(3.239.159.107) 您好!臺灣時間:2021/03/08 21:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:邱義雄
研究生(外文):Yi-Shiung Chiou
論文名稱:燃料電池動態行為及最適化研究
論文名稱(外文):Dynamic Behaviors and Optimal Operation of Proton Exchange Membrane Fuel Cells
指導教授:周宜雄
指導教授(外文):Yi-Shyong Chou
口試委員:周宜雄
口試委員(外文):Yi-Shyong Chou
口試日期:2013-12-27
學位類別:博士
校院名稱:國立臺灣科技大學
系所名稱:化學工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:156
中文關鍵詞:燃料電池質子交換膜正交配置最適化動態
外文關鍵詞:MATLABPEMFCprotonorthogonal collocationoptimizationdynamic
相關次數:
  • 被引用被引用:0
  • 點閱點閱:122
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
本論文將針對質子交換膜燃料電池來進行研究。在第一部分,研究的重點在建立二維非恆溫、汽液混合兩相流、瞬間動態質子交換膜燃料電池的數學模式,數學模式包含在陽、陰極渠道的動量方程式、連續方程式、成份保守方程式與能量方程式和高分子薄膜中的水傳送方程式。經由模擬計算觀察燃料電池水的瞬間傳送與熱量瞬間傳送機構,並探討電池操作參數,包含氣體流量、壓力、溫度、濕度等對電池效能的影響。由於質子交換膜燃料電池的氧化還原反應快速並且氣體流動亦相當快速,因此瞬間過程的變化極為關鍵,研究結果確實顯示電池操作參數對電池效能在瞬間過程的變化扮演重要角色。第二部分主要探討質子交換薄膜燃料電池的水管理,此操作在燃料電池中亦是一項非常重要的項目。尤其是針對磺酸聚合物的燃料電池,它的傳導性與水有絕對的關係。雖然流體計算模組已被普遍用來模擬複雜動態二維燃料電池,可以很輕易的求出複雜的動態結果,但藉着使用MATLAB矩陣平行運算及在本篇中使用正交配置法亦可以求出二維-二相流動態燃料電池模擬,並且較容易調整方程式內部數值,已達成有效收斂時間。第三部分主要是利用給予驗證後的燃料電池動態模型來進行最適化操作條件。操作條件包含載入電流以及陽極及陰極的入口溫度、濕度、化學計量比及壓力等。在本篇研究工作主要在選定特定目標函數,利用基因演算法進行最適化操作以獲得最適化操作條件。
This research will focus on proton exchange membrane fuel cells. In the first part, study focused on the establishment of two-dimensional non-isothermal, vapor-liquid mixed phase flow and instantaneous dynamic proton exchange membrane fuel cell mathematical model that include anode and cathode channel monentum, continuity, species , energy and water in the polymer film transfer equations. The results observed by simulating fuel cell water and heat transport mechanism instantaneous and explore the fuel cell operating parameters on cell performance. where operating parameters include the gas flow rate, pressure, temperature, humidity and current. Due to redox and gas flow rate are rapid of the proton exchange membrane, hence the process of instant change is sticking point. The results did show the operating parameters of instant process of the fuel cell is an important role. In the second part focuses on proton exchange membrane fuel cell water management, This operations of the fuel cells is also a important porject. Especially for the acid polymer fuel cell, which has a relationship with water conductivity. Although commercial computing modules have been widely used to simulate the complex dynamics of two-dimensional fuel cell, it can easily obtain complex dynamics results, but by using the MATLAB matrix parallel computing and orthogonal collocation method also can obtain the two-dimensional and two-phase flow simulation of dynamic fuel cells and easier adjustment formula internal values has been reached effective convergence time. In third part is used validated dynamic model for optimal operating conditions. The operating parameters include current, inlet temperature, inlet humidity of anode and cathode and pressure. In this research work is mainly on the selected specific object function and use genetic algorithms for optimal operation to obtain optimal operaing conditions.
