跳到主要內容

臺灣博碩士論文加值系統

(44.221.73.157) 您好!臺灣時間:2024/06/15 13:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鍾孟儒
研究生(外文):Meng-ju Chung
論文名稱:以傳統乳化聚合法及RAFT活自由基乳化聚合法合成用於不飽和聚酯、乙烯基酯及環氧樹脂之奈米級及次微米級高分子核殼型橡膠及反應型微膠顆粒之抗收縮劑及增韌劑
論文名稱(外文):Synthesis of nano-scale and submicron-scale polymeric core-shell rubber and reactive microgel particle as low-profile additives and tougheners for unsaturated polyester, vinyl ester, and epoxy resins by conventional and RAFT living free radical emulsion polymerizations
指導教授:黃延吉
指導教授(外文):Yan-Jyi Huang
口試委員:黃延吉
口試委員(外文):Yan-Jyi Huang
口試日期:2014-07-22
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:化學工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:261
中文關鍵詞:奈米級核殼型橡膠不飽和聚酯乙烯基酯樹脂抗收縮劑可逆加成斷裂鏈轉移(RAFT)自發性相反轉
外文關鍵詞:nano-scale;core-shell rubber; unsaturated polyesreversible additionfragmentation chain transfer
相關次數:
  • 被引用被引用:4
  • 點閱點閱:254
  • 評分評分:
  • 下載下載:54
  • 收藏至我的研究室書目清單書目收藏:0
本文探討以RAFT聚合法,採用自發性相反轉、無乳化劑乳化聚法合成奈米級的特用型核殼型橡膠(s-CSR),及以傳統乳化聚合法,添加或不添加乳化劑,合成奈米級或次微米級的通用型核殼型橡膠(gp-CSR),作為不飽和聚酯樹脂(UP)、環氧樹脂(EPR)及乙烯基酯樹脂(VER)的抗體積收縮劑(LPA)及增韌劑。吾人並合成不同化學結構之傳統UP,包括MA-PG型、MA-PA-PG型UP,及聚合度為0.11、2、5之EPR與VER樹脂基材,進而設計出具不同相容性之苯乙烯(St)/VER/CSR三成份系統。
s-CSR以聚丙烯酸丁酯PBA為軟質核心,以丙烯酸乙酯(EA)及丙烯酸鈉(SA)之共聚物poly(EA-co-SA)為外殼;奈米級gp-CSR以聚丙烯酸丁酯PBA為軟質核心,以丙烯酸甲酯PMA為外殼;次微米級gp-CSR以聚丙烯酸丁酯PBA為軟質核心,以甲基丙烯酸甲酯PMMA為外殼。另外,s-CSR與gp-CSR之外殼,亦以甲基丙烯酸環丙氧酯(Glycidyl methacrylate, GMA)改質,以合成出具高極性及具特殊官能基基團外殼,如環氧基團,以增加CSR外殼之極性及與樹脂基材化學交聯之能力。接著以80與120℃下之相分離實驗搭配Debye方程式計算基材與CSR殼層組成之單位體積偶極矩,來解釋St/VER (n=2)/CSR三成份系統之相分離特性。最後,以密度法測量在120℃固化一小時前後,St/VER (n=2)/CSR三成份系統之體積收縮特性變化。
Synthesis of nano-scale specific core-shell rubber (s-CSR) by RAFT polymerization viaspontaneous phase inversion process and nano-scale or submicron-scale general prepose core-shell rubber (gp-CSR) byconventional emulsion polymerization with or without surfactant as low-profile additives (LPA) and tougheners for unsaturated polyester resins (UP), epoxy resin (EPR) and vinyl ester resin (VER) have been investigated. Two types of conventional UP with different chemical structures, namely, MA-PG and MA-PA-PG, EPR and VER with degree of polymerization (n) = 0.11, 2, and 5, have also been synthesized so that styrene (St) /VER (or UP) /CSR ternary systems with different miscibility can be designed.
In the synthesis of s-CSR, the core was made from poly(butyl acrylate) (PBA),whereas the shell was made from poly(acrylic acid(AA)-co-ethyl acrylate (EA)). For nano-scale gp-CSR, the core was made from PBA, the shell was made from poly(methyl acrylate)(PMA). For nano-scale gp-CSR, the core was made from PBA, the shell was made from poly(methyl methacrylate)(PMMA). Futhermore, the shell of the CSR was modified by glycidyl methacrylate(GMA) as a comonomer to increase the molecular polarity and provide the specific functionality, such as epoxy group, for the shell of the CSR.
