|
[1] F. Effenberger, D. Cleary, O. Haran, G. Kramer, R.D. Li, M. Oron, and T. Pfeiffer, “An Introduction to PON Technologies,” Topics in Optical Communications, IEEE Communs. Mag., S17-S25 (2007). [2] H. Feng, C.J. Chae, and A.V. Tran, “Cost-Effective and Power-Efficient Extended-Reach WDM/TDM PON Systems,” Proc. OSA/OFC/NFOEC, USA, Paper OThB3, 2011. [3] E. Trojer, S. Dahlfort, D. Hood, and H. Mickelsson, “Current and next-generation PONs: A technical overview of present and future PON technology,” Ericsson Review, 2 (2008). [4] J. Yu, Z. Jia, P.N. Ji, and T. Wang, “40-Gb/s Wavelength-Division-Multiplexing Passive Optical Network with Centralized Lightwave Source,” Proc. OFC/NFOEC, USA, Paper OTuH8, 2008. [5] P.P. Iannone, K.C. Reichmann, C.R. Doerr, L.L. Buhl, M.A. Cappuzzo, E.Y. Chen, L.T. Gomez, J.E. Johnson, A.M. Kanan, J.L. Lentz, and R. McDonough, “A 40Gb/s CWDM-TDM PON with a Cyclic CWDM Multiplexer/Demultiplexer,” Proc. ECOC, Austria, Paper 8.5.6, 2009. [6] N. Cvijetic, D. Qian, and J. Hu, “100 Gb/s Optical Access Based on Optical Orthogonal Frequency-Division Multiplexing,” Topics in 100 GIGABIT ETHERNET, IEEE Communs. Mag., 70-77 (2010). [7] K.Y. Cho, U.H. Hong,Y. Takushima, A. Agata, T. Sano, M. Suzuki, and Y.C. Chung, “103-Gb/s Long-Reach WDM PON Implemented by Using Directly Modulated RSOAs,” IEEE Photon. Technol. Lett., 24(3), 209-211 (2012). [8] N. Cvijetic, M.F. Huang, E. Ip, Y.K. Huang, D. Qian, and T. Wang, “1.2 Tb/s Symmetric WDM-OFDMA-PON over 90km Straight SSMF and 1:32 Passive Split with Digitally-Selective ONUs and Coherent Receiver OLT,” Proc. OSA/OFC/NFOEC, USA, Paper PDPD7, 2011. [9] N. Cvijetic, M.F. Huang, E. Ip, Y. Shao, Y.K. Huang, M. Cvijetic, and T. Wang, “1.92Tb/s coherent DWDM-OFDMA-PON with no high-speed ONU-side electronics over 100km SSMF and 1:64 passive split,” Opt. Expr., 19(24), 24540-24545 (2011). [10] M.J. O’Mahony, C. Politi, D. Klonidis, R. Nejabati, and D. Simeonidou, “Future Optical Networks,” J. Lightwave Technol., 24 (12), 4684-4696 (2006). [11] R. Ramaswami and K.N. Sivarajan, Optical Networks: A Practical Perspective, First Edition, Morgan Kaufmann Publishers, 1998. [12] H. Obara, H. Masuda, K. Suzuki, and K. Aida, “Multifiber wavelength-division multiplexed ring network architecture for Tera-bit/s throughput,” IEEE, 921-925 (1998). [13] B. Schrenk, F. Bonada, J.A. Lazaro, and J. Prat, “Remotely Pumped Long-Reach Hybrid PON With Wavelength Reuse in RSOA-Based ONUs, J. Lightwave Technol., 29(5), 635-641 (2011). [14] H. Obara, “Bidirectional WDM Transmission Technique Utilizing Two Identical Sets of Wavelengths for Both Directions Over a Single Fiber,” J. Lightwave Technol., 25(1), 297-304 (2007). [15] H.H. Lin, C.Y. Lee, S.C. Lin, S.L. Lee, and G. Keiser, “WDM-PON Systems Using Cross-Remodulation to Double Network Capacity with Reduced Rayleigh Scattering Effects,” Proc. OFC/NFOEC, USA, Paper OTuH6, 2008. [16] S.M. Lee, S.G. Mun, M.H. Kim, and C.H. Lee, “Demonstration of a Long-Reach DWDM-PON for Consolidation of Metro and Access Networks,” J. Lightwave Technol., 25(1), 271-276 (2007). [17] F. Cavaliere, F. Ponzini, M. Presi, and E. Ciaramella, “Migration towards High Speed Optical Access Enabled by WDM Techniques,” Invited Paper in Proc. of SPIE-OSA-IEEE Communications and Photonics, SPIE 7362(763224), 1-7 (2009). [18] J. Ko, S. Kim, J. Lee, S. Won, Y.S. Kim, and J. Jeong, “Estimation of Performance Degradation of Bidirectional WDM Transmission Systems Due to Rayleigh Backscattering and ASE Noises Using Numerical and Analytical Models,” J. Lightwave Technol. 