( 您好!臺灣時間:2022/07/01 19:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::


論文名稱(外文):Investigation of Rayleigh Backscattering and Fresnel Reflection Effects on WDM-PON Systems
指導教授(外文):San-Liang Lee
口試委員(外文):San-Liang Lee
中文關鍵詞:瑞利後向散射菲涅爾反射WDM-PON系統串音對信號( C / S )比雙向傳輸
外文關鍵詞:Rayleigh BackscatteringFresnel ReflectionsWDM-PON SystemsCrosstalk-to-Signal (C/S) RatioBidirectional Transmission
  • 被引用被引用:0
  • 點閱點閱:1158
  • 評分評分:
  • 下載下載:23
  • 收藏至我的研究室書目清單書目收藏:0
這項研究是應對瑞利後向散射的問題(RB)和菲涅耳反射的雙向波分複用無源光網絡(WDM - PON)系統上( FR )的影響。所使用的總體方案為基礎,在單光纖單波長( SWSF )拓撲環回技術。在一方面,這種拓撲結構帶來了纖維的需要的減少量和光纖帶寬容量的即興方面的優勢。但在另一方面,它創建有關的RB和FR沿傳輸鏈路效應的存在串音問題。
環回技術是在WDM- PON的頻繁使用,避免使用有色上游發射機。播種光從光線路終端(OLT)在中心局(CO)發送到所述光網絡單元(ONU ),其中,上行信號被編碼在播種燈帶調製裝置,例如反射式半導體光放大器( RSOA )或反射電吸收調製器(令) ,取決於系統設計。在這些系統中, RB和FR可以在上行傳輸引起嚴重的退化(光學差拍干涉噪聲)時,信號被沿全雙工光纖配置傳播。 RB噪聲是在光纖中傳播的固有減值,其水平取決於所使用的纖維類型和結構決定的,但是(可能)獨立於系統的調製格式。然而, FR噪聲可以通過選擇光器件的相應回波損耗和仔細處理光纖連接和拼接得到緩解。
分析方法/近似被用來精確地處理在傳統的WDM -PON系統的這些問題。此外,現有的方法可能當與複雜系統架構處理遇到一些困難。這種複雜的情況下,包括時分複用(TDM) PON的結構,其中的光放大器和光功率分路器或分用器的一個組合時在遠程節點(RN ) ,並且光學增益多級頂端的長距離WDM混合還需要在這些系統。因此,本研究提出並演示了簡單而系統的轉移矩陣( T矩陣)分析方法的RB和FR信號傳輸串擾各類單纖雙向WDM-PON系統的累積影響。
This research was conducted to deal with the problem of Rayleigh backscattering (RB) and Fresnel reflection (FR) effects on bidirectional wavelength division multiplexing-passive optical network (WDM-PON) systems. The general scheme that was used based-on a single-fiber single-wavelength (SWSF) topology with loop-back technique. In one hand, this topology brings advantage in terms of the reduction amount of fiber requires and improvisation of the fiber bandwidth capacity. But on the other hand, it creates the crosstalk problems regarding to the existence of RB and FR effects along the transmission link.
The loop-back technique is frequently applied in WDM-PONs to avoid the use of colored upstream transmitters. Seeding lights are transmitted from the optical line terminal (OLT) at the central office (CO) to the optical network units (ONUs), where upstream signals are encoded on the seeding lights with modulation devices, such as reflective semiconductor optical amplifier (RSOA) or reflective electro-absorption modulator (REAM), depends on the system design. In these systems, RB and FR can cause severe degradations (optical beat interferometric noises) on upstream transmission when signals are transmitted along the full-duplex fiber configuration. RB noise is an intrinsic impairment in the fiber propagation, and its level is determined by the fiber type and configuration used, but (might be) independent with the system modulation format. However, FR noise can be mitigated by choosing the appropriate return loss of optical devices and carefully handling the fiber connection and splicing.
Analytical methods/approximations have been used to accurately deal with these problems in conventional WDM-PON systems. Moreover, the existing approaches may encounter some difficulties when dealing with the complex system architectures. Such complex cases include the long-reach hybrid WDM on top of time division multiplexing (TDM) PON structures, where a combination of optical amplifiers and optical power splitters or demultiplexers is employed at the remote node (RN), and multiple stages of optical gains are needed in those systems. Therefore, this research proposes and demonstrates the simple and systematic transfer matrix (T-matrix) method for analyzing the accumulated effects of RB and FR crosstalk on signal transmission in various types of single-fiber bidirectional WDM-PON systems.