中文摘要 II
Abstract IV
誌 謝 VI
圖表索引 XI
符號索引 XVII
第一章 緒論 1
1.1 前言 1
1.2 燃料電池 1
1.3 質子交換薄膜燃料電池(PEMFC) 4
1.4 研究動機 6
1.5 研究主題 7
1.6 文獻回顧 8
1.6.1 機理模型-穩態系統 8
1.6.2 機理模型-動態系統 11
1.6.3 最適化操作 13
第二章 質子交換膜燃料電池建模與操作參數對瞬間電池表現的影響 17
2.1 模擬描述 17
2.1.1 質量傳送方程式 18
2.1.2 動量傳送方程式 19
2.1.3 能量傳送方程式 21
2.1.4 物質傳送方程式 23
2.1.5 液態水傳送方程式 23
2.1.6 電極層中水的質傳現象 24
2.1.7 局部電流方程式 25
2.2 數值方法 25
2.2.1 無因次化 25
2.2.2 正交排列法(Orghogronal Collocation) 28
2.3 結果與討論 29
2.3.1 基本條件 30
2.3.2 入口流速改變時的影響 33
2.3.3 入口溫度改變時的影響 34
2.3.4 入口壓力改變時的影響 38
2.3.5 入口濕度改變時的影響 41
2.4 結論 43
第三章 動態質子交換膜燃料電池操作參數對電池表現的影響 49
3.1 模擬描述 49
3.1.1 質量及動量傳送方程式 50
3.1.2 物質傳送方程式 50
3.1.3 液態水傳送方程式 51
3.1.4 薄膜中水的質傳現象 51
3.1.5 電荷守恆方程式 52
3.2 數值方法 53
3.2.1 無因次化 53
3.2.2 邊界條件 56
3.2.3 正交排列法 58
3.3 結果與討論 72
3.3.1 基本條件 73
3.3.2 電壓及入口流速的改變 80
3.3.3 電壓及入口溫度的改變 87
3.3.4 電壓及入口濕度的改變 94
3.4 結論 102
第四章 使用基因演算法估測燃料電池最適化操作條件 108
4.1 模擬描述 108
4.1.1 質量傳送方程式 109
4.1.2 能量傳送方程式 112
4.1.3 電化學方程式 113
4.2 目標函數 114
4.3 結果與討論 116
4.3.1 模型與實驗數據的擬合 116
4.3.2 最適化燃料電池操作條件(一) 117
4.3.3 最適化燃料電池操作條件(二) 121
4.4 結論 123
第五章 總結 126
參考文獻 128
授 權 書 133
[1] 衣寶廉, 燃料電池-原理與應用, 五南圖書, (2005).
[2] T. V. Nguyen, R. E. White, A water and heat management model for proton-exchange-membrane fuel cells, Journal of The Electrochemical Society 140 (8) (1993) 2178-2186.
[3] S. Um, C.-Y. Wang, K. S. Chen, Computational fluid dynamics modeling of proton exchange membrane fuel cells, Journal of The Electrochemical Society 147 (12) (2000) 4485-4493.
[4] W. Yuan, Y. Tang, M. Pan, Z. Li, B. Tang, Model prediction of effects of operating parameters on proton exchange membrane fuel cell performance, Renewable Energy 35 (3) (2010) 656–666.
[5] C. Ziogou, S. Voutetakis, S. Papadopoulou, M. C. Georgiadis, Modeling, simulation and experimental validation of a PEM fuel cell system, Computers and Chemical Engineering 35 (9) (2011) 1886-1900.
[6] D. M. Bernardi, M. W. Verbrugge, A mathematical model of the solid-polymer-electrolyte fuel cell, Journal of Electrochem Society 139 (9) (1992) 2477-2491.
[7] D. M. Bernardi, M. W. Verbrugge, Mathematical model of a gas diffusion electrode bonded to a polymer electrolyte, AICHE Journal 37 (8) (1991) 1151-1163.
[8] T. E. Springer, T. A. Zawodzinski, S. Gottesfeld, Polymer electrolyte fuel cell model, Journal of Electrochem Society 138 (8) (1991) 2334-2342.
[9] T. E. Springer, M. S. Wilson, S. Gottesfeld, Modeling and experimental diagnostics in polymer electrolyte fuel cells, Journal of Electrochemical Society 140 (12) (1993) 3513-3526.
[10] R. Mosdale, S. Srinivasan, Analysis of performance and of water and thermal management in proton exchange membrane fuel cells, Electrochemical Acta 40 (4) (1995) 413-421.
[11] Z. H. Wang, C. Y. Wang, K. S. Chen, Two-phase flow and transport in the air cathode of proton exchange membrane fuel cells, Journal of Power Source 94 (1) (2001) 40-50.
[12] I. M. Hsing, P. Futerko, Two-dimensional simulation of water transport in polymer electrolyte fuel cells, Chemical Engineering Science 55 (19) (2000) 4209-4218.
[13] T. F. Fuller, J. Newman, Water and thermal management in solid-polymer-electrolyte fuel cells, Journal of The Electrochemical Society 140 (5) (1993) 1218-1225.
[14] J. S. Yi, T. V. Nguyen, An along-the-channel model for proton exchange membrane fuel cells, Journal of The Electrochemical Society 145 (4) (1998) 1149-1159.
[15] J. S. Yi, T. V. Nguyen, Multicomponent transport in porous electrodes of proton exchange membrane fuel cells using the interdigitated gas distributors, Journal of The Electrochemical Society 146 (1) (1999) 38-45.
[16] B. Zhou, W. Huang, Y. Zong, A. Sobiesiak, Water and pressure effects on a single PEM fuel cell, Journal of Power Sources 155 (2) (2006) 190-202.
