OF THIN FILM METALLIC GLASSES...............58
4.1.1Chemical analysis..........................................58
4.1.2 Crystallography (XRD).....................................61
4.1.3 SEM observation of TFMG...................................62
4.1.3 SEM observation of TiN....................................65
4.1.4 Surface morphology........................................66
4.1.4.1 Surface Morphology of Ti6Al4V...........................66
4.1.4.2 Surface morphology of 316L stainless steel..............67
4.1.5 Adhesion test.............................................69
4.1.5.1 Adhesion test of Ti6Al4V................................69
4.1.5.2 Adhesion test of 316L stainless.........................70
4.1.6 Thermal analysis..........................................72
4.1.7 Residual stress...........................................74
4.2 FATIGUE S-N RESULTS.........................................76
4.2.1 S-N result of Ti6Al4V.....................................76
4.2.2 S-N result of 316L stainless steel........................79
4.3 FRACTOGRAPHY ANALYSIS.......................................81
4.3.1 SEM analysis of Ti6Al4V...................................81
4.3.2 TEM analysis of Ti6Al4V...................................89
4.3.3 TEM analysis of 316L stainless steel (bending test).......97
4.3.3 Tensile fatigue of 316L stainless steel..................100
4.4 SURFACE MORPHOLOGY.........................................106
4.5 MONOTONIC TENSILE TEST.....................................107
4.6 ANSYS SIMULATION...........................................108
4.7 DISCUSSION.................................................109
Chapter 5 Summary and Conclusions..............................114
References.....................................................117
[1] H. Liebermann, C. Graham, IEEE Transactions on Magnetics, 12 (1976) 921.
[2] A. L. Drehman, A.L. Greer, D. Turnbull, APPL. PHYS. LETT., 41 (1982) 716.
[3] A. Inoue, T. Zhang, T. Masumoto, JIM, 30 (1989) 965.
[4] A. Inoue, T. Zhang, N. Nishiyama, K. Ohba, Masumoto, JIM, 34 (1993) 1234.
[5] A. Inoue, A. Kato, T. Zhang, S.G. Kim, T. Masumoto, MATER T JIM, 32,
(1991)609.
[6] A. Inoue, T. Zhang, T. Masumoto, MATER T JIM, 31 (1990) 425.
[7] A. Inoue, J.S. Gook, MATER T JIM, 36 (1990) 1180-1183.
[8] A. Inoue, W. Zhang, T. Zhang, K. Kurosaka, ACTA MATER, 49 (2001) 2645.
[9] A. Peker, W.L. Johnson, APPL. PHYS. LETT., 63 (1993) 2342.
[10] M. Chen, ANNU. REV. MATER. RES, 38 (2008) 445.
[11] H.W. Sheng, W.K. Luo, F.M. Alamgir, J.M. Bai, E. Ma, NATURE, 439:419 (2009).
[12] A. Inoue, A. Takeuchi, MAT SCI ENG A, 375-377 (2004) 16.
[13] Y. Liu, S. Hata;, K. Wada;, A. Shimokohbe, JPN J APPL PHYS, 40 (2001) 5382.
[14] A. L. Greer, K. L. Rutherford, I.M. Hutchings, INT MATER REV, 47 (2002) 87.
[15] F. X. Liu, F. Q. Yang, Y. F. Gao, W. H. Jiang, Y. F. Guan, P. D. Rack, O.
Sergic, P.K. Liaw, SURF COAT TECH, 203 (2009) 3480.
[16] S. Hata, K. Sato, A. Shimokohbe, Part of the Conference on Device and
Process Technologies for MEMS and Microelectronics, 3892 (1999).
[17] Y.H. Liu, T. Fujita, A. Hirata, S. Li, H.W. Liu, W. Zhang, A. Inoue, M.W.
Chen, INTERMETALLICS, 21 (2012) 105-114.
[18] K. Takenaka, N. Togashi, N. Nishiyama, A. Inoue, J NON-CRYST SOLIDS, 356
(2010) 1542-1545.
