|
[1] M. Lundstrom, “Moore's Law Forever?,” Science, vol. 299, pp. 210-211, 2003. [2] S. E. Thompson, R. S. Chau, T. Ghani, K. Mistry, S. Tyagi, and M. T. Bohr, “In search of “Forever,” continued transistor scaling one new material at a time,” IEEE Trans. Electron Devices, vol. 18, pp. 26-36, 2005. [3] M. Xu, T. Liang, M. Shi, and H. Chen, “Graphene-like two-dimensional materials,” Chem. Rev., vol. 113, pp. 3766-98, 2013. [4] R. Mas-Balleste, C. Gomez-Navarro, J. Gomez-Herrero, and F. Zamora, “2D materials: to graphene and beyond,” Nanoscale, vol. 3, pp. 20-30, 2011. [5] K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, et al., “Two-dimensional atomic crystals,” Proc. Natl. Acad. Sci. USA, vol. 102, pp. 10451-10453, 2005. [6] A. Yaya, B. Agyei-Tuffour, D. Dodoo-Arhin, E. Nyankson, E. Annan, D. S. Konadu, E. Sinayobye and C. P. Ewels, “Layered Nanomaterials - A Review,” G. J. E. D. T. , vol. 1, pp. 32-41, 2012. [7] V. P. Verma, S. Das, I. Lahiri, and W. Choi, “Large-area graphene on polymer film for flexible and transparent anode in field emission device,” Appli. Phys. Lett., vol. 96, 2010. [8] S. Chen, L. Brown, M. Levendorf, W. Cai, S.-Y. Ju, J. Edgeworth, et al., “Oxidation Resistance of Graphene-Coated Cu and Cu/Ni Alloy,” ACS Nano, vol. 5, pp. 1321-1327, 2011. [9] A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater., vol. 6, pp. 183-191, 2007. [10] D. Pacil&;eacute;, J. C. Meyer, &;Ccedil;. &;Ouml;. Girit, and A. Zettl, “The two-dimensional phase of boron nitride: Few-atomic-layer sheets and suspended membranes,” Appl. Phys. Lett., vol. 92, 2008. [11] L. Lichtenstein, C. B&;uuml;chner, B. Yang, S. Shaikhutdinov, M. Heyde, M. Sierka, et al., “The Atomic Structure of a Metal-Supported Vitreous Thin Silica Film,” Angew. Chem. Int. Ed., vol. 51, pp. 404-407, 2012. [12] P. Y. Huang, S. Kurasch, A. Srivastava, V. Skakalova, J. Kotakoski, A. V. Krasheninnikov, et al., “Direct Imaging of a Two-Dimensional Silica Glass on Graphene,” Nano Lett., vol. 12, pp. 1081-1086, 2012. [13] J. da Rocha Martins and H. Chacham, “Disorder and Segregation in B−C−N Graphene-Type Layers and Nanotubes: Tuning the Band Gap,” ACS Nano, vol. 5, pp. 385-393, 2010. [14] K. Yuge, “Phase stability of boron carbon nitride in a heterographene structure: A first-principles study,” Phys. Rev. B, vol. 79, p. 144109, 2009. [15] L. Ci, L. Song, C. Jin, D. Jariwala, D. Wu, Y. Li, et al., “Atomic layers of hybridized boron nitride and graphene domains,” Nat Mater, vol. 9, pp. 430-435, 2010. [16] A. Guinier, G. B. Bokij, K. Boll-Dornberger, J. M. Cowley, S. urovič, D. E. Cox, et al., “Nomenclature of polytype structures. Report of the International Union of Crystallography Ad hoc Committee on the Nomenclature of Disordered, Modulated and Polytype Structures,” Acta Crystallogr., Sect. A, vol. 40, pp. 399-404, 1984. [17] RadisavljevicB, RadenovicA, BrivioJ, GiacomettiV, and KisA, “Single-layer MoS2 transistors,” Nat. Nano, vol. 6, pp. 147-150, 2011. [18] G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, “Photoluminescence from Chemically Exfoliated MoS2,” Nano Lett., vol. 11, pp. 5111-5116, 2011. [19] J. N. Coleman, M. Lotya, A. O’Neill, S. D. Bergin, P. J. King, U. Khan, et al., “Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials,” Science, vol. 331, pp. 568-571, 2011. [20] A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, et al., “Emerging Photoluminescence in Monolayer MoS2,” Nano Lett., vol. 10, pp. 1271-1275, 2010. [21] J. A. Wilson and A. D. Yoffe, “The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties,” Adv. Phys., vol. 