Abstract i
Acknowledgements iii
Table of Contents v
List of Greek Symbols viii
List of Tables and Figures ix
1.1 Why Passive Optical Networks (PONs)? 1
1.2 Bidirectional WDM-PON Systems 2
1.3 Research Motivation and Objectives 4
1.4 Dissertation Overview 5
2.1 PON’s Revolution 7
2.1.1 Conventional Passive Optical Networks (C-PONs) 8
2.1.2 Emergence of WDM-PON Systems and Technologies 10
2.1.3 Long-Reach Passive Optical Networks (LR-PONs) 12
2.2 Review on Signal Impairments in Optical Fibers 16
2.2.1 Introduction to Rayleigh Scattering Loss 16
2.2.2 Generic Model of RB Distribution in Single-Mode Optical Fibers 18
2.2.3 Discrete Fresnel Reflections 21
2.3 Conclusions 22
3.1 Performance Analysis of Conventional WDM-PONs 26
3.2 Performance Analysis of Long-Reach WDM-PONs 29
3.3 Simulation Results and Discussions 31
A. Conventional WDM-PONs 32
B. Long-Reach WDM-PONs 34
3.4 Conclusions 37
3.5 Performance Analysis of Rayleigh Backscattering Effects in 105 km Long-Reach RSOA-based Hybrid WDM/TDM PON 37
I. Introduction 38
II. Theoretical Basis 39
III. Simulation Results and Analysis 40
IV. Conclusions 43
3.6 Mitigates the Effects of RB and FR in WDM-PON Systems 44
4.1 Introduction 45
4.2 Transfer Matrix Analysis for Systems with Back-Reflections 47
A. Discontinuity (Fresnel reflection) 50
B. Feeder or drop fiber 51
C. Remote node (RN): passive and/or active components. 52
D. Reflective ONU (RONU) ?_ Transmissive ONU 52

4.3 C/S Ratio of Basic WDM-PON Systems with Loop-Back Scheme 53
4.4 C/S Ratio of Cross-Seeding WDM-PON with Loop-Back Scheme 55
5.1 Simple & Basic WDM-PON Systems with Fresnel Reflections 57
5.2 Long-Reach Hybrid WDM/TDM PON Systems 61
5.3 Cross-Seeding WDM-PON Systems 63
A. Upstream Analysis 64
B. Downstream Analysis 68
5.4 Conclusions 69
6.1 Future Research 72
6.2 Last Remarks 74
Appendix A. Publications Related to Analytical Method in Last Six Years 85
Appendix B. Total C/S Ratio Power for Long-Reach WDM/TDM-PON 86
Appendix C. Mitigation Schemes for RB & FR Noise Reduction in PON Systems 87
Appendix D. List of Abbreviations 89
Appendix E. Research Publications 91
Short-Bio .. 95
[1] F. Effenberger, D. Cleary, O. Haran, G. Kramer, R.D. Li, M. Oron, and T. Pfeiffer, “An Introduction to PON Technologies,” Topics in Optical Communications, IEEE Communs. Mag., S17-S25 (2007).
[2] H. Feng, C.J. Chae, and A.V. Tran, “Cost-Effective and Power-Efficient Extended-Reach WDM/TDM PON Systems,” Proc. OSA/OFC/NFOEC, USA, Paper OThB3, 2011.
[3] E. Trojer, S. Dahlfort, D. Hood, and H. Mickelsson, “Current and next-generation PONs: A technical overview of present and future PON technology,” Ericsson Review, 2 (2008).
[4] J. Yu, Z. Jia, P.N. Ji, and T. Wang, “40-Gb/s Wavelength-Division-Multiplexing Passive Optical Network with Centralized Lightwave Source,” Proc. OFC/NFOEC, USA, Paper OTuH8, 2008.
[5] P.P. Iannone, K.C. Reichmann, C.R. Doerr, L.L. Buhl, M.A. Cappuzzo, E.Y. Chen, L.T. Gomez, J.E. Johnson, A.M. Kanan, J.L. Lentz, and R. McDonough, “A 40Gb/s CWDM-TDM PON with a Cyclic CWDM Multiplexer/Demultiplexer,” Proc. ECOC, Austria, Paper 8.5.6, 2009.
[6] N. Cvijetic, D. Qian, and J. Hu, “100 Gb/s Optical Access Based on Optical Orthogonal Frequency-Division Multiplexing,” Topics in 100 GIGABIT ETHERNET, IEEE Communs. Mag., 70-77 (2010).
[7] K.Y. Cho, U.H. Hong,Y. Takushima, A. Agata, T. Sano, M. Suzuki, and Y.C. Chung, “103-Gb/s Long-Reach WDM PON Implemented by Using Directly Modulated RSOAs,” IEEE Photon. Technol. Lett., 24(3), 209-211 (2012).
