跳到主要內容

臺灣博碩士論文加值系統

(44.220.255.141) 您好!臺灣時間:2024/11/04 03:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:馬塔妲
研究生(外文):Tata Aransta Imas Puspita
論文名稱:部分欠撥與信用交易下之兩階段定價與訂購決策
論文名稱(外文):Two-Phase Pricing and Ordering Decisions under Partial Backordering and Trade Credit
指導教授:曹譽鐘曹譽鐘引用關係
指導教授(外文):Yu-Chung Tsao
口試委員:曹譽鐘
口試委員(外文):Yu-Chung Tsao
口試日期:2013-01-13
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:工業管理系
學門:商業及管理學門
學類:其他商業及管理學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:41
中文關鍵詞:定價訂購部份欠撥信用交易
外文關鍵詞:OrderingPricingTrade CreditPartial Backordering
相關次數:
  • 被引用被引用:0
  • 點閱點閱:148
  • 評分評分:
  • 下載下載:28
  • 收藏至我的研究室書目清單書目收藏:0
這篇研究我們考慮一個價格敏感需求的整合存貨模型,且缺貨期間可透過部分欠撥來滿足需求。同時,也考慮了供應商提供信用交易給零售商。基於缺貨期間、信用期與訂購週期的時間不同,本文提出了三種不同情況的模型。透過對總利潤函數的分析,我們提出了一個演算法決定最佳化售價、補貨週期以及滿足需求的存貨比例。特別地,我們考慮了兩階段定價,亦即在有庫存以及缺貨期間分別採取不同的售價。也使用了數值分析說明求解過程以及探討參數對公司決策行為的影響。研究也顯示了兩階段定價優於一階段的固定定價。
In this research, we consider an integrated inventory model with a price sensitive demand rate, where the demand during the out-of-stock period is partially back-ordered. Also,a trade credit period is provided from supplier to retailer. A proposed model is developed under three different circumstances depend on the time of occurrence of shortages, credit period, and cycle time. By analyzing the total net profit function, we present an algorithm to determine the optimal selling price, the length of replenishment cycle, and demand's percentage that will be filled from stock. Specially, we consider two-phases pricing, it means that we determine the optimal selling price for in-stock period and optimal selling price for out-stock period. A numerical study is used to illustrate the solution procedure and to discuss the company behavior with different parameter values. The result also explains that two-phases pricing strategy is supreme to one-phase pricing strategy while obtaining the maximum profit.
摘要 ii
ABSTRACT iii
ACKNOWLEDGEMENTS iv
CONTENTS v
LIST OF FIGURES vi
LIST OF TABLES vii
CHAPTER 1 INTRODUCTION 1
1.1. Research Background 1
1.2. Research Objectives 3
1.3. Research Organization 3
CHAPTER 2 LITERATURE REVIEW 5
2.1. Trade Credit 5
2.2. Partial Backordering 6
2.3. Pricing Policy 7
CHAPTER 3 MODEL FORMULATION 9
3.1. Assumptions and Notations 9
3.2. Mathematical Model 10
CHAPTER 4 NUMERICAL STUDY 21
4.1. Numerical Examples 21
4.2. Sensitivity Analysis 25
CHAPTER 5 CONCLUSION 30
5.1. Management Insight 30
5.2. Future Research 30
REFERENCES 31
APPENDIX 33
1]Liberopoulos, G., Tsikis, I., and Delikouras, S.: ‘Backorder penalty cost coefficient “b”: What could it be?’, International Journal of Production Economics, 2010, 123, (1), pp. 166-178
[2]Schwartz, B.L.: ‘A new approach to stock-out penalties’, Management Science 1996, 12, (12), pp. B538-B544
[3]S.H. Hillier, G.J.L.: ‘Introduction to operation research’, in Editor (Ed.)^(Eds.): ‘Book Introduction to operation research’ (McGraw-Hill Publishing Company, 1990, edn.)