By conducting phase separation experiments and employing Debye’s equation, the dipole moments of UP, VER, EPR and the shell component of the CSR can be calculated, and the phase characteristics of the St/VER/CSR, ternary system have been elucidated. Finally, the volume shrinkage characteristics of the St/VER (n=2)/CSR ternary system after cure have also been explored.
第一章緒論 1
1-1 簡介 1
1-2 不飽和聚酯(UP)之合成 5
1-3 環氧樹脂(EPR)之合成 6
1-4 乙烯基酯樹脂(VER)之合成 9
1-5 不飽和聚酯樹脂(UP)與苯乙烯(ST)之交聯共聚合反應 10
1-6 種子乳化聚合反應與複合乳膠顆粒的應用及製備【30-32】 14
1-7 結合RAFT總體聚合反應,自發性相反轉及RAFT無乳化劑之乳化聚合法合成特用型核殼型橡膠【33】 15
1-8 石墨烯/高分子複合材料 16
1-9研究範疇 22
第二章文獻回顧 24
2-1 不飽和聚酯(UP)之合成 24
2-2 環氧樹脂(EPOXY RESIN,EPR)之合成【25-26,39-42】 26
2-4乙烯基酯樹脂(VINYL ESTER RESIN,VER)之合成 28
2-5乳化聚合法 32
2-6自由基聚合反應 39
2-7無乳化劑之乳化聚合反應與機構 42
2-8活性自由基聚合法【64】 44
2-9原子轉移自由基聚合法(ATRP)【67】 46
2-10穩定自由基聚合法(SFRP)【64】 48
2-11可逆加成-斷裂鏈轉移聚合法(RAFT)【73-80】 50
2-12乳液的安定性 53
2-13共聚合反應機構與控制共聚合體組成【90】 57
2-14石墨烯/高分子奈米複合材料之研究 61
2-15氧化石墨(GO)及熱還原氧化石墨(TRGO)的製備 62
第三章實驗方法及設備 64
3-1原料 64
3-1-1不飽和聚酯樹脂的合成原料 64
3-1-2環氧樹脂與乙烯基酯樹脂的合成原料【25-26,44-45】 66
3-1-3Ethyltriphenyl phosphomium acetate,acetic acid complex之合成原料【44】 68
3-1-4RAFT聚合法之鏈轉移試劑DBTTC之合成原料【33,105-106】 69
3-1-5以RAFT聚合法合成之特用型核殼型橡膠s-CSR之合成原料 70
3-1-6奈米級與次微米級通用型核殼型橡膠之合成原料 72
3-2實驗儀器 74
3-2-1 UP及之合成及鑑定設備 74
3-2-2Epoxy及VER(Vinyl Ester Resin)之合成設備 77
3-2-3通用型核殼橡膠(gp-CSR)及以RAFT聚合法合成之特用型核殼型橡膠s-CSR之合成設備 79
3-3 實驗步驟 81
3-3-1不飽和聚酯(UP)之合成【29,29a,37】 81
3-3-2 UP分子量之測定-末端基滴定法 85
3-3-3液態EPR(Epoxy Resin)環氧樹脂之合成【25-26,40-41】 88
3-3-4以鏈延伸法合成固態環氧樹脂之觸媒ethyltriphenyl phosphomium acetate.acetic acid complex(ETTP.Ac.HAc)的合成【44】 91
3-3-5固態高分子量EPR(Epoxy Resin)環氧樹脂之合成【44-45】 92
3-3-6環氧樹脂之環氧當量測定 95
3-3-7 VER(Vinyl Ester Resin)之合成【25-26,40-41】 97
3-3-9 VER中未反應環氧基團含量之測定-末端基滴定法 100
3-3-10RAFT聚合法之鏈轉移試DBTTC(dibenzyltrithiocarbonate) 101
3-3-11無界面活性劑之乳化聚合【33,107-111】 103
3-3-12總體RAFT共聚合及自發性相反轉【33,41,107-111】 105
3-3-13利用自發相反轉程序之RAFT無界面活性劑種子乳化聚合【33,41,107-111】 110
3-3-14以傳統之種子乳化聚合法合成奈米級核殼型橡膠【91,112-113,124】 112
