跳到主要內容

臺灣博碩士論文加值系統

(44.200.82.149) 您好!臺灣時間:2023/06/02 17:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李玟熹
研究生(外文):Wen-Hsi Lee
論文名稱:整合認知鷹架與角色扮演策略之高中數學教學遊戲之發展與心流、後設認知及學習成效評估
論文名稱(外文):Development and Evaluation of an Educational Game Integrating Cognitive Scaffolding and Role-Playing Strategy for High School Mathematics Instruction: An Analysis of Flow, Metacognition and Learning Performance
指導教授:陳素芬陳素芬引用關係侯惠澤侯惠澤引用關係
口試委員:陳素芬侯惠澤
口試日期:2014-06-11
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:數位學習與教育研究所
學門:教育學門
學類:教育科技學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:90
中文關鍵詞:數位遊戲式學習角色扮演鷹架心流後設認知
外文關鍵詞:Digital game-based learningrole-playingscaffoldingflowmetacognition
相關次數:
  • 被引用被引用:5
  • 點閱點閱:465
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:3
運用數位遊戲進行教學的研究日益受到重視,結合遊戲元素與故事情境的教育遊戲能創造愉快和擬真的學習環境,可望輔助學習者將知識和技能連結來解決情境中設計之問題,進一步提升學習成效。本研究發展結合認知鷹架與角色扮演策略的數學教學遊戲「鳳凰之心」。此遊戲中玩家扮演真實的消防員角色,透過本研究設計之認知鷹架引導下,使用數學機率知識來解決問題、完成任務,用以促進學習者對於數學學習的學習動機、增加學習成效。本研究實徵評估學習者在遊戲中的心流與後設認知狀態,以及此兩維度間彼此的關聯,並透過準實驗設計來檢驗其學習成效。並且探討不同性別與不同學習成就的學習者在心流、後設認知上的差異。本研究之參與者為臺灣北部某公立高中二年級學生共147名。研究發現,學習者對於本遊戲具備中位數以上程度之心流與後設認知狀態,表示有一定程度的心流投入與後設認知狀態,且透過認知鷹架引導之學習者較無鷹架引導的組別有較佳的學習成效。另外,本研究也初步分析心流狀態、後設認知狀態與學習成效各維度間存在影響彼此的路徑模型。
Many studies have focused on the application of digital games for teaching. The educational game combining game elements and story scenarios can create a pleasant and realistic learning environment and is expected to assist learners’ knowledge and skills to solve problems in the scenarios to further enhance their learning. The current research developed an educational mathematics game “Heart of the Phoenix” that combined cognitive scaffolding and role playing strategy. In this game, learners play the role of firemen. Through the guidance of cognitive scaffolding, they use the concepts of mathematical probability to solve problems and complete tasks, which is anticipated promote their learning motivation and learning outcomes in mathematics. This empirical study assessed the learner's flow state in the game and their metacognition, and the correlation between these two dimensions. A quasi-experimental study was conducted to examine learners’ learning effectiveness. In addition, this study explored the differences in flow and metacognition of learners with different genders and different