21(4), 938-946 (2003). [19] N.C. Tran, H.D. Jung, C. Okonkwo, E. Tangdiongga, and T. Koonen, “Dynamically Delivering Radio Signals by the Active Routing Optical Access Network,” IEEE Photon. Technol. Lett., 24(3), 182-184 (2012). [20] N.C. Tran, T. Koonen, C. Okonkwo, and E. Tangdiongga, “Limited Flexibilty: a Cost-Effective Trade-off for Reconfigurable WDM-TDM Optical Access Networks,” ECOC Technical Digest OSA, Swiss, 2011. [21] U.H. Hong, K.Y. Cho, Y. Takushima, and Y.C. Chung, “Maximum Reach of Long-Reach RSOA-Based WDM-PON Employing Remote EDFA,” Proc. OSA/OFC/NFOEC, USA, Paper OMP1, 2011. [22] U.H. Hong, K.Y. Cho, Y. Takushima, and Y.C. Chung, “Effects of Rayleigh Backscattering in Long-Reach RSOA-Based WDM-PON,” Proc. OSA/OFC/NFOEC, USA, Paper OThG1, 2010. [23] S. Gao, H. Hu, and H. Anis, “Impact of Backreflections on Single-Fiber Bidirectional Transmission in WDM-PONs,” J. Opt. Commun, Netw., 3(10), 797-805 (2011). [24] E.T. Lopez, J.A. Lazaro, C. Arellano, V. Polo, and J. Prat, “Optimization of Rayleigh-Limited WDM-PONs With Reflective ONU by MUX Positioning and Optimal ONU Gain,” IEEE Photon. Technol. Lett. 22(2), 97-99 (2010). [25] E.T. Lopez, J.A. Lazaro, C. Arellano, V. Polo, and J. Prat, “ONU Optimal Gain and Position of the Distribution Element in Rayleigh-limited WDM and TDM PONs with reflective ONU,” Proc. ECOC, Austria, Paper P6, 2009. [26] C. Arellano, K.D. Langer, and J. Prat, “Reflections and Multiple Rayleigh Backscattering in WDM Single-Fiber Loopback Access Networks,” J. Lighwave Technol. 27(11), 12-18 (2009). [27] K.Y. Cho, Y. J. Lee, H.Y. Choi, A. Murakami, A. Agata, Y. Takushima, and Y. C. Chung, “Effecs of Reflection in RSOA-Based WDM-PON Utilizing Remodulation Technique,” J. Lightwave Technol. 27(10), 1286-1295 (2009). [28] W.Y. Hong, N.G. Qiang, G. Pan, and G. Kun, “Theoretical Analysis on Coherent Noise by Rayleigh Backscattering,” IEEE Computer Society 2009 International Forum on Information Technology and Applications, Chengdu, 209-212 (2009). [29] J.H. Moon, K.M. Choi, S.G. Mun, and C.H. Lee, “Effects of Back-Reflection in WDM-PONs Based on Seed Light Injection,” IEEE Photon. Technol. Lett., 19(24), 2045-2047 (2007). [30] K.Y. Cho, K. Tanaka, T. Sano, S.P. Jung, J.H. Chang, Y. Takushima, A. Agata, Y. Horiuchi, M. Suzuki, and Y.C. Chung, “Long-Reach Coherent WDM PON Employing Self-Polarization-Stabilization Technique,” J. Lightwave Technol., 29(4), 456-462 (2011). [31] M. Fujiwara, J. Kani, H. Suzuki, and K. Iwatsuki, “Impact of Backreflection on Upstream Transmission in WDM Single-Fiber Loopback Access Networks,” J. Lightwave Technol. 