(3.236.222.124) 您好!臺灣時間:2021/05/10 14:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林正杰
研究生(外文):Cheng-Chieh Lin
論文名稱:併網型太陽光電系統設置規劃經濟分析-以台灣為例
論文名稱(外文):Economic Analysis of Grid-connected Photovoltaic System Planning – A Case Study of Taiwan
指導教授:周碩彥周碩彥引用關係
指導教授(外文):Shuo-Yan Chou
口試委員:周碩彥
口試委員(外文):Shuo-Yan Chou
口試日期:2014-01-20
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:工業管理系
學門:商業及管理學門
學類:其他商業及管理學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:120
中文關鍵詞:台灣太陽能發電太陽能經濟效益太陽能投資報酬率太陽能淨現值太陽能回收期間
外文關鍵詞:PV generation in TaiwanPV Economic analysis in TaiwanPV ROI in TaiwanPV NPV in TaiwanPV payback period in Taiwan
相關次數:
  • 被引用被引用:0
  • 點閱點閱:137
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
工業革命後生產技術不斷改進,世界各國對能源的需求日益增加。國際原油 價格屢創新高,能源耗竭議題也亟需正視。核能雖貴為現今能源主力,因廢料汙 染問題影響層面深遠且長久,綠色能源之應用更為當務之急。因太陽能取之不盡 用之不竭之環保特性,使太陽能發電成為眾多綠色能源中之優良方案。但因其模 組建置與經濟效益因各國之政策方針不同,使民眾與投資者無法取得明確之相關 訊息,進而使太陽能光電產業發展速度遲緩。
本研究將提供一分析方法,協助在特定地點與特定條件下,太陽能發電之較 精確的推估變化。並以台灣之氣候變化與能源法規為例進行分析,藉此提供台灣 地區太陽能建置之經濟效益範例,並成為太陽能發電產業之助力。短期可以用此 模式協助廠商於產品定價及推廣行銷,中期可以提供民眾與投資人更清楚瞭解經 濟效益,長期則可以做為政策補助法規之適用性之參考。希望於全球節能減碳風 潮下,為低碳家園盡一份心力.
Since the Industrial Revolution, the global demand of energy had dramatically increased. However, due to rising cost and pollution issues of current electric production sources, governments had devoted to discover efficient and sustainable energy for decades. Solar energy, which can make considerable contributions to solve the urgent challenge, yet still considered immature renewable substitute for most people. Various policies, different environment conditions and unclear revealing information among different regions limited the willingness of people or enterprises to choose solar energy as an electric production source.
This paper provides a clear method for evaluating the efficiency of PV system under specific environmental conditions. In the short-run, this analytical model can be used as a technic for solar energy supplier in product pricing and marketing, an investment evaluation tool for customers or investors in the mid-term, and finally in the long-run, as a reference for governments to construct subsidy regulations.
中文摘要 ................................................................................................................ I
ABSTRACT ...............................................................................................................II
CHAPTER1.
INTRODUCTION.................................................................................1
1.1. Background and motivations .....................................................................1
1.2. Objectives..................................................................................................3
1.3. Organization of thesis ................................................................................5
CHAPTER2. LITERATUREREVIEW.......................................................................6
2.1.Photovoltaic Introduction...........................................................................6
2.1.1. Photovoltaic characteristics...........................................................8
2.1.2. Cells types of Photovoltaic system ..............................................14
2.1.3. Framework types of Photovoltaic system....................................15
2.2. Photovoltaic Application..........................................................................18
2.3. Photovoltaic Subsidy policy ....................................................................19
2.4. SWOT analysis of Photovoltaic system...................................................23
2.4.1. External Environment Analysis ...................................................23
2.4.2. Internal Environment Analysis ....................................................24
2.5. Climate data collection ............................................................................25
2.5.1. Taiwan Solar radiation analysis ...................................................25
CHAPTER3. PROPOSED ANALYSIS METHODS FOR PV GENERATION .......28
3.1. Photovoltaic module generating capacity simulation process .................28
3.2. Estimation of the amount of photovoltaic system....................................29
3.2.1. Factors affecting the power generation efficiency ....................... 29
3.2.2. Photovoltaic module Hardware.................................................... 30
3.2.3. Natural factors..............................................................................31
3.2.4. Installation and settings................................................................35
3.3. Ambient temperature adjustment.............................................................38
3.4. Photovoltaic module temperature ............................................................39
3.5. Photovoltaic system simulation model ....................................................40
3.6.Economic factors .....................................................................................42
CHAPTER4. APPLICATION....................................................................................45
4.1 Simulation 2003-2012 years, G2F820 PV system power generation......45
4.1.1 G2F820 solar radiation data analysis ........................................... 45
4.1.2 G2F820 temperature data analysis ...........................................47
4.1.3 Estimate 1kwp power generation at G2F820. .............................. 48
4.1.4 Power generation forecast for 2013-2017....................................56
4.1.5 Area of 1kWp...............................................................................57
4.1.6 The estimation of hardware efficiency loss within 20 year .........58
4.2. Economic analysis with Photovoltaic system in Taiwan .........................59
4.2.1. Photovoltaic generation FIT rates in Taiwan ...............................59
4.2.2. Economic analysis factors............................................................61
4.3.Value instead of price...............................................................................75
4.3.1. Carbonreduction..........................................................................75
CHAPTER5. CONCLUSIONS AND FURTURE RESEARCH ...............................77
5.1 Conclusion...............................................................................................77
5.2 FutureResearch.......................................................................................78
REFERENCE ............................................................................................................104
1.Ordonez, J., et al., Analysis of the photovoltaic solar energy capacity of residential rooftops in Andalusia (Spain). Renewable and Sustainable Energy Reviews, 2010. 14(7): p. 2122-2130.
