|
[1]J. E. Anthony, A. Facchetti, M. Heeney, S. R. Marder, and X. Zhan, “n-Type Organic Semiconductors in Organic Electronics,” Advanced Materials, Vol. 22, No. 34, pp. 3876-3892 (2010). [2]C. L. Fan, Y. Z. Lin, and C. H. Huang, “Combined Scheme of UV/Ozone and HMDS Treatment on a Gate Insulator for Performance Improvement of a Low-Temperature-Processed Bottom-Contact OTFT,” Semiconductor Science and Technology, Vol. 26, No. 3, pp. 045006-1-045006-5 (2011). [3]T. Sekitani, U. Zschieschang, H. Klauk, and T. Someya, “Flexible Organic Transistors and Circuits with Extreme Bending Stability,” Nature Materials, Vol. 9, No. 12, pp. 1015-1022 (2010). [4]A. C. Mayer, M. T. Lloyd, D. J. Herman, T. G. Kasen, and G. G. Malliaras, “Postfabrication Annealing of Pentacene-Based Photovoltaic Cells,” Applied Physics Letters, Vol. 85, No. 25, pp. 6272-6274 (2004). [5]C. C. Lee, C. H. Yuan, S. W. Liu, and Y. S. Shih, “Efficient Deep Blue Organic Light-Emitting Diodes Based on Wide Band Gap 4-Hydroxy-8-Methyl-1.5-Naphthyridine Aluminum Chelate as Emitting and Electron Transporting Layer,” Journal of Display Technology, Vol. 7, No. 8, pp. 454-458 (2011). [6]C. D. Dimitrakopoulos, and P. R. L. Malenfant, “Organic Thin Film Transistors for Large Area Electronics,” Advanced Materials, Vol. 14, No. 2, pp. 99-117 (2002). [7]A. Tsumura, K. Koezuka, and T. Ando, “Macromolecular Electronic Device: Field-Effect Transistor with a Polythiophene Thin Film,” Applied Physics Letters, Vol. 49, No. 18, pp. 1210–1212 (1986). [8]G. Horowitz, D. Fichou, X. Z. Peng, Z. G. Xu, and F. Garnier, “A Field-Effect Transistor Based on Conjugated Alpha-Sexithienyl,” Solid State Communications, Vol. 72, No. 4, pp. 381–384 (1989). [9]J. M. Shaw, and P. F. Seidler, “Organic Electronics: Introduction,” IBM Journal of Research and Development, Vol. 45, No. 1, pp. 3–9 (2001). [10]C. D. Sheraw, L. Zhou, J. R. Huang, D. J. Gundlach, T. N. Jackson, M. G. Kane, I. G. Hill, M. S. Hammond, J. Campi, B. K. Greening, J. Francl, and J. West, “Organic Thin-Film Transistor-Driven Polymer-Dispersed Liquid Crystal Displays on Flexible Polymeric Substrates,” Applied Physics Letters, Vol. 80, No. 6, pp. 1088–1090 (2006). [11]M. Mizukami, N. Hirohata, T. Iseki, K. Ohtawara, T. Tada, S. Yagyu, T. Abe, T. Suzuki, Y. Fujisaki, Y. Inoue, S. Tokito, and T. Kurita, “Flexible AM OLED Panel Driven by Bottom-Contact OTFTs,” IEEE Electron Device Letters, Vol. 27, No. 4, pp. 249–251 (2006). [12]R. Wisnieff, “Display Technology: Printing Screens,” Nature, Vol. 394, No. 6690, pp. 225–227 (1998). [13]R. Rotzoll, S. Mohapatra, V. Olariu, R. Wenz, M. Grigas, K. Dimmlerb, O. Shchekin, and A. Dodabalapur, “Radio Frequency Rectifiers Based on Organic Thin-Film Transistors,” Applied Physics Letters, Vol. 88, No. 12, pp. 123502–123502-3 (2006). [14]T. Someya, T. Sekitani, S. Iba, Y. Kato, H. Kawaguchi, and T. Sakurai, “A Large-Area, Flexible Pressure Sensor Matrix with Organic Field-Effect Transistors for Artificial Skin Applications,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 