24(2), 740-746 (2006). [32] C.F. Marki, N. Alic, S. Esener, and S. Radic, “Modeling of Coherent and Incoherent Rayleigh Crosstalk in Conventional Optical Links,” IEEE Photon.Technol. Lett., 19(21), 1735-1737 (2007). [33] H. Song, B.W. Kim, and B. Mukherjee, “Long-Reach Optical Access Networks: A Survey of Research Challenges, Demonstrations, and Bandwidth Assignment Mechanisms,” IEEE Communs. Surveys & Tutorials, 12(1), 112-123, First Quarter (2010). [34] D.P. Shea and J.E. Mitchell, “Long-Reach Optical Access Technologies,” IEEE Network, 21(5), 5-11 (2007). [35] E.K. MacHale, G. Talli, P.D. Townsend, A. Borghesani, I. Lealman, D.G. Moodie, and D.W. Smith, “Signal-Induced Rayleigh Noise Reduction using Gain Saturation in an Integrated R-EAM-SOA,” Proc. OSA/OFC/NFOEC, USA, Paper OThA6, 2009. [36] S. Spolitis, V. Bobrovs, P. Gavars, and G. Ivanovs, “Comparison of Passive Chromatic Dispersion Compensation Techniques for Long Reach Dense WDM-PON System,”Kaunas: Technologija, 6(122), 65–70 (2012). [37] K.Y. Cho, Y. Takushima, and Y.C. Chung, “10-Gb/s Operation of RSOA for WDM-PON,” IEEE Photon. Technol. Lett., 20(18), 1533-1535 (2008). [38] J. George, “Designing Passive Optical Networks for Cost-Effective Triple Play Support,” Fiber Systems Engineering and Marketing, OFS. [39] C. Arellano, Investigation of Reflective Optical Network Units for Bidirectional Passive Optical Access Networks, PhD Thesis, Universitat Politecnica De Catalunya (UPC), 2007. [40] R.P. Davey, D.B. Grossman, M.R. Wiech, D.B. Payne, D. Nesset, A.E. Kelly, A. Rafel, S. Appathurai, and S.–H. Yang, “Long-Reach Passive Optical Networks,” J. Lightwave Technol., 27(3), 273-291 (2009). [41] D. Gutierrez, K.S. Kim, S. Rotolo, F.-T. An, and L.G. Kazovsky, “FTTH Standards, Deployments and Research Issues,” Proc. JCIS 2005, USA, 1358–61, 2005. [42] C.H. Lee, “WDM-PON Overview,” LG Nortel and KAIST, 2009. [43] R. Lin, “Next Generation PON in Emerging Networks,” Proc. OFC/NFOEC, USA, Paper OWH1, 2008. [44] J. Prat, P. Chanclou, R. Davey, J.M. Finochietto, G. Franzl, A.M.J. Koonen, and S.D. Walker “Long-term Evolution of Passive Optical Networks,” [Invited Paper], Proc. AccessNets, Greece, 2006. [45] S.S. Wagner and H.L. Lemberg, “Technology and system issues for a WDM-based fiber loop architecture,” J. Lightwave Technol., 7(11), 1759-1768 (1989). [46] A. Borghesani, “Reflective Based Active Semiconductor Components for Next Generation Optical Access Networks,” Proc. ECOC, Italy, Paper Mo.1.B.1., 2010. [47] N. Cheng and F. Effenberger, “WDM PON: Systems and Technologies,” ECOC Workshop, Italy, 2010. [48] W. Lee, M.Y. Park, S.H. Cho, J. Lee, C. Kim, G. Jeong, and B.W. Kim, “Bidirectional WDM-PON Based on Gain-Saturated Reflective Semiconductor Optical Amplifiers,” IEEE Photon. Technol. Lett., 17(11), 2460-2462 (2005). [49] W. Jianli, “FTTH in China,” China Commun. Mag. (2005). [50] M. Kunigonis, “FTTH Deployments in China and Asia: Market Drivers, Politics and Technology Choices,” China Tel Summit, 2005. [51] C. Lin, Ed., Broadband Optical Access Networks and Fiber to-the-Home, System Technologies and Deployment Strategies, John Wiley & Sons, Ltd., 2006. [52] D. Forbes, “Future Optical Communications Systems,” An OIDA Forum Report, 