learning achievements. Participants in this study included 147 11th grade students in a public high school in northern Taiwan. The findings showed that they had a certain degree of flow and metacognition. Compared with students in non-scaffolding guidance groups, students provided with cognitive scaffolding guidance had better learning effectiveness. Additionally, the study conducted a preliminary analysis of the path models among the dimensions of students’ learning outcomes, metacognition, and flow state.
摘要 I
Abstract II
誌謝 III
目錄 IV
圖次 VII
表次 VIII
第壹章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的 6
第三節 研究問題 7
第貳章 文獻探討 8
第一節 電腦輔助數學學習 8
一、 CAL在數學教學上的發展 8
二、 小結 9
第二節 數位遊戲式學習 9
一、 數位遊戲式學習的定義 9
二、 數位遊戲學習在數學教學上的運用 11
三、 小結 13
第三節 角色扮演教學策略 13
一、 角色扮演的定義 13
二、 角色扮演在教學上的運用 14
三、 小結 15
第四節 鷹架理論 15
一、 鷹架理論定義 15
二、 鷹架運用於數學教學 16
三、 小結 18
第五節 心流狀態 18
一、 心流的定義 18
二、 遊戲式學習心流研究 20
三、 小結 21
第六節 後設認知 21
一、 後設認知的定義 21
二、 與數學學習相關的後設認知議題 22
三、 小結 23
第七節 小結 23
第參章 研究方法 25
第一節 研究設計 25
第二節 研究對象 26
第三節 研究工具 26
一、 數位遊戲軟體 26
壹、 設計理念 27
貳、 系統操作介面 33
參、 遊戲故事簡介與任務流程 35
二、 數學學習成效評量 41
三、 心流評量問卷 41
四、 後設認知問卷 43
第四節 研究流程 44
第五節 資料收集與分析 45
第肆章 研究結果 47
第一節 學習者對於「鳳凰之心」的學習成效、心流與後設認知的狀態 47
一、 學習成效 47
二、 心流狀態 49
三、 後設認知狀態 52
第二節 不同遊戲策略的學習者,遊戲完成度上的差異 54
一、 不同遊戲策略的學習者在遊戲完成度的情形 54
第三節 不同性別的學習者,在學習成效、心流狀態與後設認知上的差 異 55
一、 實驗組一在不同性別的學習者,在學習成效、心流狀態與後設 認知上的差異 55
二、 實驗組二在不同性別的學習者,在學習成效、心流狀態與後設 認知上的差異 57
三、 控制組在不同性別的學習者,在學習成效上的差異 58
第四節 不同學習成就的學習者,在心流狀態與後設認知上的差異 58
一、 實驗組一在不同學習成就的學習者,在心流狀態與後設認知上 的差異 59
二、 實驗組二在不同學習成就的學習者,在心流狀態與後設認知上 的差異 59
第五節 學習者在本遊戲中的學習成效、心流狀態與後設認知要素間的 關聯與路徑分析 60
一、 相關分析 61
壹、 實驗組一學習者的學習成效、心流狀態與後設認知要素間的 關聯 61
貳、 實驗組二學習者的學習成效、心流狀態與後設認知要素間的 關聯 61
二、 路徑分析 62
壹、 實驗組一學習者的學習成效、心流狀態與後設認知要素間的 路徑分析 62
貳、 實驗組二學習者的學習成效、心流狀態與後設認知要素間的 路徑分析 64
第伍章 討論 67
第一節 學習者對於「鳳凰之心」的學習成效、心流與後設認知的狀態 67
第二節 不同遊戲策略的學習者,遊戲完成度上的差異 68
第三節 不同性別的學習者,在學習成效、心流狀態與後設認知上的差 異 69
第四節 不同學習成就的學習者,在心流狀態與後設認知上的差異 69
第五節 學習者在本遊戲中的學習成效、心流狀態與後設認知要素間的 關聯與路徑分析 70
第陸章 結論與建議 72
第一節 結論 72
一、 透過鳳凰之心學習數學機率課程的學習成效 72
二、 透過鳳凰之心進行學習的心流狀態 72
三、 透過鳳凰之心進行學習的後設認知狀態 73
四、 鳳凰之心進行學習後,對於學習成效、心流狀態與後設認知狀 態的關聯 74
第二節 建議 74
一、 系統發展 74
壹、 遊戲情境設計 74
貳、 遊戲挑戰設計 75
參、 遊戲策略機制 75
二、 教學實務 76
壹、 教學對象 76
貳、 教學時機 76
三、 未來研究建議 77
壹、 後設認知歷程的分析 77
貳、 行為模式的分析 77
參考文獻 78
附錄一:數學學習成效評量 90
教育部高中數學學科中心(2011)。99課綱。2013年12月14日,取自http://mathcenter.ck.tp.edu.tw/MCenter/Center/CourseOutline.aspx

