(3.236.214.19) 您好!臺灣時間:2021/05/06 21:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:吳美瑤
研究生(外文):Mei-Yao Wu
論文名稱:基於非對稱公差考慮製程良率及品質損失於評估製程產出績效方法之比較
論文名稱(外文):A Comparative Study of Methods on Evaluating Process Performance for Asymmetric Tolerances with Consideration of Process Yield and Quality Loss
指導教授:楊朝龍楊朝龍引用關係吳建瑋吳建瑋引用關係
指導教授(外文):Chao-Lung YangChien-Wei Wu
口試委員:楊朝龍吳建瑋
口試委員(外文):Chao-Lung YangChien-Wei Wu
口試日期:2014-01-20
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:工業管理系
學門:商業及管理學門
學類:其他商業及管理學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:115
中文關鍵詞:信賴下界涵蓋率製程績效評估品質保證
外文關鍵詞:Lower confidence boundCoverage rateProcess performance evaluatingQuality assurance
相關次數:
  • 被引用被引用:0
  • 點閱點閱:128
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:0
製程能力指標(Process Capability Indices, PCIs)不僅可量化製程績效以利於評估,並且已廣泛地被運用於衡量產品品質保證。現今製程規格以兩種情形主:對稱公差(Symmetric tolerance)與不對稱公差(Asymmetric tolerance)。然而,過去的文獻主要著重在對稱公差,但假若製程規格為非對稱公差時,則可能會產生製程績效的誤判。因此,本研究探討的主題以非對稱公差為主,並以製程能力指標 作為評估製程績效的依據。而本研究的目的是將過去文獻上針對 所提出的區間估計方法,以及其他統計方法,來建構 之信賴區間。這些區間估計方法包含:兩種型態的抽樣分配法(Sampling distribution approach, SD*與SD)、四種型態的複式抽樣法(Bootstrap approach, SB、PB、BCPB與PT)、廣義信賴區間法(Generalize confidence interval, GCI),以及貝式估計法(Bayesian approach, BA)。本研究透過一連串的電腦模擬,求得各估計方法的涵蓋率(Coverage rate, CR)以及信賴下界平均值(Mean of lower confidence bound, MLCB),即可進一步比較這些估計方法的表現。分析結果顯示,對於估算指標 ,SD*、GCI與BA法相較其他方法具有充分的解釋力,並且也較為精準。最後,本文以實例作為分析與說明,以供實務上使用依據。
Process capability indices provide numerical measures on process performance, which have been widely used as one of practical tools for quality assurance. In manufacturing industries, there are two cases with manufacturing tolerances, one is called symmetric tolerance and the other is called asymmetric tolerance. However, most of researches in the literature are focused on cases while the manufacturing tolerance is symmetric, which have been shown to be inappropriate for evaluating process performance with asymmetric tolerance. Therefore, in this thesis, we focus on asymmetric tolerances and use the index for evaluating process performance. Several available methods for constructing confidence intervals of the index are examined and discussed. These methods include two types of sampling distribution approach (SD*, SD), four types of bootstrap approach (SB, PB, BCPB, PT), generalized confidence interval approach (GCI) and Bayesian approach (BA). A series of simulations is conducted to calculate the coverage rate (CR) and mean of lower confidence bounds (MLCB) under various parameters. The simulation results show that the GCI and BA approaches seem to work very satisfactory. Therefore, these two approaches can be recommended for evaluating process performance with asymmetric tolerances. Finally, an application example is presented for illustration.
致謝 i
中文摘要 ii
Abstract iii
第一章 緒論 1
1.1研究背景與動機 1
1.2研究目的 2
1.3研究架構 2
第二章 文獻回顧與探討 4
2.1製程能力指標 4
2.2 製程良率 6
2.3製程能力指標C"pmk 8
2.3.1指標之估計量C^"pmk 8
2.3.2抽樣分配與其相關統計性值 8
2.3.3區間估計 13
2.3.4複式抽樣法 16
2.3.5廣義信賴法 17
2.3.6貝式估計法 18
第三章 製程能力指標 C"pmk之區間估計方法 21
3.1抽樣分配法(Sampling distribution approach) 21
3.2複式抽樣法(Bootstrap approach) 22
3.3廣義信賴區間法(Generalized Confidence Intervals approach) 26
3.4貝式估計法(Bayesian approach) 28
第四章、研究分析與結果 31
4.1 參數設定與執行步驟 31
4.2 涵蓋率之數據分析 37
4.2.1案例一 38
4.2.2案例二 47
4.3信賴下界分析 52
4.3.1案例一 52
4.3.2 案例二 59
第五章、個案分析 63
第六章、結論與未來建議 68
6.1 結論 68
6.2 未來建議 69
參考文獻 70
附錄 74
1.Abramowitz, M. and Stegun, I. A. (Eds) (1970). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover Publications, Inc, New York.