[17] K. Dannenberg, P. Ekdunge, G. Lindbergh, Mathematical model of the PEMFC, Journal of Applied Electrochemistry 30 (12) (2000) 1377-1387.
[18] S. Dutta, S. Shimpalee, J. W. Van Zee, Three-dimensional numerical simulation of straight channel PEM fuel cells, Journal of Applied Electrochemistry 30 (2) (2000) 135-146.
[19] S. Um, C. Y. Wang, Three-dimensional analysis of transport and electrochemical reactions in polymer electrolyte fuel cells, Journal of Power Sources 125 (1) (2004) 40-51.
[20] P. Costamagna, Transport phenomena in polymeric membrane fuel cells, Chemical Engineering Science 56 (2) (2001) 323-332.
[21] S. Mazumder, J. V. Cole, Rigorous 3-D Mathematical modeling of PEM fuel cells II. model predictions with liquid water transport, Journal of The Electrochemical Society 150 (11) (2003) A1510-A1517.
[22] I. Taymaz, M. Benli, Numerical study of assembly pressure effect on the performance of proton exchange membrane fuel cell, Energy 35 (5) (2010) 2134-2140.
[23] J. C. Amphlett, R. F. Mann, B. A. Peppley, P. R. Roberge, A. Rodrigues, A model predicting transient of proton exchange membrane fuel cells, Journal of Power Source 61 (1-2) (1996) 183-188.
[24] J. C. Amphlett, E. H. de Oliveira, R. F. Mann, P. R. Roberge, A. Rodrigues, Dynamic interaction of a proton exchange membrane fuel cell and a lead-acid battery, Journal of Power Source 65 (1-2) (1997) 173-178.
[25] M. Ceraolo, C. Miulli, A. Pozio, Modeling static and dynamic behaviour of proton exchange membrane fuel cells on the basis of electro-chemical description, Journal of Power Source 113 (1) (2003) 131-144.
[26] K. Sundmacher, T. Schultz, S. Zhou, K. Scott, M. Ginkel, E. D. Gillers, Dynamics of the direct methanol fuel cell (DMFC): experiments and model-based analysis, Chemical Engineering Science 56 (2) (2001) 333-341.
[27] A. A. Kulikovsky, Gas dynamics in channels of a gas-feed direct methanol fuel cell: exact solutions, Electrochemistry Communications 3 (10) (2001) 572-579.
[28] C. Xu, P. M. Follmann, L. T. Biegler, M. S. John, Numerical simulation and optimization of a direct methanol fuel cell, Computers and Chemical Engineering 29 (8) (2005) 1849-1860.
[29] T. Berning, N. Djilali, A 3D multiphase multicomponent model of the cathode and anode of a PEM fuel cell, Journal of The Electrochemical Society 150 (12) (2003) A1589-A1598.
[30] X. Xue, J. Tang, A. Smirnova, R. England, N. Sammes, System level lumped-parameter dynamic modeling of PEM fuel cell, Journal of Power Sources 133 (2) (2004) 188-204.
[31] S. Shimpalee, W.-K. Lee, J. W. Van Zee, H. Naseri-Neshat, Predicting the transient response of a serpentine flow-field PEMFC II: Normal to minimal fuel and air, Journal of Power Sources 156 (2) (2006) 369-374.
[32] S. Shimpalee W. -K. Lee, J. W. Van Zee, H. Naseri-Neshat, Predicting the transient response of a serpentine flow-field PEMFC I. Excess to normal fuel and air, Journal of Power Sources 156 (2) (2007) 355-368.
[33] Y. Wang, C. -Y. Wang, Transient analysis of polymer electrolyte fuel cells, Electrochemica Acta 50 (6) (2005) 1307-1315.
[34] S. G. Tesfahunegn, P. J. S. Vie, T. M. Undeland, O. Uleberg, A combined steady state and dynamic model of a proton exchange membrane fuel cell for use in DG system simulation, The 2010 International Power Electronics Conference (2010) 2457-2464.
[35] F. Chen, M.-H. Chang, C.-F. Fang, Analysis of water transport in a five-layer model of PEMFC, Journal of Power Sources 164 (2) (2007) 649-658.
[36] H. Wu, P. Berg, X. Li, Non-isothermal transient modeling of water transport in PEM fuel cells, Journal of Power Sources 165 (1) (2007) 232-243.
[37] G. Hu, J. Fan, Transient computation fluid dynamics modeling of a single proton exchange membrane fuel cell with serpentine channel, Journal of Power Sources 165 (1) (2007) 171-184.
[38] S. Qu, X. Li, C. Ke, Z.-G. Shao, B. Yi, Experimental and modeling study on water dynamic transport of the proton exchange membrane fuel cell under transient air flow and load change, Journal of Power Sources 195 (19) (2010) 6629-6636.