[8] N. Cvijetic, M.F. Huang, E. Ip, Y.K. Huang, D. Qian, and T. Wang, “1.2 Tb/s Symmetric WDM-OFDMA-PON over 90km Straight SSMF and 1:32 Passive Split with Digitally-Selective ONUs and Coherent Receiver OLT,” Proc. OSA/OFC/NFOEC, USA, Paper PDPD7, 2011.
[9] N. Cvijetic, M.F. Huang, E. Ip, Y. Shao, Y.K. Huang, M. Cvijetic, and T. Wang, “1.92Tb/s coherent DWDM-OFDMA-PON with no high-speed ONU-side electronics over 100km SSMF and 1:64 passive split,” Opt. Expr., 19(24), 24540-24545 (2011).
[10] M.J. O’Mahony, C. Politi, D. Klonidis, R. Nejabati, and D. Simeonidou, “Future Optical Networks,” J. Lightwave Technol., 24 (12), 4684-4696 (2006).
[11] R. Ramaswami and K.N. Sivarajan, Optical Networks: A Practical Perspective, First Edition, Morgan Kaufmann Publishers, 1998.
[12] H. Obara, H. Masuda, K. Suzuki, and K. Aida, “Multifiber wavelength-division multiplexed ring network architecture for Tera-bit/s throughput,” IEEE, 921-925 (1998).
[13] B. Schrenk, F. Bonada, J.A. Lazaro, and J. Prat, “Remotely Pumped Long-Reach Hybrid PON With Wavelength Reuse in RSOA-Based ONUs, J. Lightwave Technol., 29(5), 635-641 (2011).
[14] H. Obara, “Bidirectional WDM Transmission Technique Utilizing Two Identical Sets of Wavelengths for Both Directions Over a Single Fiber,” J. Lightwave Technol., 25(1), 297-304 (2007).
[15] H.H. Lin, C.Y. Lee, S.C. Lin, S.L. Lee, and G. Keiser, “WDM-PON Systems Using Cross-Remodulation to Double Network Capacity with Reduced Rayleigh Scattering Effects,” Proc. OFC/NFOEC, USA, Paper OTuH6, 2008.
[16] S.M. Lee, S.G. Mun, M.H. Kim, and C.H. Lee, “Demonstration of a Long-Reach DWDM-PON for Consolidation of Metro and Access Networks,” J. Lightwave Technol., 25(1), 271-276 (2007).
[17] F. Cavaliere, F. Ponzini, M. Presi, and E. Ciaramella, “Migration towards High Speed Optical Access Enabled by WDM Techniques,” Invited Paper in Proc. of SPIE-OSA-IEEE Communications and Photonics, SPIE 7362(763224), 1-7 (2009).
[18] J. Ko, S. Kim, J. Lee, S. Won, Y.S. Kim, and J. Jeong, “Estimation of Performance Degradation of Bidirectional WDM Transmission Systems Due to Rayleigh Backscattering and ASE Noises Using Numerical and Analytical Models,” J. Lightwave Technol. 21(4), 938-946 (2003).
[19] N.C. Tran, H.D. Jung, C. Okonkwo, E. Tangdiongga, and T. Koonen, “Dynamically Delivering Radio Signals by the Active Routing Optical Access Network,” IEEE Photon. Technol. Lett., 24(3), 182-184 (2012).
[20] N.C. Tran, T. Koonen, C. Okonkwo, and E. Tangdiongga, “Limited Flexibilty: a Cost-Effective Trade-off for Reconfigurable WDM-TDM Optical Access Networks,” ECOC Technical Digest OSA, Swiss, 2011.
[21] U.H. Hong, K.Y. Cho, Y. Takushima, and Y.C. Chung, “Maximum Reach of Long-Reach RSOA-Based WDM-PON Employing Remote EDFA,” Proc. OSA/OFC/NFOEC, USA, Paper OMP1, 2011.
[22] U.H. Hong, K.Y. Cho, Y. Takushima, and Y.C. Chung, “Effects of Rayleigh Backscattering in Long-Reach RSOA-Based WDM-PON,” Proc. OSA/OFC/NFOEC, USA, Paper OThG1, 2010.
[23] S. Gao, H. Hu, and H. Anis, “Impact of Backreflections on Single-Fiber Bidirectional Transmission in WDM-PONs,” J. Opt. Commun, Netw., 3(10), 797-805 (2011).
[24] E.T. Lopez, J.A. Lazaro, C. Arellano, V. Polo, and J. Prat, “Optimization of Rayleigh-Limited WDM-PONs With Reflective ONU by MUX Positioning and Optimal ONU Gain,” IEEE Photon. Technol. Lett. 22(2), 97-99 (2010).