3-3-15以無乳化劑之乳化聚合法合成次微米級核殼型橡膠【23,54】 115
3-3-16單體的純化【114】 120
3-3-17轉化率的測定【41,54,91,107-110】 121
3-3-18乳液粒徑的測定【41,54,91,107-110】 121
3-3-19相對分子量及分子量分佈之測定【41,107-110,115】 122
3-3-20核磁共振光譜之測定【41,107-110】 123
3-3-21玻璃轉移溫度(Tg)【29】 123
3-3-22相分離之測定分析【41,91, 107-110】 124
3-3-23 St/VER(n=2)/nano-CSR(MA-Gx-30 or EA-E7-Gx-40) 三成分系統固化試片製作 125
第四章結果與討論 126
4-1 樹脂之合成 126
4-1-1 MA-PG型及MA-PA-PG型之UP樹脂的合成 126
4-1-2環氧樹脂的合成 132
4-1-3乙烯基酯樹脂(VER)之合成 134
4-1-4 MA-PG及MA-PA-PG型UP聚縮合期間之副反應 138
4-2 樹脂之鑑定分析 139
4-2-1MA-PG及MA-PA-PG型UP之鑑定分析 139
4-2-2雙酚A型環氧樹脂(EPR)及乙烯基酯樹脂(VER)之鑑定分析 141
4-2-3 UP樹脂、環氧樹脂(EPR)與乙烯基酯樹脂(VER)之NMR分析 164
4-3 合成樹脂時注意事項 181
4-3-1合成MA-PG型及MA-PA-PG型UP時注意事項 181
4-3-2合成環氧樹脂時注意事項 183
4-3-3合成乙烯基酯樹脂(VER)時注意事項 184
4-4以RAFT聚合法合成之奈米級S-CSR之鑑定【41】 185
4-4-1 合成外殼Tg為室溫25℃以下之s-CSR並以DSC測定奈米級s-CSR之玻璃轉移溫度(Tg) 187
4-5 RAFT聚合法之鏈轉移試劑DBTTC之鑑定分析 191
4-6以乳化聚合法合成通用型奈米級核-殼型橡膠增韌劑(GP-CSR)之鑑定 193
4-6-1 以DLS測定通用型奈米級gp-CSR之粒徑 193
4-6-2 以TEM觀測通用型奈米級核殼型橡膠gp-CSR乳液 197
4-6-3以DSC測定奈米級gp-CSR之玻璃轉移溫度(Tg) 201
4-7通用型次微米級核-殼型橡膠增韌劑(GP-CSR)之鑑定【41】 205
4-7-1以DLS測定通用型次微米級gp-CSR之粒徑 205
4-7-2 以TEM觀測通用型次微米級核殼型橡膠gp-CSR乳液 211
4-8 VER(N=2)/ST/ CSR三成分系統之體積收縮性質測試 216
4-8-1 VER(n=2 )/St/ MA-Gx-30 三成分系統之體積收縮性質測試 216
4-8-2 VER (n=2) /St/ EA-Gx-40 三成分系統之體積收縮性質測試 219
4-9 ST/UP(或VER)/CSR三成份系之相溶性 222
4-9-1以Debye’s Eq’n與基團貢獻法計算樹脂基材(UP、EPR與VER)及核殼型橡膠添加劑(gp-CSR與s-CSR)其偶極矩 222
4-9-2 ST/VER (n=2) / MA-Gx or E7-40-EA-Gx 三成分系統之相分離特性 248
第五章結論 250
第六章未來工作 252
第七章參考文獻 253
1.R.B. Burns , “Polyester Molding Compounds ,” Marcel Dekker , New York , (1982).
2.H.G. Kia , ed., “Sheet Molding Compound : Science and Technology ,” Hanser Publishers , New York , (1993).
3.E.J. Bartkus and C. H. Kroekel, J. Appl. Polym. Sci., Appl. Polym. Symp., 15, 113 (1970).
4.Y.J. Huang, T.S. Chen, J.G. Huang and F.H. Lee, J. Appl. Polym. Sci., 89, 3336(2003).
5.V.A. Pattison, R.R. Hindersinn and W.T. Schwartz, J. Appl. Polym. Sci., 18, 2763 (1974).
6.W. Funke, R. Kolitz, and W. Straehle, Makromol. Chem., 180, 2797 (1979).