2.Liou, H.M., Overview of the photovoltaic technology status and perspective in Taiwan. Renewable and Sustainable Energy Reviews, 2010. 14(4): p. 1202-1215.
3.Huang, Y.H. and J.H. Wu, Technological system and renewable energy policy: A case study of solar photovoltaic in Taiwan. Renewable and Sustainable Energy Reviews, 2007. 11(2): p. 345-356.
4.Affairs, M.o.E., Renewable Energy Development Act, M.o.E. Affairs, Editor 2009/07/08: Ministry of Economic Affairs.
5.Azzopardi, B. and J. Mutale, Life cycle analysis for future photovoltaic systems using hybrid solar cells. Renewable and Sustainable Energy Reviews, 2010. 14(3): p. 1130-1134.
6.Kim, J.T. and M.S. Todorovic, Tuning control of buildings glazing's transmittance dependence on the solar radiation wavelength to optimize daylighting and building's energy efficiency. Energy and Buildings, 2013. 63: p. 108-118.
7.Ohnishi, M., et al., Advanced photovoltaic technologies and residential applications. Renewable Energy, 1995. 6(3): p. 275-282.
8.Tian, H., et al., A cell-to-module-to-array detailed model for photovoltaic panels. Solar Energy, 2012. 86(9): p. 2695-2706.
9.Yoshino, M., et al., Development of photovoltaic modules integrated with a metal curtain wall. Solar Energy Materials and Solar Cells, 1997. 47(1–4): p. 235-242.
10.Mohamed, A., M. Elshaer, and O. Mohammed, Control enhancement of power conditioning units for high quality PV systems. Electric Power Systems Research, 2012. 90: p. 30-41.
11.Radziemska, E., The effect of temperature on the power drop in crystalline silicon solar cells. Renewable Energy, 2003. 28(1): p. 1-12.
12.Liu, G., S.K. Nguang, and A. Partridge, A general modeling method for I–V characteristics of geometrically and electrically configured photovoltaic arrays. Energy Conversion and Management, 2011. 52(12): p. 3439-3445.
13.Kawamura, T., et al., Analysis of MPPT characteristics in photovoltaic power system. Solar Energy Materials and Solar Cells, 1997. 47(1–4): p. 155-165.
14.van Dyk, E.E., A.R. Gxasheka, and E.L. Meyer, Monitoring current–voltage characteristics and energy output of silicon photovoltaic modules. Renewable Energy, 2005. 30(3): p. 399-411.
15.Parida, B., S. Iniyan, and R. Goic, A review of solar photovoltaic technologies. Renewable and Sustainable Energy Reviews, 2011. 15(3): p. 1625-1636.
16.El Chaar, L., L.A. lamont, and N. El Zein, Review of photovoltaic technologies. Renewable and Sustainable Energy Reviews, 2011. 15(5): p. 2165-2175.
17.Kaplani, E., Design and performance considerations in stand alone PV powered telecommunication systems. Latin America Transactions, IEEE (Revista IEEE America Latina), 2012. 10(3): p. 1723-1729.
18.Eltawil, M.A. and Z. Zhao, Grid-connected photovoltaic power systems: Technical and potential problems—A review. Renewable and Sustainable Energy Reviews, 2010. 14(1): p. 112-129.
19.Lo, C.-C., C.-H. Wang, and C.-C. Huang, The national innovation system in the Taiwanese photovoltaic industry: A multiple stakeholder perspective. Technological Forecasting and Social Change, 2013. 80(5): p. 893-906.