[19] J. P. Chu, C. T. Liu, T. Mahalingam, S. F. Wang, M. J. O’Keefe, B. Johnson,
C.H. Kuo, PHYS REV B, 69 (2004) 113410.
[20] H.S. Chou, J.C. Huang, L.W. Chang, SURF COAT TECH, 205 (2010) 587-590.
[21] H. S. Chou, J. C. Huang, Y. H. Lai, L. W. Chang, X. H. Du, J. P. Chu, T.G.
Nieh, J ALLOY COMPD, 483 (2009) 341.
[22] A. Shibata, Y. Imamura, M. Sone, C. Ishiyama, Y. Higo, THIN SOLID FILMS,
517 (2009) 1935.
[23] R. D. Conner, Y. Li, W. D. Nix, W.L. Johnson, ACTA MATER, 52 (2004) 2429.
[24] T. Kawamura, T. Shibata, A. Inoue, T. Masumoto, Acta Mater, 46 (1998) 253.
[25] G. Wang, S.S. Fang, X.S. Xiao, Q. Hua, H.Z. Gu, Y.D. Dong, MATER. SCI. ENG.
A, 373 (2004) 217.
[26] J.J. Lewandowski, M. Shazly, S. Nouri, SCRIPTA MATER, 54 (2006) 337.
[27] T.G. Nieh, J. Wadsworth, C.T. Liu, T. Ohkubo, Y. Hirotsu, ACTA MATER, 49
(2001) 2887.
[28] Y. Kawamura, A. Inoue, APPL. PHYS. LETT., 77 (2000) 1114.
[29] A.S. Argon, ACTA METALL MATER, 27 (1979) 47.
[30] H. W. Jeong, S. Hata, A. Shimokohbe, in: 15th IEEE International
Conference on MEMS, 2002.
[31] J. P. Chu, C. T. Lo, Y. K. Fang, B. S. Han, APPL. PHYS. LETT., 88 (2006)
012510.
[32] J.P. Chu, JOM, 61 (2009) 72.
[33] J. Lu, G. Ravichandran, W.L. Johnson, ACTA MATER, 51 (2003) 3429.
[34] A. Inoue, Y. Kawamura, T. Shibata, K. Sasamori, MATER T JIM, 37 (1966)
1337-1341.
[35] T.G. Nieh, T. Mukai, C.T. Liu, J. Wadsworth, SCRIPTA MATER, 40 (1999) 1021-
1027.
[36] T.G. Nieh, J. Wadsworth, SCRIPTA MATER, 54 (2006) 387-392.
[37] J.P. Chu, C.L. Chiang, T.G. Nieh, Y. Kawamura, INTERMETALLICS, 10 (2002)
1191-1195.
[38] Y. Kawamura, T. Shibata, A. Inoue, T. Masumoto, SCRIPTA MATER, 37 (1997)
431-436.
[39] G. Kumar, J. Schroers, APPL. PHYS. LETT., 92 (2008) 031901.
[40] A. Inoue, W. Zhang, T. Zhang, K. Kurosaka, ACTA MATER, 49 (2001) 2645.
[41] B. A. Green, H. M. Meyer, R .S. Benson, Y. Yokoyama, C. P. K. Liaw, T. Liu,
CORROS SCI, 50 (2008) 1825.
[42] D. Turnbull , M.H. Cohen, J CHEM PHYS, 52 (1970) 3038.
[43] K.M. Floresa, E. Sherera, A. Bharathulaa, H. Chenb, Y.C. Jean, ACTA MATER,
55 (2007) 3403.
[44] F. Spaepen, ACTA METALL MATER, 25 (1977) 407.
[45] P.S. Steif, F. Spaepen, J.W. Hutchinson, ACTA METALL MATER, 30 (1982) 447.
[46] C.A. Schuh, T.C. Hufnagel, U. Ramamurty, ACTA MATER, 55 (2007) 4067.