2008. [53] L. Hutcheson, Ovum, “FTTx: Current Status and the Future,” Industry Analyst Forum, IEEE Commun. Mag. (2008). [54] M. Maier, “WDM Passive Optical Networks and Beyond: the Road Ahead [Invited],” J. Opt. Commun. Netw., 1(4), C1-C16 (2009). [55] S.A. Jabar, “Alternative Architectures for Bidirectional Single Mode Fiber SuperPON 512 ONU, 100 Km,” Proc. of SPIE, 6022 (2005). [56] M.O. Van Deventer, J.D. Angelopoulos, H. Binsma, A.J. Boot, P. Crahay, E. Jaunart, P.J. M. Peters, A.J. Phillips, X.Z. Qiu, J.M. Senior, M. Valvo, J. Vandewege, P.J. Vetter, and I. Van de Voorde, “Architecture for 100 km 2048 split bidirectional SuperPONs from ACTS-PLANET,” Proc. SPIE, 2919, 245–251 (1996). [57] F. Saliou, P. Chanclou, F. Laurent, N. Genay, J.A. Lazaro, F. Bonada, and J. Prat, “Reach Extension Strategies for Passive Optical Networks [Invited],” J. Opt. Commun. Netw., 1(4), C51-C60 (2009). [58] F.-T. An, D. Gutierrez, K.S. Kim, J.W. Lee, and L.G. Kazovsky, “Success-HPON: Next-Generation Optical Access Architecture for Smooth Migration from TDM-PON to WDM-PON,” IEEE Opt. Commun. Mag., S40-S47 (2005). [59] D. Gutierrez, K.S. Kim, F.-T. An, and L.G. Kazovsky., “SUCCESS-HPON: Migrating from TDM-PON to WDM-PON,” Proc. ECOC, France, 2006. [60] A.O. Barut, The Theory of the Scattering Matrix, The Macmillan Company, 1967. [61] J. Saekeang and P.L. Chu, “Backscattering of light from optical fibers with arbitrary refractive index distributions: uniform approximation approach,” J. Opt. Soc. Am, 68(10), 1298-1305 (1978). [62] M.N. Zervas and R.I. Laming, “Rayleigh Scattering Effect on the Gain Efficiency and Noise of the Erbium Doped-Fiber Amplifiers,” IEEE J. Quantum Electronics, 31(3), (1995). [63] A. Kung, J. Budin, L. Thevenaz, and Ph.A. Robert, “Rayleigh Fiber Optics Gyroscope, IEEE Photon. Technol. Lett., 9(7), 973-975 (1997). [64] M. W. Wedd, “Determination of Particle Size Distributions Using Laser Diffraction,” Educ. Reso. for Part. Techn. 032Q-Wedd, 1-4 (2003). [65] B. Camak, Modeling On Rayleigh Scattering In Optical Waveguides, Master Thesis, The Middle East Technical University (METU), 2003. [66] M. Liebl, “Blue Skies, Coffee Creamer, and Rayleigh Scattering,” The Physics Teacher, 48, 300-301 (2010). [67] C. Ganter and W. Schirmacher, “Euclidean random matrix theory: low-frequency non-analycities and Rayleigh scattering,” Philosophical Magazine, 91(13-15), 1-27 (2011). [68] L.A. Coldren, S.W. Corzine, and M.L. Masanovic, Diode Lasers and Photonic Integrated Circuits, 2nd Ed, John Wiley & Sons, Inc., 2012. [69] A. Takamizawa and K. Shimoda, “Rayleigh scattering under light-atom coherent interaction,” J. Atomic Physics, 1-5 (2012), Cornell University Library Archives. [70] D.N. Uhlmann and N.J. Kreidl, Optical Properties of Glass, American Ceramic Society, Inc., 1991. [71] M. Lancry, E. Regnier, and B. Poumellec, “Fictive temperature measurements in silica-based optical fibers and its application to Rayleigh loss reduction,” in Optical Fiber New Developments, edited by C. Lethien, INTECH, December 2009. [72] K. Tsujikawa, K. Tajima, and J. Zhou, “Intrinsic loss of optical fibers,” [Invited paper], Optical Fiber