101, No. 27, pp. 9966–9970 (2004). [15]G. Horowitz, “Organic Thin Film Transistors: From Theory to Real Devices,” Journal of Materials Research, Vol. 19, No. 7, pp. 1946–1962 (2004). [16]S. K. Park, Y. H. Kim, J. I. Han, D. G. Moon, and W. K. Kim, “High-Performance Polymer TFTs Printed on a Plastic Substrate,” IEEE Transactions on Electron Devices, Vol. 49, No. 11, pp. 2008–2015 (2002). [17]S. Locci, M. Morana, E. Orgiu, A. Bonfiglio, and P. Lugli, “Modeling of Short-Channel Effects in Organic Thin-Film Transistors,” IEEE Transactions on Electron Devices, Vol. 55, No. 10, pp. 2561–2567 (2008). [18]B. Kumar, B. K. Kaushik, and Y. S. Negi, “Perspectives and Challenges for Organic Thin Film Transistors: Materials, Devices, Processes and Applications,” Journal of Materials Science: Materials in Electronics, Vol. 25, No. 1, pp. 1–30 (2014). [19]B. C. Shekar, J. Lee, and S. W. Rhee, "Organic Thin Film Transistors: Materials, Processes and Devices," Korean Journal of Chemical Engineering, Vol. 21, No. 1, pp. 267–285 (2004). [20]J. H. Schon, “New Phenomena in High Mobility Organic Semiconductors,” Physica Status Solidi (b), Vol. 226, No. 2, pp. 257–270 (2001). [21]J. H. Schon, and B. Batlogg, “Trapping in Organic Field-Effect Transistors,” Journal of Applied Physics, Vol. 89, No. 1, pp. 336–342 (2001). [22]G. Horowitz, “Organic Field-Effect Transistors,” Advanced Materials, Vol. 10, No. 5, pp. 365–377 (1998). [23]T. Minari, T. Miyadera, K. Tsukagoshi, Y. Aoyagi, and H. Ito, “Charge Injection Process in Organic Field-Effect Transistors,” Applied Physics Letters, Vol. 91, No. 5, pp. 053508-1–053508-3 (2007). [24]S. Schiefer, M. Huth, A. Dobrinevski, and B. Nickel, “Determination of the Crystal Structure of Substrate-Induced Pentacene Polymorphs in Fiber Structured Thin Films,” Journal of the American Chemical Society, Vol. 129, No. 34, pp. 10316–10317 (2007). [25]J. R. Brews, K. K. Ng, and R. K. Watts, Submicron Integrated Circuits, John Wiley and Sons, NY, pp. 9–86 (1989). [26]H. W. Zan, K. H. Yen, P. K. Liu, K. H. Ku, C. H. Chen, and J. Hwang, “Low-Voltage Organic Thin Film Transistors with Hydrophobic Aluminum Nitride Film as Gate Insulator,” Organic Electronics, Vol. 8, No. 4, pp. 450–454 (2007). [27]A. Lodha and R. Singh, “Prospects of Manufacturing Organic Semiconductor-Based Integration Circuits,” IEEE Transactions on Semiconductor Manufacturing, Vol. 14, No. 3, pp. 281–296 (2001). [28]K. Shibata, K. Ishikawa, H. Takezoe, H. Wada, and T Mori, “Contact Resistance of Dibenzotetrathiafulvalene-Based Organic Transistors with Metal and Organic Electrodes,” Applied Physics Letters, Vol. 92, No. 2, pp. 023305-1–023305-3 (2008). [29]N. Takahashi, A. Maeda, K. Uno, E. Shikoh, Y. Yamamoto, H. Hori, Y. Kubozono, and A. Fujiwara, “Output Properties of C60 Field-Effect Transistors with Different Source/Drain Electrodes,” Applied Physics Letters, Vol. 90, No. 8, pp. 083503-1–083503-3 (2007). [30]H. Klauk, G. Schmid, W. Radlik, W. Weber, L. Zhou, C. D. Sheraw, J. A. Nichols, and T. N. Jackson, “Contact Resistance