[47] V. A. Khonik, A. T. Kosilov, V. A. Mikhailov, V.V. Sviridov, ACTA MATER, 46
(1998) 3399.
[48] W. Dmowski, C. Fan, M.L. Morrison, P.K. Liaw, T. Egami, MATER. SCI. ENG. A,
471 (2007) 125.
[49] Y.C. Lo, H.S. Chou, Y.T. Cheng, J.C. Huang, J.R. Morris, P.K. Liaw,
INTERMETALLICS, 18 (2010) 954.
[50] D.B. Miracle, ACTA MATER, 61 (2013) 3157.
[51] Q. Guo, J. H. Noh, P. K. Liaw, P. D. Rack, Y. Li, C.V. Thompson, ACTA
MATER, 58 (2010) 3633.
[52] Y. H. Liu, C. T. Liu, W. H. Wang, A. Inoue, T. Sakurai, M. W. Chen, PHYS.
REV. LETT, 103 (2009).
[53] T. Masumoto, H.M. Kimura, A. Inoue, Y. Waseda, MATER. SCI. ENG. A, 23
(1976) 141.
[54] H.S. Chen, Rep. Prog. Phys., 43 (1980) 353.
[55] A.R. Yavari, W.L. Johnson, A. Inoue, C.T. Liu, MAT RES S C., 554 (1999) 21.
[56] X. Hu, S.C. Ng, Y.P. Feng, Y. Li, PHYS. REV. B, 64 (2001) 17220.
[57] N. Mattern, U. Kuhn, H. Hermann, S. Roth, H. Vinzelberg, J. Eckert, MATER.
SCI. ENG. A, 375 (2004) 351.
[58] Y. Li, Q. Guo, J. A. Kal, C.V. Thompson, SCIENCE, 322 (2008) 1816.
[59] C. Suryanarayana, A. Inoue, BULK METALLIC GLASSES, Taylor & Francis Group.
[60] A.S. Argon, ACTA METALL, 47 (1978) 27.
[61] J. S.C. Jang, J. Y. Ciou, T. H. Li, J. C. Huang, T.G. Nieh, INTERMETALLICS,
18 (2010) 451.
[62] Y. Zhang, W. H. Wang, A.L. Greer, NAT MATER, (2006) 857.
[63] S. B Qiu, K. F. Yao, P. Gong, SCI CHINA SER A, 53 (2010) 424.
[64] J.P. Chu, J.E. Greene, J. S.C. Jang, J.C. Huang, Y.-L. Shen, P. K. Liaw, Y.
Yokoyama, A. Inoueg, T.G. Nieh, ACTA MATER, 60 (2012) 3226.
[65] Y.D. Liu, S. Hata, K. Wada, Shimokohbe, JPN. J. APPL. PHYS, 40 (2001) 5382.
[66] A. Asthagiri, D.S. Sholl, CHEM PHYS, 116 (2002) 9914.
[67] M. Huffman, in: Use of palladium as an adhesion layer and as an electrode
in ferroelectric memory devices, USA, 1993.
[68] C. Cabral, K.N. Chen, L. Krusin-Elbaum, V. Deline, APPL. PHYS. LETT., 90
(2007) 1908.
[69] F. X. Liu, P. K. Liaw, W. H. Jiang, C. L. Chiang, Y. F. Gao, Y. F. Guan,
J.P. Chu, P.D. Rack, MATER. SCI. ENG. A, 246 (2007) 468.
[70] C. L. Chiang, J. P. Chu, F. X. Liu, P. K. Liaw, R.A. Buchanan, APPL. PHYS.
LETT., 88 (2006) 131902.
[71] Y.Z. Chang, P.H. Tsai, J.B. Li, H.C. Lin, J.S.C. Jang, C. Li, G.J. Chen,
Y.C. Chen, J.P. Chu, P.K. Liaw, THIN SOLID FILMS, 544 (2013) 331-334.