2.Boyles, R. A. (1991). The Taguchi capability index. Journal of Quality Technology, 23, 17-26.
3.Chan, L. K., Cheng, S. W. and Spiring, F. A. (1988). A new measure of process capability . Journal of Quality Technology, 20(3), 162-175.
4.Chang, Y. C. (2009). Interval estimation of capability index for manufacturing processes with asymmetric tolerances. Computers and Industrial Engineering, 56(1), 312-322.
5.Chen, K. S., Wang, C. H. and Chen H.T. (2006). A MAIC approach to TFT-LCD panel quality improvement. Microelectronics Reliability, 46(7), 1189-1198.
6.Cheng, S. W. and Spiring, F. A. (1989). Assessing process capability: a Bayesian approach, IIE Transactions, 21(1), 97-98.
7.Chou, Y. M., Owen, D. B. and Borrego, A. S. A. (1990). Lower confidence limits on process capability indices. Journal of Quality Technology, 23(3), 223-229.
8.Efron, B. (1971). Bootstrap methods: Another look at the Jackknife. The Annals of Statistics, 7, 1-26.
9.Efron, B. (1981). Non-parametric estimates of standard error: the jackknife, the Bootstrap and other resampling methods. Biometrika, 68, 589-599.
10.Efrom, B. and Gong, G. (1983). A leisurely look at the Bootstrap, the jackknife and cross- validation. The American Statistician, 37, 36-48.
11.Efron, B. and Tibshirani, R. J. (1986). Bootstrap methods for standard errors, confidence interval, and other measures of statistical accuracy. Statistical Sciences, 1, 54-77.
12.English, Donald B. K. (2000). Calculating Confidence Intervals or regional economic impacts of recreation by bootstrapping visitor expenditures. Journal of regional science, 40(3), 523-539.
13.Franklin, L.A. and Wasserman, G. S. (1991). Bootstrap confidence interval estimates of : an introduction. Communications in Statistics- Simulation and Computation, 20(1), 231-242.
14.Juran, J. M. (1974). Quality control Handbook, 3rd ed., McGraw-Hill, New Work, USA.
15.Kane, V. E. (1986). Process capability indices. Journal of Quality Technology, 18(1), 41-52.
16.Koissi, M.-C., Shapiro, A. F. and Hognas, G. (2006). Evaluating and extending the Lee- Carter model for mortality forecasting: bootstrap confidence interval. Insurance: Mathematics and Economics, 38(1), 1-20.
17.Kotz, S. and Johnson, N. L. (2002). Process capability indices- A review, 1992-2000. Journal of Quality technology, 34(1), 1-19.
18.Kotz, S. and Lovelace, C. (1998). Process capability indices in theory and practice. Aronld. London, UK.
19.Kushler, R. and Hurley, P. (1992). Confidence bounds for capability indices. Journal of Quality Technology, 24, 188-195.
20.Lin, T. Y., Wu, C. W., Chen, J. C. and Chiou, Y. H. (2011). Applied Bayesian approach to assess process capability for asymmetric tolerances based on index. Applied Mathematical Modelling, 35, 4473-4489.
21.Mathew, T., Sebastian, G. and Kurian, K. M. (2006). Generalized confidence intervals for process capability indices. Quality and Reliability Engineering International, 23(4),471-481.
22.Pearn, W. L., Chen, K. S. and Lin, P. C. (1999). On the generalizations of the capability index for asymmetric tolerances. Far East Journal of Theoretical Statistics, 3(1), 47-66.
23.Pearn, W. L., Kotz, S. and Johnson, N. L. (1992). Distributional and inferential properties of process capability indices. Journal of Quality Technology, 24(4), 216-231.
24.Pearn, W. L. and Lin, P. C. (2005). Process yield measure based on capability index . Working Paper. National Chiao Tung University, Hsin Chu, Taiwan.
25.Pearn, W. L. and Wu, C. W. (2005). Process capability assessment for index based on Bayesian approach. Metrika, 61, 221-234.
26.Ruczinski, I. (1996). The relation between and the Degree of Influence. Doctoral Dissertation. University of Wurzburg, Germany.
27.Pearn, W. L., Lin P. C., Chen K. S. (2001). Estimating process capability index for asymmetric tolerances: distributional properties. Metrika, 54, 261-279.
28.Shiau, J. H., Chiang, C. T. and Hung, H. N. (1999). A Baysian procedure for process capability assessment. Quality and Reliability Engineering International, 15(5), 269-278.
29.Tsui, K. W. and Weerahandi, S. (1989). Generalized p-value in significance testing of hypotheses in the presence of nuisance parameters. Journal of the American Statistical Association, 84, 602-607..
30.Weerahandi, S. (1993). Generalized confidence intervals. Journal of the American Statistical Association, 88, 889-905.
31.Wu, C.W. and Lin, T. Y. (2009). A Bayesian procedure for assessing process performance based on the third generation capability index. Journal of Applied Statistics, 36(11), 1205-1223.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