|
[1]B. Razavi, RF Microelectronics, Upper Saddle River, NJ: Prentice Hall, 1998. [2]N. M. Nguyen, and R. G. Meyer, “Start-up and frequency stability in high-frequency oscillators,” IEEE J. Solid-State Circuits, vol. 27, no. 5, pp. 810−820, May 1992. [3]B. Razavi, Design of Analog CMOS Integrated Crcuits, MC Graw Hall, 2001. [4]J. R. Long, “Monolithic transformers for silicon RF IC design," IEEE J.Solid-State Circuits, vol. 35, pp. 1368-1382, 2000. [5]A .Zolfaghari, A. Chan, and B. Razavi, “Stacked inductors and transformers in CMOS technology,” IEEE J. Solid-State Circuits, vol. 36, no. 4, pp. 620-628, 2001. [6]P. Andreani and S. Mattisson, “On the use of MOS varactors in RF VCOs,” IEEE J. Solid-State Circuits, vol. 35, no. 6, pp. 905−910, Jun. 2000. [7]J. J. Rael and A. A. Abidi, “Physical processes of phase noise in differential LC Oscillators,” IEEE Custom Integrated Circuits Conference, 2000, pp. 569−572. [8]T. Lee and A. Hajimiri, “Oscillator phase noise: a tutorial,” IEEE J. Solid-State Circuits, vol. 35, no. 3, pp. 326−336, Mar. 2000. [9]A. Hajimiri and T. H. Lee, “A general theory of phase noise in electrical oscillators,” IEEE J. Solid-State Circuits, vol. 33, no. 2, pp. 179−194, Feb. 1998. [10]B. Razavi, Design of Analog CMOS Integrated Circuits, McGraw Hill, 2001. [11]D. Hauspie, E.-C. Park, and J. Craninckx, “Wide-band VCO with simultaneous switching of frequency band, active core, and varactor size,” IEEE J. Solid-StateCircuits, vol. 42, no. 7, pp. 1472–1480, Jul. 2007. [12]P.-C. Huang, M.-D. Tsai, H. Wang, C.-H. Chen, and C.-S. Chang, “A 114GHz VCO in 0.13μm CMOS technology,” IEEE International Solid-State Circuits Conference, vol. 1, pp.404-606, 6-10, Feb. 2005. [13]T. H. Lee, The Design of CMOS Radio Frequency Integrated Circuits, Cambridge University Press, 1998. [14]M. Tiebout, “A CMOS direct injection-locked oscillator topology as high-frequency low-power frequency divider,” IEEE J. Solid-State Circuits, vol. 39, no. 7, pp. 1170–1174, Jul. 2004. [15]H. Wu and A. Hajimiri, “A 19 GHz 0.5mW 0.35 μm CMOS frequency divider with shunt-peaking locking-range enhancement,” ISSCC Tech. Dig., pp. 412–413. Feb. 2001. [16]J. Craninckx and M. S. J. Steyaert, “A 1.75-GHz/3-V dual-modulus divide-by- 128/129 prescaler in 0.7-μm CMOS,” IEEE J. Solid-State Circuits, vol. 31, no. 7, pp. 890−897, July 1996. [17]Q. Huang and R. Rogenmoser, “Speed optimization of edge-triggered CMOS circuits for gigahertz single-phase clocks,” IEEE J. Solid-State Circuits, vol. 31, no. 3, pp. 456−463, Mar. 1996. [18]J. Lee and B. Razavi, “A 40 GHz frequency divider in 0.18-μm CMOS technology,” IEEE J. Solid-State Circuits, vol. 39, no. 4, pp. 594−601, Apr. 2004. [19]H. R. Rategh and T. H. Lee, “Superharmonic injection-locked frequency dividers,” IEEE J. Solid-State Circuits, vol. 34, no. 6, pp. 813−821, Jun. 1999. [20]H. D. Wohlmuth and D. Kehrer, “A high sensitivity static 2:1 frequency divider up to 27 GHz in 120 nm CMOS,” IEEE European Solid State Circuits Conference (ESSCIRC), pp. 823−826, Sept. 2002. [21]M. Tiebout, “A 480 μW 2 GHz ultra low power dual-modulus prescaler in 0.25 μm standard CMOS,” IEEE International Symposium on Circuit and System (ISCAS), , vol. 5, pp. 741−744 May 2000. [22]R. J. Betancourt-Zamora, S. Verma, and T. H. Lee, “1 GHz and 2.8 GHz CMOS injection-locked ring