[72] J.P. Chu, C.M. Lee, R.T. Huang, P.K. Liaw, SURF COAT TECH, 205 (2011) 4030.
[73] P. Ridge, Handbook of Thin-Film Deposition Processes and Techniques:
Principles, Methods, Equipment and Applications, 1988.
[74] G. Betz, G. K. Wehner, TOP APPL PHYS, 52 (1983) 11.
[75] H.R. Kaufman, J.J. Cuomo, J.M.E. Harper, J VAC SCI TECHNOL, 21 (1983) 725.
[76] H.W. Deckman, J.H. Dunsmuir, J VAC SCI TECHNOL, 21 (1983) 737.
[77] P. Sigmund, A. Oliva, G. Falcone, NUCL INSTRUM METHODS, 194 (1982) 541.
[78] Website, http://www.oxford-vacuum.com/, in: sputtering_process (Ed.),
OxfordVacuumScience, 2013.
[79] J. Greene, Physics and Physical Chemistry of Thin Film Growth: Evaporation,
MBE, sputtering, Reactive Sputtering, UHV-CVD, ALE/ALD, 2013.
[80] P.K. Rol, J.M. Fluit, J. Kistemaker, PHYSICA, 26 (1960) 11.
[81] F.M. D’Heurle, Metallurgical and Materials Transactions B, 1 (1970) 725.
[82] P.D Davidse, L.I. Maissel, J APPL PHYS, 37 (1966) 574.
[83] K. Kohler, J.W Coburn, D.E Horne, E. Kay, JPN J APPL PHYS, 57 (1985) 59.
[84] H.R.Koenig, L.I. Maissel, IBM J RES DEV, 14 (1970) 168.
[85] Website, http://www.etafilm.com.tw/, in: RFplasmaSputtering (Ed.), 2012.
[86] Website, http://www.etafilm.com.tw/, in: http://www.etafilm.com.tw/ (Ed.),
2013.
[87] J.A. Thornton, J VAC SCI TECHNOL, 15 (1978) 171.
[88] J.A. Thornton, A.S. Penfold, Cylindrical Magnetron Sputtering New York,
1978.
[89] K. Ellmer, Magnetron Discharges for Thin Film Deposition, in Low
Temperature Plasmas. Fundamentals, Technologies and Techniques, Berlin,
2008.
[90] J. A. Thornton, J VAC SCI TECHNOL, 11 (1974) 666.
[91] K. Kasaba, T. Sano, S.Kudo, T. Shoji, K. Katagiri, T. Sato, J NUCL MATER,
258 (1998) 2059.
[92] P. Jiang, X. L. He, X. X. Li, L. G. Yu, H.M. Wang, SURF COAT TECH, 130
(2000).
[93] M. A. Khan, R. L. Williams, D.F. Williams, BIOMATERIALS, 20 (1999) 631.
[94] R. Boyer, G. Welsch, E.W. Collings, Materials Properties Handbook: Titanium
Alloys, ASM International, 1994.
[95] J.M. Holt, Structural Alloys Handbook, West Lafayette, 1996.
[96] R.K Nalla, I. Altenberger, U. Noster, G.Y Liu, B. Scholtes, R.O. Ritchie,
MATER. SCI. ENG. A, 355 (2003) 216.
[97] C.A. Stubbington, A.W. Bowen, J MATER SCI, 9 (1974) 941.
[98] R.G Vardiman, R.A. Kant, J APPL PHYS, 53 (1982) 690.
[99] W. Chen, C.J. Boehlert, E.A. Payzant, J.Y. Howe, INT J FATIGUE, 32 (2010)
627.
[100] D.X Liu, B.Tang, X. D. Zhu, H. Chen, J. He, J.-P. Celis, SURF COAT TECH,
116 (1999) 234.
[101] P. J. Golden, A. Hutson, V. Sundaram, J.H. Arps, INT J FATIGUE, 29 (2007)
1302.