Technology 11(4), 319–331 (2005). [73] J.A. Buck, Fundamentals of Optical Fibers, John Wiley & Sons, 1995. [74] J.L. Gimlett, M.Z. Iqbal, L. Curtis, N.K. Cheung, A. Righetti, F. Fontana, and G. Grasso, “Impact of Multiple Reflection Noise In Gbit/s Lightwave Systems with Optical Fibre Amplifiers,” Electronics Lett., 25(20), 1393-1394 (1989). [75] J.L. Gimlett and N.K. Cheung, “Effects of Phase-to-Intensity Noise Conversion by Multiple Reflections on Gigabit-per-Second DFB Laser Transmission Systems,” J. Lightwave Technol., 7(6), 888-895 (1989). [76] E. Brinkmeyer, “Analysis of the backscattering method for single-mode optical fibers,” JOSA Lett., 70(8), 1010-1012 (1980). [77] M. Nakazawa, “Rayleigh backscattering theory for single-mode optical fibers,” JOSA Lett., 73(9), 1175-1180 (1983). [78] A.H. Hartog and M.P. Gold, “On the Theory of Backscattering in Single-Mode Optical Fi9ers,” J. Lightwave Technol., LT-2(2), 76-82 (1984). [79] P. Gysel and R.K. Staubli, “Statistical Properties of Rayleigh Backscattering in Single-Mode Fibers,” J. Lightwave Technol., 8(4), 561-567 (1990). [80] R.K. Staubli, P. Gysel, and R.U. Hofstetter, “Power Penalties Due to Multiple Rayleigh Backscattering in Coherent Transmission Systems Using In-Line Optical Amplifiers,” IEEE Photon. Technol. Lett., 2(12), 872-874 (1990). [81] P. Gysel and R.K. Staubli, “Spectral Properties of Rayleigh Backscattered Light from Single-Mode Fibers Caused by a Modulated Probe Signal,” J. Lightwave Technol., 8(12), 1792-1798 (1990). [82] R.K. Staubli and P. Gysel, “Crosstalk Penalties Due to Coherent Rayleigh Noise in Bidirectional Optical Communication Systems,” J. Lightwave Technol., 9(3), 375-380 (1991). [83] P. Healey, “Statistics of Rayleigh Backscatter From a Single-Mode Fiber,” IEEE Transactions on Commun., Com-35(2), 210-214 (1987). [84] J.L. Gimlet, M.Z. Iqbal, N.K. Cheung, A. Righetti, F. Fontana, and G. Grasso, “Observation of Equivalent Rayleigh Scattering Mirrors in Lightwave Systems with Optical Amplifiers,” IEEE Photon. Technol. Lett., 2(3), 211-213 (1990). [85] W.S Wang, H.C. Kwon, and S.K. Han, “Suppression of Rayleigh Backscattering in a Bidirectional WDM Optical Link using Clipped Direct Modulation,” IEE Proc-Optoelectronics, 151(4), 219-222 (2004). [86] B.L. Smith and M.H. Carpenter (Editors), The Microwave Engineering Handbook Vol.1 Microwave Components, Chapman & Hall, 1993. [87] A.F. Judy, “Generation of interference intensity noise from fiber Rayleigh backscatter and discrete reflections,” Proc. OSA/OFC, USA, Paper WL4, 1991. [88] G. Keiser, Optical Fiber Communications, Fourth Edition, McGraw-Hill, 2010. [89] Paraphrased from: http://en.wikipedia.org/wiki/Intersymbol_interference (January 2012). [90] C.F. Marki, Design and optimization of bidirectional and optical logic systems in the presence of noise, A Dissertation, University of California San Diego (UCSD), 2007. [91] J.W. Simatupang and S.L. Lee, “Theoretical and Simulation Analysis on Potential Impairments in Bidirectional WDM-PONs,” 3rd International Conference on Photonics (ICP), Malaysia, 2012. [92] S.C. Lin, S.L. Lee, H.H. Lin, G. Keiser, and