20.Arent, D.J., A. Wise, and R. Gelman, The status and prospects of renewable energy for combating global warming. Energy Economics, 2011. 33(4): p. 584-593.
21.Affairs, M.o.E., Photovoltaic Power Generation Demonstration System Implementation Subsidies, M.o.E. Affairs, Editor 2000.
22.Grau, T., M. Huo, and K. Neuhoff, Survey of photovoltaic industry and policy in Germany and China. Energy Policy, 2012. 51: p. 20-37.
23.Burns, J.E. and J.-S. Kang, Comparative economic analysis of supporting policies for residential solar PV in the United States: Solar Renewable Energy Credit (SREC) potential. Energy Policy, 2012. 44: p. 217-225.
24.Almonacid, F., et al., Estimation of the energy of a PV generator using artificial neural network. Renewable Energy, 2009. 34(12): p. 2743-2750.
25.Institute, M.o.t.I.-A.a.B.R., Buildings build optimized design model of the solar photovoltaic, M.o.t.I.-A.a.B.R. Institute, Editor 2007/12.
26.Notton, G., V. Lazarov, and L. Stoyanov, Optimal sizing of a grid-connected PV system for various PV module technologies and inclinations, inverter efficiency characteristics and locations. Renewable Energy, 2010. 35(2): p. 541-554.
27.Meral, M.E. and F. Dincer, A review of the factors affecting operation and efficiency of photovoltaic based electricity generation systems. Renewable and Sustainable Energy Reviews, 2011. 15(5): p. 2176-2184.
28.Ferrara, C. and D. Philipp, Why Do PV Modules Fail? Energy Procedia, 2012. 15: p. 379-387.
29.Woyte, A., J. Nijs, and R. Belmans, Partial shadowing of photovoltaic arrays with different system configurations: literature review and field test results. Solar Energy, 2003. 74(3): p. 217-233.
30.Mekhilef, S., R. Saidur, and M. Kamalisarvestani, Effect of dust, humidity and air velocity on efficiency of photovoltaic cells. Renewable and Sustainable Energy Reviews, 2012. 16(5): p. 2920-2925.
31.Mattei, M., et al., Calculation of the polycrystalline PV module temperature using a simple method of energy balance. Renewable Energy, 2006. 31(4): p. 553-567.
32.Skoplaki, E. and J.A. Palyvos, Operating temperature of photovoltaic modules: A survey of pertinent correlations. Renewable Energy, 2009. 34(1): p. 23-29.
33.Skoplaki, E., A.G. Boudouvis, and J.A. Palyvos, A simple correlation for the operating temperature of photovoltaic modules of arbitrary mounting. Solar Energy Materials and Solar Cells, 2008. 92(11): p. 1393-1402.
34.Van der Weiden, T.C.J. and A.J. Kil. Calculated effect of central DC/AC power conversion from PV generators with different orientations. in Photovoltaic Energy Conversion, 1994., Conference Record of the Twenty Fourth. IEEE Photovoltaic Specialists Conference - 1994, 1994 IEEE First World Conference on. 1994.
35.Qian, Z., W. Peng, and L. Goel. Optimal PV panel tilt angle based on solar radiation prediction. in Probabilistic Methods Applied to Power Systems (PMAPS), 2010 IEEE 11th International Conference on. 2010.
36.William Brooks, J.D., NABCEP-Photovoltaic (PV) Installer Resource Guide, 2012/3, Nation American Board of Certified Energy Pratitioners. p. 162.
37.Rosell, J.I. and M. Ibanez, Modelling power output in photovoltaic modules for outdoor operating conditions. Energy Conversion and Management, 2006. 47(15-16): p. 2424-2430.
38.Bureau, C.W., 2003-2012 first order climatological stations data, A.R. Institute, Editor 2003-2012: Central Weather Bureau.
39.Skoplaki, E. and J.A. Palyvos, On the temperature dependence of photovoltaic module electrical performance: A review of efficiency/power correlations. Solar Energy, 2009. 83(5): p. 614-624.
40.Razykov, T.M., et al., Solar photovoltaic electricity: Current status and future prospects. Solar Energy, 2011. 85(8): p. 1580-1608.
41.Affairs, M.o.E., Republic of China one hundred and two annual renewable energy electricity FIT rate formula, M.o.E. Affairs, Editor 2012/11/30: Ministry of Economic Affairs.
42.Company, T.P. Republic of China 100 years of Taiwan Power Company Announcements electricity emission factors. 2011.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