[25] E.T. Lopez, J.A. Lazaro, C. Arellano, V. Polo, and J. Prat, “ONU Optimal Gain and Position of the Distribution Element in Rayleigh-limited WDM and TDM PONs with reflective ONU,” Proc. ECOC, Austria, Paper P6, 2009.
[26] C. Arellano, K.D. Langer, and J. Prat, “Reflections and Multiple Rayleigh Backscattering in WDM Single-Fiber Loopback Access Networks,” J. Lighwave Technol. 27(11), 12-18 (2009).
[27] K.Y. Cho, Y. J. Lee, H.Y. Choi, A. Murakami, A. Agata, Y. Takushima, and Y. C. Chung, “Effecs of Reflection in RSOA-Based WDM-PON Utilizing Remodulation Technique,” J. Lightwave Technol. 27(10), 1286-1295 (2009).
[28] W.Y. Hong, N.G. Qiang, G. Pan, and G. Kun, “Theoretical Analysis on Coherent Noise by Rayleigh Backscattering,” IEEE Computer Society 2009 International Forum on Information Technology and Applications, Chengdu, 209-212 (2009).
[29] J.H. Moon, K.M. Choi, S.G. Mun, and C.H. Lee, “Effects of Back-Reflection in WDM-PONs Based on Seed Light Injection,” IEEE Photon. Technol. Lett., 19(24), 2045-2047 (2007).
[30] K.Y. Cho, K. Tanaka, T. Sano, S.P. Jung, J.H. Chang, Y. Takushima, A. Agata, Y. Horiuchi, M. Suzuki, and Y.C. Chung, “Long-Reach Coherent WDM PON Employing Self-Polarization-Stabilization Technique,” J. Lightwave Technol., 29(4), 456-462 (2011).
[31] M. Fujiwara, J. Kani, H. Suzuki, and K. Iwatsuki, “Impact of Backreflection on Upstream Transmission in WDM Single-Fiber Loopback Access Networks,” J. Lightwave Technol. 24(2), 740-746 (2006).
[32] C.F. Marki, N. Alic, S. Esener, and S. Radic, “Modeling of Coherent and Incoherent Rayleigh Crosstalk in Conventional Optical Links,” IEEE Photon.Technol. Lett., 19(21), 1735-1737 (2007).
[33] H. Song, B.W. Kim, and B. Mukherjee, “Long-Reach Optical Access Networks: A Survey of Research Challenges, Demonstrations, and Bandwidth Assignment Mechanisms,” IEEE Communs. Surveys & Tutorials, 12(1), 112-123, First Quarter (2010).
[34] D.P. Shea and J.E. Mitchell, “Long-Reach Optical Access Technologies,” IEEE Network, 21(5), 5-11 (2007).
[35] E.K. MacHale, G. Talli, P.D. Townsend, A. Borghesani, I. Lealman, D.G. Moodie, and D.W. Smith, “Signal-Induced Rayleigh Noise Reduction using Gain Saturation in an Integrated R-EAM-SOA,” Proc. OSA/OFC/NFOEC, USA, Paper OThA6, 2009.
[36] S. Spolitis, V. Bobrovs, P. Gavars, and G. Ivanovs, “Comparison of Passive Chromatic Dispersion Compensation Techniques for Long Reach Dense WDM-PON System,”Kaunas: Technologija, 6(122), 65–70 (2012).
[37] K.Y. Cho, Y. Takushima, and Y.C. Chung, “10-Gb/s Operation of RSOA for WDM-PON,” IEEE Photon. Technol. Lett., 20(18), 1533-1535 (2008).
[38] J. George, “Designing Passive Optical Networks for Cost-Effective Triple Play Support,” Fiber Systems Engineering and Marketing, OFS.
[39] C. Arellano, Investigation of Reflective Optical Network Units for Bidirectional Passive Optical Access Networks, PhD Thesis, Universitat Politecnica De Catalunya (UPC), 2007.
[40] R.P. Davey, D.B. Grossman, M.R. Wiech, D.B. Payne, D. Nesset, A.E. Kelly, A. Rafel, S. Appathurai, and S.–H. Yang, “Long-Reach Passive Optical Networks,” J. Lightwave Technol., 27(3), 273-291 (2009).
[41] D. Gutierrez, K.S. Kim, S. Rotolo, F.-T. An, and L.G. Kazovsky, “FTTH Standards, Deployments and Research Issues,” Proc. JCIS 2005, USA, 1358–61, 2005.
[42] C.H. Lee, “WDM-PON Overview,” LG Nortel and KAIST, 2009.