尚俊傑、莊紹勇、李芳樂、李浩文(2006)。教育遊戲之研究與應用@CAITE。香港國際資訊科技教育會議論文集,303-313。

Adcock, A. (2008). Making digital game-based learning working: An instructional designer’s perspective. Library Media Connection, 26(5), 56-57.

Admiraal, W., Huizenga, J., Akkerman, S., &; Dam, G. T. (2011). The concept of flow in collaborative game-based learning. Computers in Human Behavior,27(3), 1185-1194.

Ahmad, B. W., Fatimah, W., Bt Shafie, A., Latif, B. A., &; Amir, M. H. (2010). Role-playing game-based learning in mathematics. Electronic Journal of Mathematics &; Technology, 4(2).

Akbaria, R., Khayerb, M., &; Abedi, J. (2014). Studying effect of educating state metacognition on learning mathematics. Reef Resources Assessment and Management Technical Paper, 40 (2), 220-229.

Akhtar, M. (2014). Patterns of scaffolds in one-to-one mathematics teaching: An analysis. Educational Research International, 3(1), 71-79.

Amiripour, P., Amir-Mofidi, S., &; Shahvarani, A. (2012). Scaffolding as effective method for mathematical learning. Indian Journal of Science &; Technology, 5(9).

Anderson, D., &; Nashon, S. (2007). Predators of knowledge construction: Interpreting students' metacognition in an amusement park physics program. Science Education, 91(2), 298-320.

Alikamar, M. A., Alamolhodaei, H., &; Radmehr, F. (2014). The role of metacognition on effect of working memory capacity on students' mathematical problem solving. European Journal of Child development, Education and Psychopathology, 1(3).

Artino, A. R. (2008). Motivational beliefs and perceptions of instructional quality: predicting satisfaction with online training. Journal of Computer Assisted Learning, 24(3), 260-270.

Askell-Williams, H., Lawson, M. J., &; Skrzypiec, G. (2012). Scaffolding cognitive and metacognitive strategy instruction in regular class lessons. Instructional Science, 40(2), 413-443.

August-Brady, M. M. (2005). The effect of a metacognitive intervention on approach to and self-regulation of learning in baccalaureate nursing students. The Journal of nursing education, 44(7), 297-304.

Baddeley, A. D. (1986). Working memory. Oxford, UK: Clarendon Press.

Barzilai, S., &; Blau, I. (2014). Scaffolding game-based learning: Impact on learning achievements, perceived learning, and game experiences. Computers &; Education, 70, 65-79.

Bell, B. S., &; Kozlowski, S. W. (2008). Active learning: effects of core training design elements on self-regulatory processes, learning, and adaptability. Journal of Applied Psychology, 93(2), 296.

Biddle, B. J. (1979). Role Theory: Expection, identities, and behaviors. N. Y.: Academic Press, Inc.

Blatner, H. A.(1973). Acting-In: Practical applications of psychodramatic methods. New York: Springer.

Brown, A. L. (1987). Metacognition, executive control, self-regulation, and other more mysterious mechanisms. In F. E. Weinert &; R. H. Kluwe (Eds.), Metacognition, motivation, and understanding (pp. 65-116). Hillsdale, New Jersey: Lawrence Erlbaum Associates..

Brown, J. S., Collins, A., &; Duguid, P. (1989). Situated cognation and the culture of learning. Education researcher, 18(1), 32-42.

Chang, K. E., Wu, L. J., Weng, S. E., &; Sung, Y. T. (2012). Embedding game-based problem-solving phase into problem-posing system for mathematics learning. Computers &; Education, 58(2), 775-786.

Chen, M. P., Wong, Y. T., &; Wang, L. C. (2013). Effects of type of exploratory strategy and prior knowledge on middle school students’ learning of chemical formulas from a 3D role-playing game. Educational Technology Research and Development, 1-23.

Connolly, T. M., Stansfield, M., &; Hainey, T. (2007). An application of games-based learning within software engineering. British Journal of Educational Technology, 38(3), 416-428

Csikszentmihalyi, M. (1975). Beyond boredom and anxiety: The experience of play in work and games. San Francisco: Jossey-Bass.

Csikszentmihalyi, M. (1991). Flow: The psychology of optimal experience. New York: Harper Perennial.

Csikszentmihalyi, M., &; Csikszentmihalyi, I. (1988). Introduction to part Ⅳ. In M. Csikszentmihalyi &; I. S. Csikszentmihalyi (Eds.), Optimal experience: Psychological study of flow in conscious (pp. 251-265). New York: Cambridge University Press.

Daneman, M., &; Carpenter, P. A. (1980). Individual differences in working memory and reading. Journal of verbal learning and verbal behavior, 19(4), 450-466.

Demirbas, O. O., &; Demirkan, H. (2007). Learning styles of design students and the relationships of academic performance and gender in design education. Learning and Instruction, 17, 345-359.

Dempsey, J.V., Rasmussen, K., &; Lucassen, B. (1996). Instructional gaming: Implications for instructional technology. Proceedings of the Annual Meeting of the Association for Educational Communications and Technology, Nashville, TN.

de Kock, W. D., &; Harskamp, E. G. (2014). Can teachers in primary education implement a metacognitive computer programme for word problem solving in their mathematics classes?. Educational Research and Evaluation, (ahead-of-print), 1-20.