[102] M.Y.P. Costa, M.L.R. Venditti, H.J.C. Voorwald, M.O.H. Cioffi, T.G. Cruz,
MATER. SCI. ENG. A, 507 (2009) 29.
[103] G. Cassara, J.C. Avelar-Batista Wilson, S. Banfield, J. Housden, M.
Fenech, A. Matthews, A. Leyland, INT J FATIGUE, 33 (2011) 1313.
[104] Website, http://en.wikipedia.org/wiki/AISI_steel_grades#Stainless_steel,
in.
[105] Website, http://www.azom.com/article.aspx?ArticleID=2382, in, AZoM™.com
Pty.Ltd.
[106] J. Mana, K. Obrtlik, C. Blochwitz, J. Polak, ACTA MATER, 50 (2002) 3767.
[107] V.S. Srinivasan, R. Sandhya, K. Bhanu, S. Rao, S.L. Mannan, K.S. Raghavan,
INT J FATIGUE, 13 (1991) 471.
[108] V. Azar, B. Hashemi, M.R. Yazdi, SURF COAT TECH, 204 (2010) 3546.
[109] L. Ceschini, G. Minak, SURF COAT TECH, 202 (2007) 1778.
[110] J.A. Berr’ıos, D.G. Teer, E.S. Puchi-Cabrera, SURF COAT TECH, 148 (2001)
179.
[111] J.A. Berr’ıos-Ort’ız, J.G. La Barbera-Sosa, D.G. Teer, E.S. Puchi-Cabrera,
SURF COAT TECH, 179 (2004) 145.
[112] C.M. Lee, in: Institute of Materials Engineering, National Taiwan Ocean
University, 2011.
[113] ASTM, International, in, Designation: E8/E8M, Standard Test Methods for
Tension Testing of Metallic Materials.
[114] W. Niu, M.J. Bermingham, P.S. Baburamani, S. Palanisamy, M.S. Dargusch, S.
Turk, B. Grigson, P.K. Sharp, MATER DESIGN, 46 (2013) 640.
[115] G. Bernhardt, C. Silvestre, N. LeCursi, S.C. Moulzolf, D.J. Frankel, R.J.
Lad, SENSOR ACTUAT B-CHEM, 77 (2001) 368.
[116] C. Cabral Jr., K. N. Chen, L. Krusin-Elbaum, V. Deline, APPL. PHYS. LETT.,
90 (2007) 1908.
[117] D.C. Joy, A.D. Romig Jr, J Goldstein, Principles of analytical electron
microscopy, 1986.
[118] L.A. Giannuzzia, F.A. Stevie, MICRON, 30 (1999) 197.
[119] Website, in, http://www.zimmerman.com.tw/, Talysurf CCI,, 2007.
[120] W. Kaplonek, C. Lukianowicz, in, Koszalin University of Technology,
Poland, 2012.
[121] ASTM, International, in: Standard Test Method for Pull-Off Strength of
Coatings Using Portable Adhesion Testers ASTM D4541-02, 2002.
[122] N. Vidakis, A. Antoniadis, N. Bilalis, J MATER PROCESS TECH, 143-144
(2003) 481-485.
[123] P. Sigmund, PHYS. REV. B, 184 (1969) 2.
[124] Website, in, http://iuvsta-us.org/iuvsta2/, Sputter Yield charts,
GRAPHONIE - IUVSTA, 2011.
[125] A.F Jankowski, M.A Wall, A.W Van Buuren, T.G Nieh, J. Wadsworth, ACTA
MATER, 50 (2002) 4791.
[126] S. Jana, R. Bhowmick, Y. Kawamura, K. Chattopadhyay, INTERMETALLICS, 12
(2004) 1097.
[127] J.C. Slater, J CHEM PHYS, 41 (1964) 3199.
[128] E. Clementi, D. L. Raimondi, W.P. Reinhardt, J CHEM PHYS, 47 (1967) 1300.
[129] T.S. A Inoue, T Zhang, , MATER T JIM, 36 (1995) 1420.