[43] R. Lin, “Next Generation PON in Emerging Networks,” Proc. OFC/NFOEC, USA, Paper OWH1, 2008.
[44] J. Prat, P. Chanclou, R. Davey, J.M. Finochietto, G. Franzl, A.M.J. Koonen, and S.D. Walker “Long-term Evolution of Passive Optical Networks,” [Invited Paper], Proc. AccessNets, Greece, 2006.
[45] S.S. Wagner and H.L. Lemberg, “Technology and system issues for a WDM-based fiber loop architecture,” J. Lightwave Technol., 7(11), 1759-1768 (1989).
[46] A. Borghesani, “Reflective Based Active Semiconductor Components for Next Generation Optical Access Networks,” Proc. ECOC, Italy, Paper Mo.1.B.1., 2010.
[47] N. Cheng and F. Effenberger, “WDM PON: Systems and Technologies,” ECOC Workshop, Italy, 2010.
[48] W. Lee, M.Y. Park, S.H. Cho, J. Lee, C. Kim, G. Jeong, and B.W. Kim, “Bidirectional WDM-PON Based on Gain-Saturated Reflective Semiconductor Optical Amplifiers,” IEEE Photon. Technol. Lett., 17(11), 2460-2462 (2005).
[49] W. Jianli, “FTTH in China,” China Commun. Mag. (2005).
[50] M. Kunigonis, “FTTH Deployments in China and Asia: Market Drivers, Politics and Technology Choices,” China Tel Summit, 2005.
[51] C. Lin, Ed., Broadband Optical Access Networks and Fiber to-the-Home, System Technologies and Deployment Strategies, John Wiley & Sons, Ltd., 2006.
[52] D. Forbes, “Future Optical Communications Systems,” An OIDA Forum Report, 2008.
[53] L. Hutcheson, Ovum, “FTTx: Current Status and the Future,” Industry Analyst Forum, IEEE Commun. Mag. (2008).
[54] M. Maier, “WDM Passive Optical Networks and Beyond: the Road Ahead [Invited],” J. Opt. Commun. Netw., 1(4), C1-C16 (2009).
[55] S.A. Jabar, “Alternative Architectures for Bidirectional Single Mode Fiber SuperPON 512 ONU, 100 Km,” Proc. of SPIE, 6022 (2005).
[56] M.O. Van Deventer, J.D. Angelopoulos, H. Binsma, A.J. Boot, P. Crahay, E. Jaunart, P.J. M. Peters, A.J. Phillips, X.Z. Qiu, J.M. Senior, M. Valvo, J. Vandewege, P.J. Vetter, and I. Van de Voorde, “Architecture for 100 km 2048 split bidirectional SuperPONs from ACTS-PLANET,” Proc. SPIE, 2919, 245–251 (1996).
[57] F. Saliou, P. Chanclou, F. Laurent, N. Genay, J.A. Lazaro, F. Bonada, and J. Prat, “Reach Extension Strategies for Passive Optical Networks [Invited],” J. Opt. Commun. Netw., 1(4), C51-C60 (2009).
[58] F.-T. An, D. Gutierrez, K.S. Kim, J.W. Lee, and L.G. Kazovsky, “Success-HPON: Next-Generation Optical Access Architecture for Smooth Migration from TDM-PON to WDM-PON,” IEEE Opt. Commun. Mag., S40-S47 (2005).
[59] D. Gutierrez, K.S. Kim, F.-T. An, and L.G. Kazovsky., “SUCCESS-HPON: Migrating from TDM-PON to WDM-PON,” Proc. ECOC, France, 2006.
[60] A.O. Barut, The Theory of the Scattering Matrix, The Macmillan Company, 1967.
[61] J. Saekeang and P.L. Chu, “Backscattering of light from optical fibers with arbitrary refractive index distributions: uniform approximation approach,” J. Opt. Soc. Am, 68(10), 1298-1305 (1978).
[62] M.N. Zervas and R.I. Laming, “Rayleigh Scattering Effect on the Gain Efficiency and Noise of the Erbium Doped-Fiber Amplifiers,” IEEE J. Quantum Electronics, 31(3), (1995).
[63] A. Kung, J. Budin, L. Thevenaz, and Ph.A. Robert, “Rayleigh Fiber Optics Gyroscope, IEEE Photon. Technol. Lett., 9(7), 973-975 (1997).
[64] M. W. Wedd, “Determination of Particle Size Distributions Using Laser Diffraction,” Educ. Reso. for Part. Techn. 032Q-Wedd, 1-4 (2003).
[65] B. Camak, Modeling On Rayleigh Scattering In Optical Waveguides, Master Thesis, The Middle East Technical University (METU), 2003.