7.W. Funke, and K. Walther, Polymer J., 17, 1, 179 (1985).
8.W. Funke, Br. Polym. J., 21, 107 (1989).
9.L. Liang and W. Funke, Macromolecules, 29 ,8685 (1996).
10.郭庭蓁, 碩士論文, 國立台灣科技大學, 2006.
11.J.P. Dong, J.H. Lee, D.H. Lai and Y.H. Huang, J. Appl. Polym. Sci., 98, 246(2005).
12.E. Martuscelli, P. Musto, G. Ragosta, G. Scarinz and E. Bertotti, J. Polym. Sci., Part B: Polym. Phys., 31, 619 (1993).
13.S.B. Pandit and V.M. Nadkarni, Ind. Eng. Chem. Res.,33,2778 (1994).
14.The B.F. Goodrich Co., WO93/21274 (Oct. 28, 1993).
15.Crc for Polymers Pty. Ltd, WO97/43339 (Nov. 20,1997).
16.J. Wang, M. Lee, X. Yu, J. Ji and K. Yao, J. Mater. Sci. Technol., 20, 5, 522 (2004).
17.J. Wang, M. Lee, K. Yao, J. Ji and X. Yu, J. Mater. Sci. Technol., 20, 6, 787 (2004).
18.J.Y. Qian, R. A. Pearson, V. L. Dimonie and M. S. El-Aasser, J. Appl. Polym. Sci., 58, 439 (1995).
19.K.F. Lin and Y.D. Shieh, J. Appl. Polym. Sci., 69, 2069 (1998).
20.K.F. Lin and Y.D. Shieh, J. Appl. Polym. Sci., 70, 2313 (1998).
21.C.L Lee, K.R Lin and W.Y. Chiu, J. Appl. Polym. Sci., 51, 1621 (1994).
22.梁景冠,碩士論文,國立台灣科技大學,2003.
23.Y.J. Huang, J.H. Wu, J.G. Liang, M.W. Hsu, and J.K. Ma, J. Appl. Polym. Sci, 107, 939 (2008).
24.C.B. Arends, ed., “Polymer Toughening,” Marcel Dekker, New York, 1996.
25.The Dow Chemical Company , PCT Int.Appl.WO986/07067(Dec. 4, 1986).
26.朱祈佑,碩士論文,國立台灣科技大學, 2007.
27.Y.S.Yang and L.J.Lee,Polymer,29,1793(1988).
28.K.Horie,I.Mita,and H.Kambe,J.Polym.Sci.PartA-1:Polym.
Chem.,7,2561(1969).
29.江文慶,碩士論文,國立台灣科技大學,1996.
29a.Y. J. Huang and W. C. Jiang, Polymer, 39, 6631 (1998).

30.Y.C. Chen , V. L. Dimonie , and M.S. El-Aasser , J. Appl.
Polym. Sci. , 42 , 1049(1991).
31.J.Berg.D.C.Sundberg, and B.Kronberg , Polym. Mater. Sci. Eng. , 54 , 367 , (1986).
32.D.C.Sundberg , A.J.Cassasa , J.Pantazopoulos , M.R.Muscato ,B.K.Kronberg , and J.Berg , J. Appl. Polym. Sci. , 41 , 1425(1990).
33.S. Fre’al-Saison, M. Save, C. Bui, B.Charleux, and S.Magnet,Macromolecules, 39, 8632 (2006).
34.H. Kim, A.A. Abdada, and C.W. Macosko, Macromolecules, 43, 6515 (2010)
35.J. Simitzis, Eur. Polym. J., 24, 87 (1988).
36.R. Subramaniam and F. J. McGarry, 48th Annual Conference,
Composites Institute, SPI, Session 14-C (Feb. 8-11, 1993).
37.B. R. Bogner and M. Kallaur, in “Sheet Molding Compounds:
Science and Technology,” ed. H. G. Kia, Hanser, New York
, Ch.2, 1993.
38.Amoco Chemical Co., “Processing Unsaturated Polyesters
Based on Amoco Isophthalic Acid,” IP-43b, 1989.
39.E. F. Cariston and G. B. Johnson, U. S. Patent 2, 904, 533,1959.
40.劉嘉樺,碩士論文,國立台灣科技大學, 2008.
41.黃俊翰,碩士論文,國立台灣科技大學, 2009.