Dempsey, J. V., Lucassen, B., &; Rasmussen, K. (1996). The instructional gaming literature: Implications and 99 sources. University of South Carolina, College of Education.

Dhevakrishnan, R., Devi, S., &; Chinnaiyan, K. (2012). Effectiveness of computer assisted instructions(CAI) in teaching of mathematics at secondary level. International Journal of Advancements in Research and Technology, 1(4), 14-16.

Dickey, M. D. (2007). Game design and learning: a conjectural analysis of how massively multiple online role-playing games (MMORPGs) foster intrinsic motivation. Education Tech Research, 55.

Divjak, B., &; Tomić, D. (2011). The impact of game-based learning on the achievement of learning goals and motivation for learning mathematics-literature review. Journal of Information and Organizational Sciences, 35(1), 15-30.

Du Toit, S., &; Kotze, G. (2009). Metacognitive strategies in the teaching and learning of mathematics. Pythagoras, (70), 57-67.

Ebner, M., &; Holzinger, A. (2007). Successful implementation of user-centered game based learning in higher education: An example from civil engineering. Computers &; education, 49(3), 873-890.

Evansian, Ema (1998). Role of meta-cognition strategies on understanding the matter and speed in learning among the girls students of day time of guidance school in Tehran. Thesis for master degree in psychology. psychology faculty, Allameh Tabatebaee university.

Faiola, A., Newlon, C., Pfaff, M., &; Smyslova, O. (2013). Correlating the effects of flow and telepresence in virtual worlds: Enhancing our understanding of user behavior in game-based learning. Computers in Human Behavior, 29(3), 1113-1121.

Folad Chang, M. (1996) Role of meta-cognition process in problem solving performance. Thesis for master degree in psychology. Shiraz University.

Frary, R. B , &; Ling, J. L. (1983). A factor-analytic study of mathematics anxiety. Educational and Psychological Measurement, 43, 985-993.

Freudenthal, H. (1971). Geometry between the devil and the deep sea. Educational studies in mathematics, 3(3), 413-435.

Ge, X., &; Land, S. M. (2003). Scaffolding students’ problem-solving processes in an ill-structured task using question prompts and peer interactions. Educational Technology Research and Development, 51(1), 21-38.

Gee, J. P. (2003). What video games have to teach us about learning and literacy. New York: Palgrave Macmillan.

Gee, J. P. (2009). Deep learning properties of good digital games: how far can they go? In U. Ritterfeld, M. Cody, &; P. Vorderer (Eds.), Serious games: Mechanisms and effects (pp.65–80) New York &; London: Routledge.

Georghiades, P. (2004). Making pupils’ conception of electricity more durable by means of situated metacognition. International Journal of Science Education, 26(1), 85-99.

Ghani, J. A., &; Deshpande, S. P. (1994). Task characteristics and the experience of optimal flow in human-computer interaction. The Journal of psychology, 128(4), 381-391.

Graham, S., &; Harris, K. R. (2000). The role of self-regulation and transcription skills in writing and writing development. Educational Psychologist, 35(1), 3-12.

Gros, B. (2007). Digital games in education: The design of games-based learning environments. Journal of Research on Technology in Education, 40(1), 23-38.

Hill, J. R., &; Hannafin, M. J. (2001). Teaching and learning in digital environments: The resurgence of resource-based learning. Educational Technology Research and Development, 49(3), 37-52.

Hoffman, B., &; Spatariu, A. (2008). The influence of self-efficacy and metacognitive prompting on math problem-solving efficiency. Contemporary educational psychology, 33(4), 875-893.

Hogle, J. G. (1996). Considering games as cognitive tools: In search of effective “Edutainment”. Retrieved January 12, 2005, from ERIC, ED 425737.

Hou, H. T. (2012). Exploring the behavioral patterns of learners in an educational massively multiple online role-playing game (MMORPG). Computers &; Education, 58(4), 1225-1233.

Hou, H. T., &; Chou, Y. S. (2012). Exploring the technology acceptance and flow state of a chamber escape game-Escape The Labc for learning electromagnet concept. Poster presented at the 20th International Conference on Computers in Education (ICCE2012), Singapore, November 26-30, 2012.

Hsieh, Y. H., Lin, Y. C., &; Hou, H. T. (2013). Exploring the role of flow experience, learning performance and potential behavior clusters in elementary students' game-based learning. Interactive Learning Environments, (ahead-of-print), 1-16.