in Organic Thin-Film Transistors,” Solid-State Electronics, Vol. 47, No. 2, pp. 297–301 (2003). [31]J. Park, J. M. Kang, D. W. Kim, and J. S. Choi, “Contact Resistance Variation in Top-Contact Organic Thin-Film Transistors with the Deposition Rate of Au Source/Drain Electrodes,” Thin Solid Films, Vol. 518, No. 22, pp. 6232–6235 (2010). [32]L. Zhou, S. Park, B. Bai, J. Sun, S. C. Wu, T. N. Jackson, S. Nelson, D. Freeman, and Y. Hong, “Pentacene TFT Driven AM OLED Displays,” IEEE Electron Devices Letters, Vol. 26, No. 9, pp. 640–642 (2005). [33]C. L. Fan, P. C. Chiu, Y. H. Yang, and C. C. Lin, “Low-Temperature-Processed (< 100℃) Organic Thin-Film Transistor Using Hollow-Cathode CVD SiO2 as the Gate Insulator,” Semiconductor Science and Technology, Vol. 25, No. 7, pp. 075006-1–075006-5 (2010). [34]H. S. Tan, T. Cahyadi, Z. B. Wang, A. Lohani, Z. Tsakadze, S.. Zhang, F. R. Zhu, and S. G. Mhaisalkar, “Low-Temperature-Processed Inorganic Gate Dielectrics for Plastic-Substrate-Based Organic Field-Effect Transistors,” IEEE Electron Devices Letters, Vol. 29, No. 7, pp. 6981–700 (2008). [35]J. B. Koo, J. H. Lee, C. H. Ku, S. C. Lim, S. H. Kim, J. W. Lim, S. J. Yun, and T. Zyung, “The Effect of Channel Length on Turn-On Voltage in Pentacene-Based Thin Film Transistor,” Synthetic Metal, Vol. 156, No. 7-8, pp. 633–636 (2006). [36]G. H. Gelinck, H. E. A. Huitema, E. van Veenendaal, E. Cantatore, L. Schrijnemakers, J. B. P. H. van der Putten, T. C. T. Geuns, M. Beenhakkers, J. B. Giesbers, B. H. Huisman, E. J. Meijer, E. M. Benito, F. J. Touwslager, A. W. Marsman, B. J. E. van Rens, and D. M. de Leeuw, “Flexible Active-Matrix Displays and Shift Registers Based on Solution-Processed Organic Transistors,” Nature Materials, Vol. 3, No. 2, pp. 106–110 (2004). [37]I. Kymissis, C. D. Dimitrakopoulos, and S. Purushothaman, “High-Performance Bottom Electrode Organic Thin-Film Transistors,” IEEE Transactions on Electron Devices, Vol. 48, No. 6, pp. 1060–1064 (2001). [38]D. Gupta, M. Katiyar, and D. Gupta, “An Analysis of The Difference in Behavior of Top and Bottom Contact Organic Thin Film Transistors Using Device Simulation,” Organic Electronics, Vol. 10, No. 5, pp. 775–784 (2009). [39]S. J. Kang, M. Noh, D. S. Park, H. J. Kim, S. Y. Kim, B. W. Koo, I. N. Kang, and C. N. Whang, “Geometric Effect of Channel on Device Performance in Pentacene Thin-Film Transistor,” Japanese Journal of Applied Physics, Vol. 43, No. 11 A, pp. 7718–7721 (2004). [40]N. Yoneya, M. Noda, N. Hirai, K. Nomoto, M. Wada, and J. Kasahara, “Reduction of Contact Resistance in Pentacene Thin-Film Transistors by Direct Carrier Injection into A-Few-Molecular-Layer Channel,” Applied Physics Letters, Vol. 85, No. 20, pp. 4663–4665 (2004). [41]M. Leufgen, U. Bass, T. Muck, T. Borzenko, G. Schmidt, J. Geurts, V. Wagner, and L. W. Molenkamp, "Optimized Sub-Micron Organic Thin-Film Transistors: The Influence of Contacts and Oxide Thickness," Synthetic Metals, Vol. 146, No. 3, pp. 341–345 (2004). [42]K. D. Jung, Y. C. Kim, H. Shin, B. G. Park, J. D. Lee, E. S. Cho, and