R.J. Ram, “Cross-Seeding Schemes for WDM-Based Next-Generation Optical Access Networks,” J. Lightwave Technol., 29(24), 3727-3736 (2011). [93] J.W. Simatupang and S.L. Lee, “Transfer matrix analysis of backscattering and reflection effects on WDM-PON systems,” Opt.Expr., 21(23), 27565-27577 (2013). [94] J.W. Simatupang and S.L. Lee, “Analysis of Rayleigh backscattering effects in 105 km long-reach RSOA-based hybrid WDM/TDM PONs,“ OPTIC 2012, Paper 98415675, 2012. [95] S.D. Dods, J.P.R. Lacey, and R.S. Tucker, “Homodyne Crosstalk in WDM Ring and Bus Networks,” IEEE Photon. Technol. Lett., 9(9), 1285-1287 (1997), Corrections to “Homodyne Crosstalk in WDM Ring and Bus Networks,” 10(2), 303 (1998). [96] Y. Shen and C. Lu, “Effect of Homodyne Crosstalk in WDM Ring/Bus Networks,” ICTON, Paper We.B.3, 2000. [97] K.-P. Ho, “Analysis of Homodyne Crosstalk in Optical Networks Using Gram-Charlier Series,” J. of Lightwave Technol. 17(2), 149-154 (1999). [98] J. Kim, J. Park, S. Chung, N. Park, B. Lee, and K. Jeong, “Bidirectional wavelength add/drop multiplexer using two separate MUX and DEMUX pairs and reflection-type comb filters,” Optics Communications 205, 321-327 (2002). [99] K.–P. Ho and S.-K. Liaw, “Demultiplexer Crosstalk Rejection Requirements for Hybrid WDM System with Analog and Digital Channels,” IEEE Photon. Technol. Lett., 10(5), 737-739 (1998). [100] J.W. Simatupang, S.L. Lee, and Y.R. Huang, “Performance analysis of cross-seeding WDM-PON systems using transfer matrix method,” will be submitted to Journal of Optical Fiber Technology (2013). [101] J. Bromage, P.J. Winzer, and R.-J. Essiambre, “Multiple Path Interference and Its Impact on System Design,” in Raman Amplifiers for Telecommunications, 2, M. N. Islam, Ed. New York: Springer-Verlag, Ch.15, 2004. [102] J. Bromage, “Raman amplifications for fiber communications systems (Tutorial paper),” J. Lightw. Technol. 22 (1) 79-93 (2004). [103] D.W. Harder, Numerical methods for electrical and computer engineers, 2005. (http://www.ece.uwaterloo.ca/~ece204/TheBook/00Introduction/ ) (November 2013). [104] J. Oh, S. Koo, D. Lee, and S.J. Park, “Enhancement System Performance of an RSOA Based Hybrid WDM/TDM-PON System Using A Remotely Pumped Erbium-Doped Fiber Amplifier,” OFC/NFOEC, USA, Postdeadline Session A (PDP), 2007. [105] C.H. Wang, C.W. Chow, C.H. Yeh, C.L. Wu, S. Chi, and C. Lin, “Rayleigh Noise Mitigation Using Single-Sideband Modulation Generated by a Dual-Parallel MZM for Carrier Distributed PON,” IEEE Photon. Technol. Lett., 22(11), 820-822 (2010). [106] C.W. Chow, G. Talli, A.D. Ellis, and P.D. Townsend, “Rayleigh noise mitigation in DWDM LR-PONs using carrier suppressed subcarrier-amplitude modulated phase shift keying,” Opt. Expr., 16(3), 1860-1866 (2008). [107] C.W. Chow and C.H. Yeh, “Mitigation of Rayleigh backscattering in 10-Gb/s downstream and 2.5-Gb/s upstream DWDM 100-km long-reach PONs,” Opt. Expr., 19(6), 4970-4976 (2011). [108] G. Talli, C.W. Chow, E.K. MacHale, and P.D. Townsend, “Rayleigh noise mitigation in long-reach hybrid DWDM-TDM PONs,” J. Optical Networking, 6(6), 765-776 (2007). [109] J.A. Lazaro, C. Arellano, V. Polo, and