|
1.Abramowitz, M. and Stegun, I. A. (Eds) (1970). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover Publications, Inc, New York. 2.Boyles, R. A. (1991). The Taguchi capability index. Journal of Quality Technology, 23, 17-26. 3.Chan, L. K., Cheng, S. W. and Spiring, F. A. (1988). A new measure of process capability . Journal of Quality Technology, 20(3), 162-175. 4.Chang, Y. C. (2009). Interval estimation of capability index for manufacturing processes with asymmetric tolerances. Computers and Industrial Engineering, 56(1), 312-322. 5.Chen, K. S., Wang, C. H. and Chen H.T. (2006). A MAIC approach to TFT-LCD panel quality improvement. Microelectronics Reliability, 46(7), 1189-1198. 6.Cheng, S. W. and Spiring, F. A. (1989). Assessing process capability: a Bayesian approach, IIE Transactions, 21(1), 97-98. 7.Chou, Y. M., Owen, D. B. and Borrego, A. S. A. (1990). Lower confidence limits on process capability indices. Journal of Quality Technology, 23(3), 223-229. 8.Efron, B. (1971). Bootstrap methods: Another look at the Jackknife. The Annals of Statistics, 7, 1-26. 9.Efron, B. (1981). Non-parametric estimates of standard error: the jackknife, the Bootstrap and other resampling methods. Biometrika, 68, 589-599. 10.Efrom, B. and Gong, G. (1983). A leisurely look at the Bootstrap, the jackknife and cross- validation. The American Statistician, 37, 36-48. 11.Efron, B. and Tibshirani, R. J. (1986). Bootstrap methods for standard errors, confidence interval, and other measures of statistical accuracy. Statistical Sciences, 1, 54-77. 12.English, Donald B. K. (2000). Calculating Confidence Intervals or regional economic impacts of recreation by bootstrapping visitor expenditures. Journal of regional science, 40(3), 523-539. 13.Franklin, L.A. and Wasserman, G. S. (1991). Bootstrap confidence interval estimates of : an introduction. Communications in Statistics- Simulation and Computation, 20(1), 231-242. 14.Juran, J. M. (1974). Quality control Handbook, 3rd ed., McGraw-Hill, New Work, USA. 15.Kane, V. E. (1986). Process capability indices. Journal of Quality Technology, 18(1), 41-52. 16.Koissi, M.-C., Shapiro, A. F. and Hognas, G. (2006). Evaluating and extending the Lee- Carter model for mortality forecasting: bootstrap confidence interval. Insurance: Mathematics and Economics, 38(1), 1-20. 17.Kotz, S. and Johnson, N. L. (2002). Process capability indices- A review, 1992-2000. Journal of Quality technology, 34(1), 1-19. 18.Kotz, S. and Lovelace, C. (1998). Process capability indices in theory and practice. Aronld. London, UK. 19.Kushler, R. and Hurley, P. (1992). Confidence bounds for capability indices. Journal of Quality Technology, 24, 188-195. 20.Lin, T. Y., Wu, C. W., Chen, J. C. and Chiou, Y. H. (2011). Applied Bayesian approach to assess process capability for asymmetric tolerances based on index. Applied Mathematical Modelling, 35, 4473-4489. 21.Mathew, T., Sebastian, G. and Kurian, K. M. (2006). Generalized confidence intervals for process capability indices. Quality and Reliability Engineering International, 23(4),471-481. 22.Pearn, W. L., Chen, K. S. and Lin, P. C. (1999). On the generalizations of the capability index for asymmetric tolerances. Far East Journal of Theoretical Statistics, 3(1), 47-66. 23.Pearn, W. L., Kotz, S. and Johnson, N. L. (1992). Distributional and inferential properties of process capability indices. Journal of Quality Technology, 24(4), 216-231. 24.Pearn, W. L. and Lin, P. C. (2005). Process yield measure based on capability index . Working Paper. National Chiao Tung University, Hsin Chu, Taiwan. 25.Pearn, W. L. and Wu, C. W. (2005). Process capability assessment for index based on Bayesian approach. Metrika, 61, 221-234. 26.Ruczinski, I. (1996). The relation between and the Degree of Influence. Doctoral Dissertation. University of Wurzburg, Germany. 27.Pearn, W. L., Lin P. C., Chen K. S. (2001). Estimating process capability index for asymmetric tolerances: distributional properties. Metrika, 54, 261-279. 28.Shiau, J. H., Chiang, C. T. and Hung, H. N. (1999). A Baysian procedure for process capability assessment. Quality and Reliability Engineering International, 15(5), 269-278. 29.Tsui, K. W. and Weerahandi, S. (1989). Generalized p-value in significance testing of hypotheses in the presence of nuisance parameters. Journal of the American Statistical Association, 84, 602-607.. 30.Weerahandi, S. (1993). Generalized confidence intervals. Journal of the American Statistical Association, 88, 889-905. 31.Wu, C.W. and Lin, T. Y. (2009). A Bayesian procedure for assessing process performance based on the third generation capability index. Journal of Applied Statistics, 36(11), 1205-1223.
|