42.L.V McAdams and J.A Gannon, “Epoxy Resins”.P322-382 in Encyclopeclia of Polymer Science and Engineering,Vol.6,H.F.Mark,N.M Bikales , C.G
43.B.Ellis,Ed”Chemistry and Technology of Epoxy Resins,”Blackie Academic &; Professional , Londom , 1993 ,ch1
44.Carlisle Chemical works , Inc,U.S. Patent 3,341,580,1967
45.The Dow Chemical Campany,U.S.Patent 3,948,855,1976
46.N. Agarwal, I. K. Varma, and V. Choudhary, J. Appl. Polym. Sci., 99, 2424(2006).
47.B. Gawdzik, and T. Matynia, J. Appl. Polym. Sci., 81, 2062(2001).
48.P. Penczek, J. Sodhi, and R. Osrysz, J. Appl. Polym. Sci., 101, 2627(2006).
49.P. F. Bruins, Ed., “Unsatruated Polyester Technology, ” Gordon and Breach, New York, 1976,p315-342.
50.彭俊昇, 碩士論文,國立台灣科技大學,2000.
51.G. Odian,”Principle of Polymerization ,”4th Edition,Wiley,New York,2004.
52.廖平喜,聚合物化學,高立圖書有限公司,台北, 1997.
53.H.R. Allcock and F.W. Lampe.,”Contemporary Polymer Chemistry”,3nd Ed., Prentice Hall, Englewood Cliffs, New Jersey,p. 59, 2003.
54.吳嘉鴻, 碩士論文, 台灣科技大學, 2003.
55..J.W.Vanderhoff, “Science and Technology of Polymer Colloids”, G. W.Poehlein, H.O. and J. W.Goodwin Eds., Vol.I.,1983.
56.V.I.Yeliseyeva, in ”Emulsion Polymerization”, chap.7, Academic Press,New York,1982.
57.H.One and H.Saeki, Br.Polym.J, 7, 21(1975)
58.M.S.Juang and I.M.Krieger, J.Polym.Sci., Polym.Chem.Ed.,14, 2089(1976).
59.S.A.Chen and H.S.Chang, J.Polym.Sci., Polym.Chem.Ed., 23, 2615(1985).
60.D.H.Napper and A.G.Parts, J.Polym.Sci., 16, 113(1962).
61.R.M.Fitch, Br.Polym.J., 5, 467(1973).
62.J.H.Bayendale, M.G.Evans and J.K.Kilham, Trans.Faraday Soc., 42, 688(1946).
63.J.W.Goodwin, J.Hearn, C.C.Ho and R.H.Ottewill, Br.Polym.J., 5, 347(1973).
64.張容瑋, 碩士論文,台灣科技大學, 2008.
65.M ,Szwarc.Nature(London),178,1168(1956).
66.T. Otsu, M.Yoshida, Makromol Chem, Rapid Commun., 3,127(1982).
67.K.Matyjaszewski, J.Xia, Chem. Rev., 101, 2921(2001).
68.J.S.Wang,K.Matyjaszewski, ,J.Am.Chem.Soc.,117,5614(1995).
69.M.Kamigaito, T.Ando,;M. Sawamoto, Chem. Rev., 101, 3689 (2001)
70.D. H. Solomon, E. Rizzardo and P. Cacioli, US Patent 4, 581, 429,1985.
71.M. K. Georges, R. P. N. Veregin, P. M. Kazmaier and G. K. Hamer, Macromolecules, 26, 2987 (1993).
72.R.Francis,D.Taton,J.Logan,P.Masse,Y.Gnanou,and R.S.Duran, Macromolecules,86,8253(2003).
73.T.P.Le,G.Moad,E.Rizzardo, and S.H.Thang,PCTInt.Appl.WO9801478 A1980115,1998.
74.J. Chiefari, Y. K. Chong, F. Ercole, J. Krstina, J. Jefery, T. P. T. Le, R. T. A. Mayadunne, G. F. Meijs, C. L. Moad, G. Moad, E. Rizzardo, S. H. Thong, Macromolecules, 31, 5559 (1998).
75.P.Takolpuckdee, C. A.Mars, S.Perrier, Org. Lett., 7, 3449(2005).
76.Y.Tsujii, M.Ejaz, K.Sato, A.Goto, and T.Fukuda, Macromolecules ,34, 8872(2001).