J. Prat, “Rayleigh Scattering Reduction by Means of Optical Frequency Dithering in Passive Optical Networks With Remotely Seeded ONUs,” IEEE Photon. Technol. Lett., 19(2), 64-66 (2007). [110] C.W. Chow, G. Talli, and P.D. Townsend, “Rayleigh Noise Reduction in 10-Gb/s DWDM-PONs by Wavelength Detuning and Phase-Modulation-Induced Spectral Broadening,” IEEE Photon. Technol. Lett., 19(6), 423-425 (2007). [111] J. Prat, “Rayleigh Back-scattering reduction by means of Quantized Feedback Equalization in WDM-PONs,” Proc. ECOC 2010, Italy, Paper Th.10.B.3., 2010. [112] B. Schrenk, G. de Valicourt, J.A. Lazaro, R. Brenot, and J. Prat, “Rayleigh Scattering Tolerant PON Assisted by Four-Wave Mixing in SOA-based ONUs,” J. Lightwave Technol., 28(23), 3364-3371 (2010). [113] C.W. Chow, C.H. Yeh, L. Xu, and H.K. Tsang, “Rayleigh Backscattering Mitigation Using Wavelength Splitting for Heterogeneous Optical Wired and Wireless Access,” IEEE Photon. Technol. Lett., 22(17), 1294-1296 (2010). [114] J.–M. Lee, D.–W. Lee, Y.–Y. Won, S.–J. Park, and S.–K. Han, “Reduction of Rayleigh Back-Scattering Noise Using RF-Tone in RSOA Based Bidirectional Optical Link,” Proc. OFC/NFOEC, USA, Paper JThA98, 2008. [115] A. Chowdhury, H.C. Chien, M.F. Huang, J. Yu, and G.K. Chang, “Rayleigh Backscattering Noise-Eliminated 115-km Long-Reach Bidirectional Centralized WDM-PON With 10-Gb/s DPSK Downstream and Remodulated 2.5-Gb/s OCS-SCM Upstream Signal,” IEEE Photon. Technol. Lett., 20(24), 2081-2083 (2008). [116] M. Fujiwara, H. Suzuki, and K. Iwatsuki, “Reducing the Backreflection Impact by Using Gain-Saturated SOA in WDM Single-fiber Loopback Access Networks,” Proc.OFC/NFOEC, USA, Paper OTuC2, 2006. [117] M. Omella, P. Chanclou, J.A. Lazaro, J. Prat, “RSOA as a Sawtooth Generator for Rayleigh Backscattering Effect Mitigation,” Proc. ECOC 2010, Italy, Paper Mo.1.B.5, 2010. [118] P.J. Urban, A.M.J. Koonen, G.D. Khoe, and H. de Waardt, “Interferometric Crosstalk Reduction in an RSOA-Based WDM Passive Optical Network,” J. Lighwave Technol., 27(22), 4943-4953 (2009). [119] J. Xu, M. Li, and L.-K. Chen, “Rayleigh Noise Reduction in 10-Gb/s Carrier-Distributed WDM-PONs Using In-Band Optical Filtering,” J. Lightwave Technol., 29(24), 3632-3639 (2011). [120] G. Talli, C.W. Chow, and P.D. Townsend, “Modeling of Modulation Format for Interferometric Noise Mitigation,” J. Lightwave Technol., 26 (17), 3190-3198 (2008). [121] C.F. Marki, N. Alic, S. Esener, and S. Radic, “Modeling of Coherent and Incoherent Rayleigh Crosstalk in Conventional Optical Links,” IEEE Photon. Technol. Lett., 19(21), 1735-1737 (2007). [122] T. Yoshida, S. Kimura, H. Kimura, K. Kumozaki, and T. Imai, “A New Single-Fiber 10-Gb/s Optical Loopback Method Using Phase Modulation for WDM Optical Access Networks,” J. Lightwave Technol., 24(2), 786-796 (2006). [123] C.W. Chow, C.H. Wang, C.H. Yeh, and S. Chi, “Analysis of the carrier-suppressed single-sideband modulators used to mitigate Rayleigh backscattering in carrier-distributed PON,” Opt. Expr., 19(11), 10973-10978 (2011). [124] B.E.A. Saleh and M.C. Tech, Fundamental of Photonics, John Wiley & Sons, Inc, 1991.
|