[4]Sana, S.S.: ‘Optimal selling price and lotsize with time varying deterioration and partial backlogging’, Applied Mathematics and Computation, 2010, 217, (1), pp. 185-194
[5]Tsao, Y.C.: ‘Two-phase pricing and inventory management for deteriorating and fashion goods under trade credit’, Mathematical Methods and Operations Research, 2010, 72, pp. 107-127
[6]Goyal, S.K.: ‘Economic order quantity under conditions of permissible delay in payments’, The Journal of the Operational Research Society 1985, 36, pp. 335-338
[7]Jaggi, C.K., and Aggarwal, S.P.: ‘Credit financing in economic ordering policies of deteriorating items’, International Journal of Production Economics, 1994, 34, (2), pp. 151-155
[8]Chung, K.-J., and Lin, S.-D.: ‘The inventory model for trade credit in economic ordering policies of deteriorating items in a supply chain system’, Applied Mathematical Modelling, 2011, 35, (6), pp. 3111-3115
[9]Jamal, A.M.M., Sarker, B. R., Wang, S.,: ‘An ordering policy for deteriorating items with allowable shortages and permissible delay in payment’, Journal of the Operational Research Society, 1997, 48, (826-833)
[10]Chung, K.-J., and Huang, C.-K.: ‘An ordering policy with allowable shortage and permissible delay in payments’, Applied Mathematical Modelling, 2009, 33, (5), pp. 2518-2525
[11]Taleizadeh, A.A., Pentico, D.W., Saeed Jabalameli, M., and Aryanezhad, M.: ‘An EOQ model with partial delayed payment and partial backordering’, Omega, 2013, 41, (2), pp. 354-368
[12]Taleizadeh, A.A., and Nematollahi, M.: ‘An inventory control problem for deteriorating items with back-ordering and financial considerations’, Applied Mathematical Modelling
[13]Chang, C.-T., Goyal, S.K., and Teng, J.-T.: ‘On “An EOQ model for perishable items under stock-dependent selling rate and time-dependent partial backlogging” by Dye and Ouyang’, European Journal of Operational Research, 2006, 174, (2), pp. 923-929
[14]Huang, Y.-F.: ‘Economic order quantity under conditionally permissible delay in payments’, European Journal of Operational Research, 2007, 176, (2), pp. 911-924
[15]Chang, C.-T.: ‘An EOQ model with deteriorating items under inflation when supplier credits linked to order quantity’, International Journal of Production Economics, 2004, 88, (3), pp. 307-316
[16]Park, K.S.: ‘Inventory model with partial backorders’, International Journal of Systems Science, 1982, 13, (12), pp. 1313-1317
[17]Vijayan, T., and Kumaran, M.: ‘Inventory models with a mixture of backorders and lost sales under fuzzy cost’, European Journal of Operational Research, 2008, 189, (1), pp. 105-119
[18]Wee, H.-M.: ‘Deteriorating inventory model with quantity discount, pricing and partial backordering’, International Journal of Production Economics, 1999, 59, (1–3), pp. 511-518
[19]Pentico, D.W., and Drake, M.J.: ‘The deterministic EOQ with partial backordering: A new approach’, European Journal of Operational Research, 2009, 194, (1), pp. 102-113
[20]Taleizadeh, A.A., Pentico, D.W., Aryanezhad, M., and Ghoreyshi, S.M.: ‘An economic order quantity model with partial backordering and a special sale price’, European Journal of Operational Research, 2012, 221, (3), pp. 571-583
[21]Zhang, R.-q., Kaku, I., and Xiao, Y.-y.: ‘Deterministic EOQ with partial backordering and correlated demand caused by cross-selling’, European Journal of Operational Research, 2011, 210, (3), pp. 537-551
[22]Hu, W.-t., Kim, S.-L., and Banerjee, A.: ‘An inventory model with partial backordering and unit backorder cost linearly increasing with the waiting time’, European Journal of Operational Research, 2009, 197, (2), pp. 581-587
[23]Toews, C., Pentico, D.W., and Drake, M.J.: ‘The deterministic EOQ and EPQ with partial backordering at a rate that is linearly dependent on the time to delivery’, International Journal of Production Economics, 2011, 131, (2), pp. 643-649
[24]Wang, S.-P.: ‘An inventory replenishment policy for deteriorating items with shortages and partial backlogging’, Computers & Operations Research, 2002, 29, (14), pp. 2043-2051
[25]San Jose, L.A., Sicilia, J., and Garcia-Laguna, J.: ‘Analysis of an inventory system with exponential partial backordering’, International Journal of Production Economics, 2006, 100, (1), pp. 76-86
[26]Sicilia, J., San-Jose, L., and Garcia-Laguna, J.: ‘An inventory model where backordered demand ratio is exponentially decreasing with the waiting time’, Ann Oper Res, 2012, 199, (1), pp. 137-155
[27]Abad, P.L.: ‘Optimal price and order size for a reseller under partial backordering’, Computers & Operations Research, 2001, 28, (1), pp. 53-65
[28]Abad, P.L.: ‘Optimal price and order size under partial backordering incorporating shortage, backorder and lost sale costs’, International Journal of Production Economics, 2008, 114, (1), pp. 179-186
[29]You, P.-S.: ‘Ordering and pricing of service products in an advance sales system with price-dependent demand’, European Journal of Operational Research, 2006, 170, (1), pp. 57-71
[30]Banerjee, S., and Sharma, A.: ‘Optimal procurement and pricing policies for inventory models with price and time dependent seasonal demand’, Mathematical and Computer Modelling, 2010, 51, (5–6), pp. 700-714
[31]Teng, J.-T., Chang, C.-T., and Goyal, S.K.: ‘Optimal pricing and ordering policy under permissible delay in payments’, International Journal of Production Economics, 2005, 97, (2), pp. 121-129
[32]Chang, H.-C., Ho, C.-H., Ouyang, L.-Y., and Su, C.-H.: ‘The optimal pricing and ordering policy for an integrated inventory model when trade credit linked to order quantity’, Applied Mathematical Modelling, 2009, 33, (7), pp. 2978-2991
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