S. J. Kwon, “A Study on the Carrier Injection Mechanism of The Bottom-Contact Pentacene Thin Film Transistor,” Applied Physics Letters, Vol. 96, No. 10, pp. 103305-1–103305-3 (2010). [43]C. L. Fan, T. H. Yang, and P. C. Chiu, “Performance Improvement of Bottom-Contact Pentacene-Based Organic Thin-Film Transistors by Inserting a Thin Polytetrafluoroethylene Buffer Layer,” Applied Physics Letters, Vol. 97, No. 14, pp. 143306-1–143306-3 (2010). [44]M. Xu, M. Nakamura, M. Sakai, and K. Kudo, “High-Performance Bottom-Contact Organic Thin-Film Transistors with Controlled Molecule-Crystal/Electrode Interface,” Advanced Materials, Vol. 19, No. 3, pp. 371–375 (2007). [45]M. Xu, M. Nakamura, and K. Kudo, “Thickness Dependence of Mobility of Pentacene Planar Bottom-Contact Organic Thin-Film Transistors,” Thin Solid Films, Vol. 516, No. 9, pp. 2776–2778 (2008). [46]J. Park, R. D. Yang, C. N. Colesniuc, A. Sharoni, S. Jin, I. K. Schuller, W. C. Trogler, and A. C. Kummel, “Bilayer Processing for an Enhanced Organic-Electrode Contact in Ultrathin Bottom Contact Organic Transistors,” Applied Physics Letters, Vol. 92, No. 19, pp. 193311-1–193311-3 (2008). [47]S. C. Lim, S. H. Kim, J. H. Lee, M. K. Kim, D. J. Kim, and T. Zyung, “Surface-Treatment Effects on Organic Thin-Film Transistors,” Synthetic Metals, Vol. 148, No. 1, pp. 75–79 (2005). [48]A. Benor, and D. Knipp, “Contact Effects in Organic Thin Film Transistors with Printed Electrodes,” Organic Electronics, Vol. 9, No. 2, pp. 209–219 (2008). [49]P. V. Necliudov, M. S. Shur, D. J. Gundlach, and T. N. Jackson, “Contact Resistance Extraction in Pentacene Thin Film Transistors,” Solid-State Electronics, Vol. 47, No. 2, pp. 259–262 (2003). [50]X. Yan, U. Wang, H. Wang, H. Wang, and D. Yan, “Improved n-Type Organic Transistors by Introducing Organic Heterojunction Buffer Layer under Source/Drain Electrodes,” Applied Physics Letters, Vol. 89, No. 5, pp. 053510-1–053510-3 (2006). [51]C. R. Newman, C. D. Frisbie, D. A. Da Silva Filho, J. L. Bredas, P. C. Ewbank, and K. R. Mann, “Introduction to Organic Thin Film Transistors and Design of n-Channel Organic Semiconductors,” Chemistry of Materials, Vol. 16, No. 23, pp. 4436–4451 (2004). [52]B. Stadlober, U. Haas, H. Gold, A. Haase, G. Jakopic, G. Leising, N. Koch, S. Rentenberger, and E. Zojer, “Orders-of-Magnitude Reduction of the Contact Resistance in Short-Channel Hot Embossed Organic Thin Film Transistors by Oxidative Treatment of Au-Electrodes,” Advanced Functional Materials, Vol. 17, No. 15, pp. 2687–2692 (2007). [53]C. L. Fan, P. C. Chiu, Y. Z. Lin, T. H. Yang, and C. Y. Chiang, “Investigation on the Electrical Characteristics of a Pentacene Thin-Film Transistor and Its Reliability under Positive Drain Bias Stress,” Semiconductor Science and Technology, Vol. 26, No. 23, pp. 125007-1–125007-6 (2011). [54]C. Auner, U. Palfinger, H. Gold, J. Kraxner, A. Haase, T. Haber, M. Sezen, W. Grogger, G. Jakopic, J. R. Krenn, G. Leising, and B. Stadlober, “Residue-Free Room Temperature UV-Nanoimprinting of