Huang, S. H., Wu, T. T., &; Huang, Y. M. (2013, August). Learning diagnosis instruction system based on game-based learning for mathematical course. In Advanced Applied Informatics (IIAIAAI), 2013 IIAI International Conference on (pp. 161-165). IEEE.

Huang, T. H., Liu, Y. C., &; Chang, H. C. (2012). Learning achievement in solving word-based mathematical questions through a computer-assisted learning system. Educational Technology &; Society, 15(1), 248-259.

Hutton, U. M. &; Towse, J. N. (2001). Short-term memory and working memory as indices of children's cognitive skills. Memory, 9(4-6), 383-394.

Inal, Y. &; Cagiltay, K. (2007). Flow experiences of children in an interactive social game environment.British Journal of Educational Technology, 38(3), 454-464.

Jackson, A. T., Brummel, B. J., Pollet, C. L., &; Greer, D. D. (2013). An evaluation of interactive tabletops in elementary mathematics education.Educational Technology Research and Development, 1-22.

Ke, F. &; Grabowski, B. (2007). Gameplaying for maths learning: cooperative or not? British Journal of Educational Technology, 38, 2, 249–259.

Ke, F. (2008). A case study of computer gaming for math: Engaged learning from gameplay?. Computers &; Education, 51(4), 1609-1620.

Kebritchi, M., Hirumi, A. &; Bai, H. (2010). The effects of modern mathematics computer games on mathematics achievement and class motivation. Computers &; Education, 55, 427–443.

Kiili, K. (2005). Digital game-based learning: towards an experiential gaming model. Internet and Higher Education, 8, 13–24.

Kiili, K. (2006). Evaluations of experiential gaming model. Human Technology, 2(2), 187-201.

Kim, B., Park, H., &; Baek, Y. (2009). Not just fun, but serious strategies: Using meta-cognitive strategies in game-based learning. Computers &; Education,52(4), 800-810.

Kirby, N. F., &; Downs, C. T. (2007). Self-assessment and the disadvantages students:Potential for encouraging self-regulated learning. Assessment and Evaluation in Higher Education, 32, 475-494.

Klopfer, E., Osterweil, S., &; Salen, K. (2009). Moving learning games forward: Obstacles, Opportunities and Openness. The Education Arcade, Massachusetts Institute of Technology.

Koster, R. (2005). A theory of fun for game design. Scottsdale, AZ: Paraglyph Press.

Koriat, A., Ma'ayan, H., &; Nussinson, R. (2006). The intricate relationships between monitoring and control in metacognition: lessons for the cause-and-effect relation between subjective experience and behavior. Journal of Experimental Psychology: General, 135(1), 36.

Lave, J. &; Wenger, E. (1991). Situated learning:legitimate peripheral participation. NY:Cambridge University Press.

Lazakidou, G., &; Retalis, S. (2010). Using computer supported collaborative learning strategies for helping students acquire self-regulated problem-solving skills in mathematics. Computers &; Education, 54(1), 3-13.

Lee, G. H., Talib, A. Z., Zainon, W. M. N. W., &; Lim, C. K. (2014). Learning history using role-playing game(RPG) on mobile platform. In Advanced in Computer Science and its Applications (pp. 729-734). Springer Berlin Heidelberg.

Lee, H. W., Lim, K. Y., &; Grabowski, B. L. (2010). Improving self-regulation, learning strategy use, and achievement with metacognitive feedback. Educational Technology Research and Development, 58(6), 629-648.

Liu, E. Z. F., &; Lin, C. H. (2009). Developing evaluative indicators for educational computer games. British Journal of Educational Technology, 40(1), 174-178

Lopez-Morteo, G. &; Lo’pez, G. (2007). Computer support for learning mathematics: A learning environment based on recreational learning objects. Computers &; Education, 48(4), 618-641.

Ma, Y., Williams, D., Prejean, L., &; Richard, C. (2007). A research agenda for developing and implementing educational computer games. British Journal of Educational Technology, 38(3), 513-518.

Mayer, R. E. (1992). Thinking, problem solving, cognition. WH Freeman/Times Books/Henry Holt &; Co.

McCosker, N., &; Diezmann, C. M. (2009). Scaffolding students' thinking in mathematical investigations. Australian Primary Mathematics Classroom, 14(3), 27-32.

Milroy, E.(1982).Role-play: A psychotherapy: Theory and practice (2nd ed.)New York: The Free Press.