77.D.L.Patton, and R.C.Advincula, Macromolecules, 39, 8674 (2006).
78.R.Narain, and S.P.Armes, Macromolecules,36,4675(2003).
79.M. H.Stenzel, T. P.Davis, and A. G.Fane, J Mater Chem, 13, 2090(2003).
80.D.J. Keddie, G. Moad, E. Rizzado, and S.H. Thang, Macromolecules, 45, 5321(2012).
81.許繼強, 碩士論文, 台灣科技大學, 2000.
82.A. S. Kablnov, K. N. Makarov, A. V. Pertzov and E. D. Shchukin, J. Colloid Interface Sci., 138, 98 (1990).
83.A. S. Kabalnov, A. V. Pertzov and E. D. Shchukin, Colloids Surfaces, 124, 19 (1987).
84.P. Taylor, Colloids Surfaces A: Phys. Chem. Eng. Aspects, 99, 175 (1995).
85.A. S. Kabalnov and E. D. Shchukin, Adv. in Colloid Interface Sci, 138, 69 (1992).
86.W. L. Grimm, T. I. Min, M. S. El-Aasser and J. W. Vanderhoff, J. Colloid Interface Sci., 94, 531 (1983).
87.Y. T. Choi, “Formation and Stabilization of Miniemulsions andLatexes”, Ph. D. Dissertation, Lehigh University,1986.
88.W. L. Grimm, “The Use of Mixed-Emulsifier Systems in thePreparation and Stabilization of Emulsions and Latexes”, M. S. Thesis, Lehigh University,1986.
89.M. S. El-Aasser, C. D. Lack, Y. T. Choi, T. I. Min, J. W. Vanderhoff and F. M. Fowkes, Colloids Surfaces, 12, 79 (1984).
90.S.L. Rosen, “Fundamental Principles of PolymericMaterials,” 2nd Ed., Wiley, New York, 1993.
91.蔡明洲, 碩士論文, 台灣科技大學, 2006.(a). 曾國棟,碩士論文, 台灣科技大學, 2005.
92.H. Kim, Y. Miura, and C.W. Macosko, Chem. Mater., 22, 3441 (2010).
93.H. Kim and C.W. Macosko, Macromolecules, 41, 3317 (2008).
94.W. Huang, X. Ouyang, and L.J. Lee, ACS Nano, 6, 10178 (2012).
95.J.Z. Xu, C. Chen, Y. Wang, H. Tang, Z.M. Li, and B.S. Hsiao, Macromolecules, 44, 2808 (2011).
96.J.R. Potts, O. Shankar, L. Du, and R.S. Ruoff, Macromolecules, 45, 6045 (2012).
97.S. Wang, M. Tambraparni, J. Qiu, J. Tipton, and . Dean, Macromolecules, 42, 5251 (2009).
98.S. Ganguli, A.K. Roy, D.P. Anderson, Carbon, 46, 806 (2008).
99.M. Martin-Gallego, R. Verdejo, M.A. Lopez-Manchado, and M. Sangermanno, Polymer, 52, 4664 (2011).
100.S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, and R.S. Ruoff, Carbon, 45, 1558 (2007).
101.W.S. Hummers, and R.E. Offeman, J. Am. Chem. Soc., 80, 1339 (1958).
102.H.C. Schniepp, J.L. Li, M.J. McAllister, H. Sai, M. Herrere-Alonso, D.H. Adamson, R.K. Prud’homme, R. Car, R.A. Savile, and I.A. Aksay, J. Phys. Chem. B, 110, 8535 (2006).
103.Y. Yang, J. Wang, J. Zhang, J. Liu, X. Yang, and H,. Zhao, Langmuir, 25, 11808 (2009).
104.104. F. Beckert, C. Friedrich, R. Thomann, and R. Mulhaupt, Macromolecules, 45, 7083 (2012).
105.Senyek, M. L.; Kulig, J. J.; Parker D. K. The Goodyear Tire andRubber Co. US Patent 6,369,158, 2002.
106.V. Nelliappan, A. Klein, E.S. Daniels, and I.E. Roberts, J. Polym. Sci. Part A, Vol34, 3183-3190(1996).