[66] M. Liebl, “Blue Skies, Coffee Creamer, and Rayleigh Scattering,” The Physics Teacher, 48, 300-301 (2010).
[67] C. Ganter and W. Schirmacher, “Euclidean random matrix theory: low-frequency non-analycities and Rayleigh scattering,” Philosophical Magazine, 91(13-15), 1-27 (2011).
[68] L.A. Coldren, S.W. Corzine, and M.L. Masanovic, Diode Lasers and Photonic Integrated Circuits, 2nd Ed, John Wiley & Sons, Inc., 2012.
[69] A. Takamizawa and K. Shimoda, “Rayleigh scattering under light-atom coherent interaction,” J. Atomic Physics, 1-5 (2012), Cornell University Library Archives.
[70] D.N. Uhlmann and N.J. Kreidl, Optical Properties of Glass, American Ceramic Society, Inc., 1991.
[71] M. Lancry, E. Regnier, and B. Poumellec, “Fictive temperature measurements in silica-based optical fibers and its application to Rayleigh loss reduction,” in Optical Fiber New Developments, edited by C. Lethien, INTECH, December 2009.
[72] K. Tsujikawa, K. Tajima, and J. Zhou, “Intrinsic loss of optical fibers,” [Invited paper], Optical Fiber Technology 11(4), 319–331 (2005).
[73] J.A. Buck, Fundamentals of Optical Fibers, John Wiley & Sons, 1995.
[74] J.L. Gimlett, M.Z. Iqbal, L. Curtis, N.K. Cheung, A. Righetti, F. Fontana, and G. Grasso, “Impact of Multiple Reflection Noise In Gbit/s Lightwave Systems with Optical Fibre Amplifiers,” Electronics Lett., 25(20), 1393-1394 (1989).
[75] J.L. Gimlett and N.K. Cheung, “Effects of Phase-to-Intensity Noise Conversion by Multiple Reflections on Gigabit-per-Second DFB Laser Transmission Systems,” J. Lightwave Technol., 7(6), 888-895 (1989).
[76] E. Brinkmeyer, “Analysis of the backscattering method for single-mode optical fibers,” JOSA Lett., 70(8), 1010-1012 (1980).
[77] M. Nakazawa, “Rayleigh backscattering theory for single-mode optical fibers,” JOSA Lett., 73(9), 1175-1180 (1983).
[78] A.H. Hartog and M.P. Gold, “On the Theory of Backscattering in Single-Mode Optical Fi9ers,” J. Lightwave Technol., LT-2(2), 76-82 (1984).
[79] P. Gysel and R.K. Staubli, “Statistical Properties of Rayleigh Backscattering in Single-Mode Fibers,” J. Lightwave Technol., 8(4), 561-567 (1990).
[80] R.K. Staubli, P. Gysel, and R.U. Hofstetter, “Power Penalties Due to Multiple Rayleigh Backscattering in Coherent Transmission Systems Using In-Line Optical Amplifiers,” IEEE Photon. Technol. Lett., 2(12), 872-874 (1990).
[81] P. Gysel and R.K. Staubli, “Spectral Properties of Rayleigh Backscattered Light from Single-Mode Fibers Caused by a Modulated Probe Signal,” J. Lightwave Technol., 8(12), 1792-1798 (1990).
[82] R.K. Staubli and P. Gysel, “Crosstalk Penalties Due to Coherent Rayleigh Noise in Bidirectional Optical Communication Systems,” J. Lightwave Technol., 9(3), 375-380 (1991).
[83] P. Healey, “Statistics of Rayleigh Backscatter From a Single-Mode Fiber,” IEEE Transactions on Commun., Com-35(2), 210-214 (1987).
[84] J.L. Gimlet, M.Z. Iqbal, N.K. Cheung, A. Righetti, F. Fontana, and G. Grasso, “Observation of Equivalent Rayleigh Scattering Mirrors in Lightwave Systems with Optical Amplifiers,” IEEE Photon. Technol. Lett., 2(3), 211-213 (1990).
[85] W.S Wang, H.C. Kwon, and S.K. Han, “Suppression of Rayleigh Backscattering in a Bidirectional WDM Optical Link using Clipped Direct Modulation,” IEE Proc-Optoelectronics, 151(4), 219-222 (2004).
[86] B.L. Smith and M.H. Carpenter (Editors), The Microwave Engineering Handbook Vol.1 Microwave Components, Chapman & Hall, 1993.
[87] A.F. Judy, “Generation of interference intensity noise from fiber Rayleigh backscatter and discrete reflections,” Proc. OSA/OFC, USA, Paper WL4, 1991.