oscillator prescalers,” IEEE Symposium on VLSI Circuits, pp.47−50, Jun. 2001. [23]P. Kinget, R. Melville, D. Long, and V. Gopinathan, “An injection locking scheme for precision quadrature generation,” IEEE J. Solid-State Circuits, vol. 37, no. 7, pp. 845−851, Jul. 2002. [24]W. Z. Chen and C. L. Kuo, “18 GHz and 7 GHz superharmonic injection-locked dividers in 0.25 μm CMOS technology,” IEEE European Solid State Circuits Conference (ESSCIRC), pp. 89−92, Sept. 2002. [25]H. Wu, “Signal generation and processing in high-frequency/high-speed silicon-based integrated circuits,” PhD thesis, California Institute of Technology, 2003. [26]R. Adler, “A study of locking phenomena in oscillators,” Proc. IEEE, vol. 61, pp.1380-1385, Oct. 1973. [27]H. M. Greenhouse, “Design of planar rectangular microelectronic inductors,” IEEE Transactions on Parts, Hybrids, and Packaging, vol. 10, pp. 101-109, Jun 1974. [28]S. H. Lee, S. L. Jang, and Y. H. Chung, “A low voltage divide-by-4 injection locked frequency divider with quadrature outputs,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 5, pp. 373–375, May 2007. [29]K. Yamamoto and M. Fujishima, “70 GHz CMOS harmonic injectionlocked divider,” in IEEE Int. Solid-State Circuits Conf. Dig., pp. 600–601, Feb. 2006. [30]S.-L. Jang, C.-H. Liu, C.-W. Chang, and M.-H. Juang, " A low voltage, low power divide-by-4 LC-tank injection-locked frequency divider, " Int. J. Electronics., Vol. 98 4, p.521-527, April 2011. [31]S.-L. Jang, C. C. Liu and C.-W. Chung, ” A tail-injected divide-by-4 SiGe HBT injection locked frequency divider,” IEEE Microw. Wireless Compon. Lett., pp. 236-238, April, 2009. [32]L. Wu, and H. C. Luong, ‘Analysis and design of a 0.6 V 2.2 mW 58.5-to-72.9 GHz divide-by-4 injection-Llcked frequency divider with harmonic boosting’, IEEE Trans. Circuits and Systems-Part I, Regular Papers, vol. 60, no. 8, pp. 2001-2007, Aug. 2013. [33]S.-L. Jang, and C.-C. Fu, ” Wide locking range divide-by-4 LC-tank injection-locked frequency divider using series-mixers,” published on-line, Analog Integr Circ Sig Process., 2013. [34]C.-W. Chang and S.-L. Jang,” LC-Tank divide-by-4 injection-locked frequency divider using the 2nd harmonic feedback,” Int. J. Electronics., published online, 2013. [35]M.-C. Chuang, J.-J. Kuo, C.-H.Wang, and H. Wang, ”A 50 GHz divide-by-4 injection lock frequency divider using matching method’, IEEE Microw. Wireless Compon. Lett., vol. 18, no. 5, pp. 344–346, May 2008. [36]C.-W. Chang and S.-L. Jang,” LC-Tank divide-by-4 injection-locked frequency divider using the 2nd harmonic feedback,” Int. J. Electronics., vol. 101,no. 2, pp. 204-211, 2014. [37]S.-L. Jang, and C.-C. Fu, ” Wide locking range divide-by-4 LC-tank injection-locked frequency divider using series-mixers,”, Analog Integr Circ Sig Process., Volume 78, Issue 2, pp 523-528, 2013. February 2014. [38]Z. Jin, J. D Cressler, W. Abadeer, X. Liu, M. Hauser, and A. J. Joseph, “Hot carrier stress induced low-frequency noise degradation in 0.13μm and 0.18 μm RF CMOS technologies,” IEEE Int. Reliability Physics Symp., pp. 440 – 444, 2004. [39]E. Sheehan, P. K. Hurley, and A Mathewson,”Hot carrier degradation mechanisms in sub-micron p channel MOSFETs: Impact on low frequency (1/f) noise behaviour,” Microelectronics Reliability, vol. 38, no. 6, pp. 931-936(6), June 1998.
|