107.黃俊翰, 碩士論文, 國立台灣科技大學, 2009
108.戴夢祥, 碩士論文, 國立台灣科技大學, 2010
109.許毓倫, 碩士論文, 國立台灣科技大學, 2011
110.許勝裕, 碩士論文, 國立台灣科技大學, 2012
111.X. Wang,Y. Luo, B. Li, and S. Zhu,Macromolecules,42,6414(2009).
112.W. Ming, F.N. Jones, and S. Fu, Macromol. Chem. Phys. 199, 1075(1998).
113.A. Hammond, P.M. Budd, and C. Price, Progr. Colloid Polym. Sci,113, 142(1993).
114.E.A. Collins, J. Bares, F.W. Billmeyer, “Experiments in Polymer Science”, J. Wiley&;Sons, N.Y.,1973, p.334.
115.阮峻維, 碩士論文, 國立台灣科技大學, 1999.
116.Couvreur, L.; Charleux, B.; Guerret, O.; Magnet, S. Macromol. Chem.Phys., 204, 2055(2003).
117.K. Landfester, C. Boeffel, M.Lamble, H.W. Spiess, Ecole d’Application des Hauts Polymers/CNRS, 29, 5972-5980(1996).
118.D.W.V. Krevlen, ”Properties of polymers: their correlation with chemical structure, their numerical estimation and prediction from additive group contributions”, 3rd Ed., Elserier, Amsterdam,1990.
119.J.Guo,X.Liu,Y.Cheng,Y.Li,G.Xu, and P.Cui,J.Colloid andInterface Science,326,138(2008).
120.P. Bartlett and R. H. Ottewill, A neutron scattering study of thestructure of a bimodal colloidal crystal,J. Chem. Phys.,96,3306(1992).
121.D. Liu, H.J. Sue, Z. J. Thompson, F.S. Bates, M.A. Hillmyer, Dettloff, G. Jacob, N. Verghese, and H. Pham, Polym. Mater. Sci. Eng. ,103, 504 (2010)
122.A. Lazzeri, and C.B.Bucknall, J Mater. Sci., 28,6799 (1993)
123.Tassia Yuliana, 碩士論文, 國立台灣科技大學, 2013.
124.饒瑞博, 碩士論文, 國立台灣科技大學, 2013.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 以X光散射分析苯乙烯/不飽和聚酯/蒙特納石黏土三成份系之結構特性及苯乙烯/不飽和聚酯/特用添加劑三成份系之機械性質研究
2. 不同顆粒大小及外殼化學組成之奈米級壓克力核殼型橡膠增韌劑合成及苯乙烯/不飽和聚酯/特用添加劑三成份系之相溶性研究
3. 奈米級壓克力核殼型橡膠增韌劑之合成及苯乙烯/不飽和聚酯/特用添加劑三成份系之相溶性研究
4. 奈米級及次微米級核殼型橡膠添加劑、矽烷接枝二氧化矽顆粒、官能基化之氧化石墨烯、官能基化之脫層石墨烯奈米層板、高分子接枝之氧化石墨烯及高分子接枝之脫層石墨烯奈米層板對乙烯基酯樹脂之聚合固化反應動力、玻璃轉移溫度及X光散射特性之影響研究