[88] G. Keiser, Optical Fiber Communications, Fourth Edition, McGraw-Hill, 2010.
[89] Paraphrased from: http://en.wikipedia.org/wiki/Intersymbol_interference (January 2012).
[90] C.F. Marki, Design and optimization of bidirectional and optical logic systems in the presence of noise, A Dissertation, University of California San Diego (UCSD), 2007.
[91] J.W. Simatupang and S.L. Lee, “Theoretical and Simulation Analysis on Potential Impairments in Bidirectional WDM-PONs,” 3rd International Conference on Photonics (ICP), Malaysia, 2012.
[92] S.C. Lin, S.L. Lee, H.H. Lin, G. Keiser, and R.J. Ram, “Cross-Seeding Schemes for WDM-Based Next-Generation Optical Access Networks,” J. Lightwave Technol., 29(24), 3727-3736 (2011).
[93] J.W. Simatupang and S.L. Lee, “Transfer matrix analysis of backscattering and reflection effects on WDM-PON systems,” Opt.Expr., 21(23), 27565-27577 (2013).
[94] J.W. Simatupang and S.L. Lee, “Analysis of Rayleigh backscattering effects in 105 km long-reach RSOA-based hybrid WDM/TDM PONs,“ OPTIC 2012, Paper 98415675, 2012.
[95] S.D. Dods, J.P.R. Lacey, and R.S. Tucker, “Homodyne Crosstalk in WDM Ring and Bus Networks,” IEEE Photon. Technol. Lett., 9(9), 1285-1287 (1997), Corrections to “Homodyne Crosstalk in WDM Ring and Bus Networks,” 10(2), 303 (1998).
[96] Y. Shen and C. Lu, “Effect of Homodyne Crosstalk in WDM Ring/Bus Networks,” ICTON, Paper We.B.3, 2000.
[97] K.-P. Ho, “Analysis of Homodyne Crosstalk in Optical Networks Using Gram-Charlier Series,” J. of Lightwave Technol. 17(2), 149-154 (1999).
[98] J. Kim, J. Park, S. Chung, N. Park, B. Lee, and K. Jeong, “Bidirectional wavelength add/drop multiplexer using two separate MUX and DEMUX pairs and reflection-type comb filters,” Optics Communications 205, 321-327 (2002).
[99] K.–P. Ho and S.-K. Liaw, “Demultiplexer Crosstalk Rejection Requirements for Hybrid WDM System with Analog and Digital Channels,” IEEE Photon. Technol. Lett., 10(5), 737-739 (1998).
[100] J.W. Simatupang, S.L. Lee, and Y.R. Huang, “Performance analysis of cross-seeding WDM-PON systems using transfer matrix method,” will be submitted to Journal of Optical Fiber Technology (2013).
[101] J. Bromage, P.J. Winzer, and R.-J. Essiambre, “Multiple Path Interference and Its Impact on System Design,” in Raman Amplifiers for Telecommunications, 2, M. N. Islam, Ed. New York: Springer-Verlag, Ch.15, 2004.
[102] J. Bromage, “Raman amplifications for fiber communications systems (Tutorial paper),” J. Lightw. Technol. 22 (1) 79-93 (2004).
[103] D.W. Harder, Numerical methods for electrical and computer engineers, 2005. (http://www.ece.uwaterloo.ca/~ece204/TheBook/00Introduction/ ) (November 2013).
[104] J. Oh, S. Koo, D. Lee, and S.J. Park, “Enhancement System Performance of an RSOA Based Hybrid WDM/TDM-PON System Using A Remotely Pumped Erbium-Doped Fiber Amplifier,” OFC/NFOEC, USA, Postdeadline Session A (PDP), 2007.
[105] C.H. Wang, C.W. Chow, C.H. Yeh, C.L. Wu, S. Chi, and C. Lin, “Rayleigh Noise Mitigation Using Single-Sideband Modulation Generated by a Dual-Parallel MZM for Carrier Distributed PON,” IEEE Photon. Technol. Lett., 22(11), 820-822 (2010).
[106] C.W. Chow, G. Talli, A.D. Ellis, and P.D. Townsend, “Rayleigh noise mitigation in DWDM LR-PONs using carrier suppressed subcarrier-amplitude modulated phase shift keying,” Opt. Expr., 16(3), 1860-1866 (2008).
[107] C.W. Chow and C.H. Yeh, “Mitigation of Rayleigh backscattering in 10-Gb/s downstream and 2.5-Gb/s upstream DWDM 100-km long-reach PONs,” Opt. Expr., 19(6), 4970-4976 (2011).