18, pp. 193-335, 1969. [22] C. Ataca, H. Şahin, and S. Ciraci, “Stable, Single-Layer MX2 Transition-Metal Oxides and Dichalcogenides in a Honeycomb-Like Structure,” J. Phys. Chem. C, vol. 116, pp. 8983-8999, 2012. [23] A. Castellanos-Gomez, M. Poot, G. A. Steele, H. S. J. van der Zant, N. Agra&;iuml;t, and G. Rubio-Bollinger, “Elastic Properties of Freely Suspended MoS2 Nanosheets,” Adv. Mater., vol. 24, pp. 772-775, 2012. [24] S. Bertolazzi, J. Brivio, and A. Kis, “Stretching and Breaking of Ultrathin MoS2,” ACS Nano, vol. 5, pp. 9703-9709, 2011. [25] S. Chuang, C. Battaglia, A. Azcatl, S. McDonnell, J. S. Kang, X. Yin, et al., “MoS2 P-type transistors and diodes enabled by high work function MoOx contacts,” Nano Lett., vol. 14, pp. 1337-42, Mar 12 2014. [26] Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, et al., “Single-Layer MoS2 Phototransistors,” ACS Nano, vol. 6, pp. 74-80, 2012/01/24 2011. [27] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol., vol. 7, pp. 699-712, Nov. 2012. [28] H. Fang, M. Tosun, G. Seol, T. C. Chang, K. Takei, J. Guo, et al., “Degenerate n-doping of few-layer transition metal dichalcogenides by potassium,” Nano. Lett., vol. 13, pp. 1991-5, May 8 2013. [29] C. W. Dunnill, I. MacLaren, and D. H. Gregory, “Superconducting tantalum disulfide nanotapes; growth, structure and stoichiometry,” Nanoscale, vol. 2, pp. 90-97, 2010. [30] F. Jellinek, G. Brauer, and H. Muller, “Molybdenum and Niobium Sulphides,” Nature, vol. 185, pp. 376-377, 1960. [31] V. V. Ivanovskaya, A. Zobelli, A. Gloter, N. Brun, V. Serin, and C. Colliex, “Ab initio study of bilateral doping within the MoS2-NbS2 system,” Phys. Rev. B, vol. 78, p. 134104, 2008. [32] A. Ubaldini, J. Jacimovic, N. Ubrig, and E. Giannini, “Chloride-Driven Chemical Vapor Transport Method for Crystal Growth of Transition Metal Dichalcogenides,” Crystal. Growth. Design., vol. 13, pp. 4453-4459, 2013. [33] M. S. Dave, K. R. Patel, and R. D. Vaidya, “Structural Characterization of NbS2 single Crystals,” J. Phys. Math. Sci., vol. 2 (3), pp. 47-51, July-September 2012. [34] R. Vaidya, M. Dave, S. S. Patel, S. G. Patel, and A. R. Jani, “Growth of molybdenum disulphide using iodine as transport material,” Pramana, vol. 63, pp. 611-616, 2004. [35] M. Binnewies, R. Glaum, M. Schmidt, and P. Schmidt, “Chemical Vapor Transport Reactions – A Historical Review,” Z. Anorg. All. Chem., vol. 639, pp. 219-229, 2013. [36] U. Hotje and M. Binnewies, “Der Chemische Transport von Mischphasen im System MoS2/MoSe2, MoS2/NbS2, MoSe2/NbSe2 und NbS2/NbSe2,” Z. Anorg. All. Chem., vol. 631, pp. 2467-2474, 2005. [37] F. Wypych, “Dissulfeto de molibd&;ecirc;nio, um material multifuncional e surpreendente,” Qu&;iacute;mica Nova, no. 1, pp. 83-88, 2002. [38] W. G. McMullan and J. C. Irwin, “Raman scattering from 2H and 3R–NbS2,” Solid State Commun., vol. 45, pp. 557-560, 1983. [39] S. Onari, T. Arai, R. Aoki, and S. Nakamura, “Raman scattering in 3R?徛bS2,” Solid State Commun., vol. 31, pp. 577-579, 1979. [40] D. O. Dumcenco, K. Y. Chen, Y. P. Wang, Y. S. Huang, and K. K. Tiong, “Raman study of 2H-Mo1−xWxS2 layered mixed crystals,” J. Alloys Compd., vol. 506, pp. 940-943, 2010. [41] C. Ramana, U. Becker, V. Shutthanandan, and C. Julien, “Oxidation and metal-insertion in molybdenite surfaces: evaluation of charge-transfer mechanisms and dynamics,” Geochem. Trans., vol. 9, p. 8, 2008. [42] S. Nakashima, Y. Tokuda, A. Mitsuishi, R. Aoki, and Y. Hamaue, “Raman scattering from 2H-NbS2 and intercalated NbS2,” Solid State Commun., vol. 42, pp. 601-604, 1982.
|