5. 官能基化之氧化石墨烯及脫層石墨烯奈米層板之合成及探討奈米級及次微米級核殼型橡膠添加劑、無機二氧化矽/有機高分子核殼型顆粒、官能基化之氧化石墨烯及官能基化之脫層石墨烯奈米層板對不飽和聚酯及乙烯基酯樹脂之體積收縮、機械性質及微觀型態結構之影響
6. 以傳統乳化聚合法及RAFT活自由基乳化聚合法合成用於不飽和聚酯及乙烯基酯樹脂之奈米級及次微米級高分子核殼型橡膠及反應型微膠顆粒之抗收縮劑及增韌劑
7. 奈米級及次微米級核殼型橡膠添加劑、矽烷接枝之蒙特納石黏土及官能基化之脫層石墨烯奈米層板對不飽和聚酯及乙烯基酯樹脂之聚合固化反應動力、玻璃轉移溫度及X光散射特性之影響研究
8. 奈米級核殼型橡膠添加劑、無機二氧化矽/有機高分子核殼型顆粒、及蒙特納石黏土對不飽和聚酯、乙烯基酯、及環氧樹脂之聚合固化反應動力、玻璃轉移溫度、体積收縮、機械性質及微觀型態結構之影響研究
9. 以RAFT活自由基乳化聚合法合成用於不飽和聚酯、乙烯基酯及環氧樹脂之奈米級及次微米級之高分子核殼型添加劑
10. 奈米級及次微米級核殼型橡膠添加劑、無機矽膠/有機高分子核殼型顆粒、及蒙特納石黏土對不飽和聚酯、乙烯基酯、及環氧樹脂之微觀型態結構、体積收縮、內部可染色性及機械性質之影響研究
11. 以傳統乳化聚合法及RAFT活自由基乳化聚合法合成用於不飽和聚酯、乙烯基酯及環氧樹脂之奈米級及次微米級壓克力核殼型橡膠添加劑
12. 抗收縮劑、核殼型橡膠增韌劑與蒙特納石黏土對苯乙烯/不飽和聚酯/特用添加劑三成份系其聚合固化後成品之微孔洞生成、微觀型態結構、物性及機械性質之影響
13. 抗收縮劑、核殼型橡膠增韌劑與蒙特納石黏土對苯乙烯/不飽和聚酯/特用添加劑三成份系之聚合固化反應動力及玻璃轉移溫度之影響
14. 反應性及非反應性聚酯型抗收縮劑對苯乙烯/不飽和聚酯/抗收縮劑三成分系統之反應動力及玻璃轉移溫度之影響研究
15. 苯乙烯/不飽和聚酯/抗收縮劑三成份系之體積收縮特性及內部染色性之研究:甲基丙烯酸甲酯團聯共聚物型及醋酸乙烯團聯共聚物型抗收縮劑之效應
 
無相關期刊
 
1. 由元素矽水解法合成無機二氧化矽奈米顆粒及以RAFT活自由基聚合法合成用於不飽和聚酯、乙烯基酯及環氧樹脂具核殼型結構之高分子接枝二氧化矽奈米顆粒及高分子接枝蒙特那石黏土之抗收縮劑及增韌劑
2. 以傳統乳化聚合法及RAFT活自由基乳化聚合法合成用於不飽和聚酯、乙烯基酯及環氧樹脂之奈米級及次微米級高分子核殼型橡膠添加劑
3. 石墨烯奈米層板之合成及探討無機二氧化矽/有機高分子核殼型顆粒、矽烷接枝之蒙特納石黏土、及石墨烯奈米層板對不飽和聚酯、乙烯基酯、及環氧樹脂之體積收縮、機械性質及微觀型態結構之影響
4. 奈米級及次微米級核殼型橡膠添加劑、矽烷接枝之蒙特納石黏土及官能基化之脫層石墨烯奈米層板對不飽和聚酯及乙烯基酯樹脂之聚合固化反應動力、玻璃轉移溫度及X光散射特性之影響研究
5. 以RAFT活自由基乳化聚合法合成用於不飽和聚酯、乙烯基酯及環氧樹脂之奈米級高分子核殼型添加劑
6. 以傳統乳化聚合法及RAFT活自由基乳化聚合法合成用於不飽和聚酯及乙烯基酯樹脂之奈米級及次微米級高分子核殼型橡膠及反應型微膠顆粒之抗收縮劑及增韌劑
7. 以傳統乳化聚合法及RAFT活自由基乳化聚合法合成用於不飽和聚酯及乙烯基酯樹脂之奈米級及次微米級高分子核殼型橡膠及反應型微膠顆粒之抗收縮劑及增韌劑
8. 以傳統乳化聚合法合成用於不飽和聚酯及乙烯基酯樹脂之奈米級及次微米級高分子核殼型橡膠及反應型微膠顆粒之抗收縮劑及增韌劑
9. 奈米級及次微米級核殼型橡膠、無機/有機混成核殼型顆粒、及蒙特納石黏土對不飽和聚酯、乙烯基酯、及環氧樹脂之聚合固化反應動力、玻璃轉移溫度、体積收縮、機械性質及微觀型態結構之影響
10. 水性壓克力感壓膠乳化聚合性質探討
11. 丙烯醯胺的乳化聚合
12. 跳脫設計產業的困境-打造設計代工與自有品牌的雙刀流
13. 性感產品之設計創作
14. 聚矽氮烷與其聚合物轉變-矽基陶瓷對氮化鋁表面處理於矽橡膠複合材料之應用
15. 不同靶材濺鍍與硒化製備硒化銅銦鎵薄膜及其特性分析