[108] G. Talli, C.W. Chow, E.K. MacHale, and P.D. Townsend, “Rayleigh noise mitigation in long-reach hybrid DWDM-TDM PONs,” J. Optical Networking, 6(6), 765-776 (2007).
[109] J.A. Lazaro, C. Arellano, V. Polo, and J. Prat, “Rayleigh Scattering Reduction by Means of Optical Frequency Dithering in Passive Optical Networks With Remotely Seeded ONUs,” IEEE Photon. Technol. Lett., 19(2), 64-66 (2007).
[110] C.W. Chow, G. Talli, and P.D. Townsend, “Rayleigh Noise Reduction in 10-Gb/s DWDM-PONs by Wavelength Detuning and Phase-Modulation-Induced Spectral Broadening,” IEEE Photon. Technol. Lett., 19(6), 423-425 (2007).
[111] J. Prat, “Rayleigh Back-scattering reduction by means of Quantized Feedback Equalization in WDM-PONs,” Proc. ECOC 2010, Italy, Paper Th.10.B.3., 2010.
[112] B. Schrenk, G. de Valicourt, J.A. Lazaro, R. Brenot, and J. Prat, “Rayleigh Scattering Tolerant PON Assisted by Four-Wave Mixing in SOA-based ONUs,” J. Lightwave Technol., 28(23), 3364-3371 (2010).
[113] C.W. Chow, C.H. Yeh, L. Xu, and H.K. Tsang, “Rayleigh Backscattering Mitigation Using Wavelength Splitting for Heterogeneous Optical Wired and Wireless Access,” IEEE Photon. Technol. Lett., 22(17), 1294-1296 (2010).
[114] J.–M. Lee, D.–W. Lee, Y.–Y. Won, S.–J. Park, and S.–K. Han, “Reduction of Rayleigh Back-Scattering Noise Using RF-Tone in RSOA Based Bidirectional Optical Link,” Proc. OFC/NFOEC, USA, Paper JThA98, 2008.
[115] A. Chowdhury, H.C. Chien, M.F. Huang, J. Yu, and G.K. Chang, “Rayleigh Backscattering Noise-Eliminated 115-km Long-Reach Bidirectional Centralized WDM-PON With 10-Gb/s DPSK Downstream and Remodulated 2.5-Gb/s OCS-SCM Upstream Signal,” IEEE Photon. Technol. Lett., 20(24), 2081-2083 (2008).
[116] M. Fujiwara, H. Suzuki, and K. Iwatsuki, “Reducing the Backreflection Impact by Using Gain-Saturated SOA in WDM Single-fiber Loopback Access Networks,” Proc.OFC/NFOEC, USA, Paper OTuC2, 2006.
[117] M. Omella, P. Chanclou, J.A. Lazaro, J. Prat, “RSOA as a Sawtooth Generator for Rayleigh Backscattering Effect Mitigation,” Proc. ECOC 2010, Italy, Paper Mo.1.B.5, 2010.
[118] P.J. Urban, A.M.J. Koonen, G.D. Khoe, and H. de Waardt, “Interferometric Crosstalk Reduction in an RSOA-Based WDM Passive Optical Network,” J. Lighwave Technol., 27(22), 4943-4953 (2009).
[119] J. Xu, M. Li, and L.-K. Chen, “Rayleigh Noise Reduction in 10-Gb/s Carrier-Distributed WDM-PONs Using In-Band Optical Filtering,” J. Lightwave Technol., 29(24), 3632-3639 (2011).
[120] G. Talli, C.W. Chow, and P.D. Townsend, “Modeling of Modulation Format for Interferometric Noise Mitigation,” J. Lightwave Technol., 26 (17), 3190-3198 (2008).
[121] C.F. Marki, N. Alic, S. Esener, and S. Radic, “Modeling of Coherent and Incoherent Rayleigh Crosstalk in Conventional Optical Links,” IEEE Photon. Technol. Lett., 19(21), 1735-1737 (2007).
[122] T. Yoshida, S. Kimura, H. Kimura, K. Kumozaki, and T. Imai, “A New Single-Fiber 10-Gb/s Optical Loopback Method Using Phase Modulation for WDM Optical Access Networks,” J. Lightwave Technol., 24(2), 786-796 (2006).
[123] C.W. Chow, C.H. Wang, C.H. Yeh, and S. Chi, “Analysis of the carrier-suppressed single-sideband modulators used to mitigate Rayleigh backscattering in carrier-distributed PON,” Opt. Expr., 19(11), 10973-10978 (2011).
[124] B.E.A. Saleh and M.C. Tech, Fundamental of Photonics, John Wiley & Sons, Inc, 1991.
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
第一頁 上一頁 下一頁 最後一頁 top