Molenaar, I., Roda, C., van Boxtel, C., &; Sleegers, P. (2012). Dynamic scaffolding of socially regulated learning in a computer-based learning environment. Computers &; Education, 59(2), 515-523.

Molenaar, I., van Boxtel, C. A., &; Sleegers, P. J. (2011). Metacognitive scaffolding in an innovative learning arrangement. Instructional Science, 39(6), 785-803.

Nourzadeh, R. (2014). The effect of instructing self-regulation strategies on improving the math skills in people suffering from MLD. Reef Resources Assessment and Management Technical Paper, 40, 432-442.

Oblinger, D. G. (2004). The next generation of educational engagement. Journal of interactive media in education, 8, 1-18.

Olkun, S., Altun, A. &; Smith, G. (2005).Computers and 2D geometric learning of Turkish fourth and fifth graders. British Journal of Educational Technology, 36(2), 317-326.

Panaoura, A. (2012). Improving problem solving ability in mathematics by using a mathematical model: A computerized approach. Computers in Human Behavior.

Papastergiou, M. (2009). Digital game-based learning in high school computer science education: Impact on educational effectiveness and student motivation. Computers &; Education, 52(1), 1-12.

Pantidos, P., Spathi, K., &; Vitoratos, E. (2001). The use of drama in science education: the case of “Blegdamsvej Faust”. Science &; Education, 10(1-2), 107-117.

Peladeau, N., Forget, J., &; Gagne, F. (2003). Effect of paced and unpaced practice on skill application and retention: How much is enough? American Educational Research Journal, 4(3), 769-801.

Perfect, T. J., &; Schwartz, B. L. (Eds.). (2002). Applied metacognition. Cambridge University Press.

Pilli, O., &; Aksu, M. (2012). The effects of computer-assisted instruction on the achievement, attitudes and retention of fourth grade mathematics students in North Cyprus. Computers &; Education.

Pivec, M. &; Dziabenko, O. (2004). Game-based learning in universities and lifelong learning: “UniGame: Social skills and knowledge training” game concept. Journal of Universal Computer Science, 10(1), 14-26.

Pivec, M. (2007). Editorial: Play and learn: potentials of game‐based learning. British Journal of Educational Technology, 38(3), 387-393.

Prensky, M. (2007). Digital game-based learning. New York: McGraw-Hill.

Richardson, F. C., & Suinn, R. M. (1972). The mathematics anxiety rating scale: psychometric data. Journal of Counseling Psychology, 19(6), 551-554.

Ritterfeld, U., &; Weber, R. (2006). Video games for entertainment and education. Playing Video Games. Motives, Responses, and Consequences. Mahwah, NJ: Lawrence Erlbaum Associates, 399-413.

Rogoff, B., &; Gardner, W. (1984). Adult guidance of cognitive development. In B. Rogoff, &; J. Lave (Eds.), Everyday cognition: Its development in social context (pp. 95–116). Cambridge, MA: Harvard University Press

Roschelle, J., Rafanan, K., Bhanot, R., Estrella, G., Penuel, B., Nussbaum, M., &; Claro, S. (2010). Scaffolding group explanation and feedback with handheld technology: impact on students’ mathematics learning. Educational Technology Research and Development, 58(4), 399-419.

Ross, J. A., Bruce, C. D., &; Sibbald, T. M. (2011). Sequencing computer-assisted learning of transformations of trigonometric functions. Teaching Mathematics and its Applications, 30(3), 120-137.

Shaftel, F. R., Jhon, B. P., & Galinsky, M. D.(1974). Models of group therapy and sensitivity training. New Jersey: Prentice-Hall.

Shaftel, F. R., &; Shaftel, G. (1967). Role-playing for social values: decision-making in the social studies. New Jersey: Prentice-Hall.

Shaftel, F. R., & Shaftel, G..(1982).Role Playing in the curriculum. Englewood Cliffs, N.J. Prentice-Hall.

Sherry, J. L. (2004). Flow and media enjoyment. Communication Theory, 14(4), 328-347.

Slavin, R. E., Lake, C., &; Groff, C. (2009). Effective programs in middle and high school mathematics: a best-evidence synthesis. Review of Educational Research, 79(2), 839–911.

Suchman, L. A. (1987). Plans and situated actions:The problem of human-machine communications. New York: Cambridge University Press.