[130] A. F. Jankowski, M. A. Wall, A. W. Van Buuren, T. G. Nieh, J. Wadsworth,
ACTA MATER, 50 (2002) 4791.
[131] H. L Jia, F. X. Liu, Z. N. An, W. D. Li, G. Y. Wang, J. P. Chu, J. S.C.
Jang, Y. F. Gao, Peter K. Liaw, THIN SOLID FILMS, in process (2013).
[132] 鄭瑞杰, in: A Mechancial Property Study on Zr-based Metallic
Glass/Amorphous HoScO Multilayered Thin Film,Material, NTUST, 2013.
[133] A. Inoue, T. Zhang, W. Zhang, A. Takeuchi, MATER. TRANS., JIM, 37 (1996)
99-108.
[134] A. Inoue, T. Zhang, A. Takeuchi, MATER. TRANS., JIM, 37 (1996) 1731.
[135] A. Slipenyuk, J. Eckert, SCRIPTA MATER, 50 (2004) 39.
[136] O. Haruyama, A. Inoue, APPL. PHYS. LETT., 88 (2006) 1906.
[137] Y. G. Shen, Y. W. Mai, Q. C. Zhang, D. R. McKenzie, W. D. McFall, W. E.
McBride, J. APPL. PHYS., 87 (2000) 177.
[138] J. A. Thornton, D. W. Hoffman, J. VAC. SCI. TECHNOL., 14 (1977) 164.
[139] J. P. Chu, J.S.C. Jang, J.C. Huang, H.S. Chou, Y. Yang, J.C. Ye, Y.C.
Wang, J.W. Lee, F.X. Liu, P.K. Liaw, Y.C. Chen, C.M. Lee, C.L. Li, Cut
Rullyani, THIN SOLID FILMS, 520 (2012) 5097.
[140] G. Jaeger, I. Endler, K. Bartsch, M. Heilmaier, A. Leonhardt, SURF COAT
TECH, 150 (2002) 282.
[141] M.R. Stoudt, R.C. Cammarata, R.E. Ricker, SCRIPTA MATER, 43 (2000) 491-
496.
[142] M.Y.P. Costa, M.L.R. Venditti, M.O.H. Cioffi, H.J.C. Voorwald, V.A.
Guimaraes, R. Ruas, INT J FATIGUE, 33 (2011) 759-765.
[143] F.X. Liu, Dissertation, University of Tennessee, (2009).
[144] Y. C. Lo, H. S. Chou, Y. T. Cheng, J .C. Huang, J. R. Morris, P.K. Liaw,
INTERMETALLICS, 18 (2010) 954.
[145] I. Bantounas, T.C. Lindley, D. Rugg, D. Dye, ACTA MATER, 55 (2007) 5655.
[146] J.H. Zuo, Z.G. Wang, E.H. Han, MATER. SCI. ENG. A, 473 (2008) 147-152.
[147] G.Q. Wu, C.L. Shi, W. Sha, A.X. Sha, HR Jiang, MATER DESIGN, 46 (2013)
668.
[148] R.S. Mishra, V.V. Stolyarov, C. Echer, R.Z. Valiev, A.K. Mukherje, MATER.
SCI. ENG. A, 298 (2001) 44-50.
[149] C. Fan, A. Inoue, APPL. PHYS. LETT., 77 (2000) 46.
[150] C.C. Hays, C.P. Kim, W.L. Johnson, PHYS REV LETT, 84 (2000) 1.
[151] H. S. Chou, J. C. Huang, L. W. Chang, T. G. Nieh, APPL. PHYS. LETT., 93
(2008) 191901.
[152] S. Heinz, F. Balle, G. Wagner, D. Eifler, ULTRASONICS, 53 (2013) 1433-
1440.
[153] C.H. Hsueh, JPN J APPL PHYS, 91 (2002) 9653.
電子全文 電子全文(網際網路公開日期:20231202)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