[39] T. Sousa, M. Mamlouk, K. Scott, A dynamic non-isothermal model of a laboratory intermediate temperature fuel cell using PBI doped phosphoric acid membrane, International Journal of Hydrogen energy 35 (21) (2010) 12065-12080.
[40] M. V. Moreira, G. E. da Silva, A practical model for evaluating the performance of proton exchange membrane fuel cells, Renewable Energy 34 (2) (2009) 1734-1741.
[41] J. C. Amphlett, R. M. Baumert, R. F. Mann, B. A. Peppley, P. R. Rogerge, T. J. Harris, Performance modeling of the Ballard Mark IV solid polymer electrolyte fuel cell, Journal of the Electrochemical Society 142 (1) (1995a) 9-15.
[42] J. C. Amphlett, R. M. Baumert, R. F. Mann, B. A. Peppley, P. R. Rogerge, T. J. Harris, Performance modeling of the Ballard Mark IV solid polymer electrolyte fuel cell, Journal of the Electrochemical Society 142 (1) (1995b) 1-8.
[43] R. F. Mann, J. C. Amphlett, M. A. I. Hooper, H. M. Jensen, B. A. Peppley, P. R. Roberge, Development and application of a generalised steady-state electrochemical model for a PEM fuel cell, Journal of Power Sources 86 (1-2) (2000) 173-180.
[44] F. N. Buchi, G. G. Scherer, In-situ resistance measurements of NafionR 117 membranes in polymer electrolyte fuel cells, Journal of Electroanalytical Chemistry 404 (1) (1996) 37-43.
[45] J. Golbert, D. R. Lewin, Model-based control of fuel cells: (1) Regulatory control, Journal of Power Sources 135 (1-2) (2004) 135-151.
[46] S. Yerramalla, A. Davari, A. Feliachi, T. Biswas, Modeling and simulation of the dynamic behavior of a polymer electrolyte membrane fuel cell, Journal of Power Sources 124 (1) 104-113.
[47] J. T. Pukrushpan, H. Peng, A. G. Stefanopoulou, Control-oriented modeling and analysis for automotive fuel cell systems, Journal of Dynamic Systems Measurement and Control - Transactions of AMSE 126 (1) (2010) 14-25.
[48] M. J. Khan, M. T. Iqbal, Dynamic modelling and simulation of a fuel cell generator, Fuel Cells 5 (1) (2005) 97-104.
[49] P. R. Pathapati, X. Xue, J. Tang, A new dynamic model for predicting transient phenomena in a PEM fuel cell system, Renewable Energy 30 (1) (2004) 1-22.
[50] E. A. Muller, A. G. Stefanopoulou, Analysis, modeling, and validation for the thermal dynamics of a polymer electrolyte membrane fuel cell system, Journal of Fuel Cell Science and Technology 3 (2) (2006) 99-110.
[51] J. H. Lee, T. R. Lalk, Modeling fuel cell stack systems, Journal of Power Sources 73 (2) (1998) 229-241.
[52] A. J. del Real, A. Arce, C. Bordons, Development and experimental validation of a PEM fuel cell dynamic model, Journal of Power Sources 173 (1) (2007) 310-324.
[53] M. Secanell, J. Wishart, P. Dobson, Computational design and optimization of fuel cells and fuel cell systems, Journal of Power Sources 196 (8) (2011) 3690-3704.
[54] A. Mawardi, F. Yang, R. Pitchumani, Optimization of the operating parameters of a proton exchange membrane fuel cell for maximum power density, Journal of Fuel Cell Science and Technology 2 (2) (2005) 121-135.
[55] J. Wu, Q. Liu, H. Fang, Toward the optimization of operating conditions for hydrogen polymer electrolyte fuel cells, Journal of Power Sources 156 (2) (2006) 388-399.
[56] B. A. Finlayson, Nonlinear analysis in chemical engineering, McGraw-Hill International Book Co., c1980.
[57] Ou, S., Achenie, L.E.,A model for PEM fuel cells that accounts for water management, AICHe Annual Meeting, Conference Proceedings (2005) 6195.
[58] J. H. Nam, M. Kaviany, Effective diffusivity and water-saturation distribution in single- and two-layer PEMFC diffusion medium, International Journal of Heat and Mass Transfer 46 (24) (2003) 4595-4611.
[59] S. Dutta, S. Shimpalee, J. W. Van Zee, Numerical prediction of mass-exchange between cathode and anode channels in a PEM fuel cell, International Journal of Heat and Mass Transfer 44 (11) (2001) 2029-2042.
[60] J. Kim, S. M. Lee, S. Srinivasan, Modeling of proton exchange membrane fuel cell performance with an empirical equation, Journal the Electrochemical Society 142 (8) (1995) 2670-2674.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