Sun, C. T., Wang, D. Y., &; Chan, H. L. (2011). How digital scaffolds in games direct problem-solving behaviors. Computers &; Education, 57(3), 2118-2125.

Squire, K. (2003). Video games in education. Int. J. Intell. Games &; Simulation, 2(1), 49-62.

Trevino, L. K., &; Webster, J. (1992). Flow in computer-mediated communication electronic mail and voice mail evaluation and impacts. Communication research, 19(5), 539-573.

Tuan, H. L., Chin, C. C., &; Shieh, S. H. (2005). The development of a questionnaire to measure students' motivation towards science learning. International Journal of Science Education, 27(6), 639-654.

Van Eck, R., &; Dempsey, J. (2002). The effect of competition and contextualized advisement on the transfer of mathematics skills in a computer-based instructional simulation game. Educational Technology Research and Development, 50(3), 23–41.

Van Eck, R. (2006). Digital game-based learning. Educause Review, 2(K), 6-22.

Vergnaud ,G.(1983). Multiplicative structures. In R. Lesh &; M.Landau (Eds.) Acquisition of Mathematics Concepts and Processes (pp. 127-174). NY: Academic Press.

Vergnaud, G. (1988). Multiplicative structure. In J. Hievert &; M. Behr(Eds). Number concepts and operations in the middle grades. National Council of Teachers of Mathematics and Lawrence Erlbaum Associates.

Vygotsky, L. S.(1978). Mind in society: The development of higher mental processes, eds. &; trans. M. Cole, V. John-Steiner, S. Scribner, &; E. Souberman. Cambridge, MA: Harvard University Press.

Vygotsky, L. S. (2012). Thought and language. MIT press.

Wang, L. C., &; Chen, M. P. (2010). The effects of game strategy and preference‐matching on flow experience and programming performance in game‐based learning. Innovations in Education and Teaching International, 47(1), 39-52.

Webster, J., &; Martocchio, J. J. (1992). Microcomputer playfulness: Development of a measure with workplace implications. MIS Quarterly, 16(2), 201-226.

Webster, J., Trevino,K.L., & Ryan,L.(1993). The dimensionality and correlates of flow in human-computer interactions. Computers in Human,Behavior, 9(4),411-426.

Williams, L. (2008). Tiering and scaffolding. Teaching Children Mathematics, 325.

Yablonsky, L.(1981).Psychodrama: resolving emotional problems through role-playing. New York: Gardner Press.

Zengin, Y., Furkan, H., &; Kutluca, T. (2012). The effect of dynamic mathematics software geogebra on student achievement in teaching of trigonometry. Procedia-Social and Behavioral Sciences, 31, 183-187.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. 整合情境學習與認知鷹架之歷史科戰略遊戲式測驗環境之發展與評估:接受度、心流、學習成效與歷程之分析
2. 結合問題解決與情境故事的角色扮演歷史教學遊戲的發展與評估:玩家接受度、心流、學習成效以及地方感之分析
3. 結合3D模擬操弄與角色扮演策略之化學教學遊戲的發展與評估:科技接受度、心流、方向感之分析
4. 結合認知學習理論之化學教育桌遊:心流分析與材質評估
5. 結合角色扮演與問題解決策略之模擬化學實驗教學遊戲之發展與評估:心流、科技接受度與學習歷程分析
6. 結合擴增實境、錨定式情境與虛擬實驗室之化學實驗室教學遊戲的發展與評估: 成效、心流與行為之分析
7. 結合虛擬實境情境學習與多元鷹架之有機化學教學遊戲的發展與評估: 成效、心流與行為之分析
8. 運用認知鷹架與模擬操作之實驗室密室脫逃遊戲之設計與評估:以化學滴定實驗為例
9. 結合角色扮演策略與模擬情境的高中電磁鐵數位教學遊戲之發展與評估
10. 運用合作問題解決與鷹架教學策略之擴增實境科學史教育桌遊之設計與評估
11. 結合情境脈絡線索作為認知鷹架的擴增實境國中生物科桌上遊戲的學習成效與行為模式分析
12. 運用多重表徵與認知鷹架的國中數學科擴增實境桌上遊戲的學習成效與歷程分析
13. 整合角色扮演策略、網路語音通訊與社群軟體促進英文寫作與口語技巧
14. 整合提問與引導鷹架之網路模擬與社交環境對合作問題解決表現之影響
15. 無縫隙線上討論環境之建構與評估-序列行為分析與其對學習之影響