Submicron Organic Thin Film Transistors,” Organic Electronics, Vol. 10, No. 8, pp. 1466–1472 (2009). [55]B. Crone, A. Dodabalapur, Y.Y. Lin, R.W. Filas, Z. Bao, A. LaDuca, R. Sarpeshkar, H.E. Katz, and W. Li, “Large-Scale Complementary Integrated Circuits Based on Organic Transistors,” Nature, Vol. 403, No. 6769,pp. 521–523 (2000). [56]J. Z. Wang, Z. H. Zheng, and H. Sirringhaus, “Suppression of Short-Channel Effects in Organic Thin-Film Transistors,” Applied Physics Letters, Vol. 89, No. 8, pp. 083513-1–083513-3 (2006). [57]L. Wang, D. Fine, T. Jung, D. Basu, H. Von Seggern, and A. Dodabalapur, “Pentacene Field-Effect Transistors with Sub-10-nm Channel Lengths,” Applied Physics Letters, Vol. 85, No. 10, pp. 1772–1774 (2004). [58]K. Tukagoshi, F. Fujimori, T. Minari, T. Miyadera, T. Hamano, and Y. Aoyagi, “Suppression of Short Channel Effect in Organic Thin Film Transistors,” Applied Physics Letters, Vol. 91, No. 11, pp. 113508-1–113508-3 (2007). [59]Y. Ishii, H. Sakai, and H. Murata, “Fabrication of a Submicron-Channel Organic Field-Effect Transistor Using A Controllable Electrospun Single Fibre as a Shadow Mask,” Nanotechnology, Vol. 22, No. 20, pp. 205202-1–205202-6 (2011). [60]B. K. Sarker, and S. I. Khondaker, “High-Performance Short Channel Organic Transistors Using Densely Aligned Carbon Nanotube Array Electrodes,” Applied Physics Letters, Vol. 100, No. 2, pp. 023301-1–023301-4 (2012). [61]C. L. Fan, Y. Z. Lin, W. D. Lee, S. J. Wang, and C. H. Huang, “Improved Pentacene Growth Continuity for Enhancing the Performance of Pentacene-Based Organic thin-Film Transistors,” Organic Electronics, Vol. 13, No. 12, pp. 2924–2928 (2012). [62]J. B. Lee, P. C. Chang, J. A. Liddle, and V. subramanian, “10-nm Channel Length Pentacene Transistors,” IEEE Transactions on Electron Devices, Vol. 52, No. 9, pp. 1874–1879 (2005). [63]D. J. Gundlach, L. Zhou, J. A. Nichols, T. N. Jackson, P. V. Necliudov, and M. S. Shur, “An Experimental Study of Contact Effects in Organic Thin Film Transistors,” Journal of Applied Physics, Vol. 100, No. 2, pp. 024509-1–024509-13 (2006). [64]C. L. Fan, C. C. Lin, T. H. Yang, and C. H. Huang, “N2O-Plasma Effect on Low-Temperature Deposited Gate Dielectric for Organic Thin-Film Transistors,” Electronics Letters, Vol. 44, No. 19, pp. 1158-1–1158-2 (2008). [65]A. D. Carlo, F. Piacenza, A. Bolognesi, B. Stadlober, and H. Maresch, “Influence of Grain Sizes on the Mobility of Organic Thin-Film Transistors,” Applied Physics Letters, Vol. 86, No. 26, pp. 263501-1–263501-3 (2005). [66]C. L. Fan, T. H. Yang, P. C. Chiu, C. H. Huang, and C. I. Lin, “Organic Thin-Film Transistor Performance Improvement Using Ammonia (NH3) Plasma Treatment on the Gate Insulator Surface,” Solid-State Electronics, Vol. 53, No. 2, pp. 246–250 (2009). [67]B. T. Wu, T. K. Su, M. L. Tu, A. C. Wang, T. S. Chen, T. Z. Chiou, Y. T. Chiou, and C. H. Chu, “Interface Modification in Organic Thin Film Transistors,” Japanese Journal of Applied Physics, Vol. 44, No. 4S, pp. 2783–2786 (2005). [68]S. K. Kang, J. Y. Park, S. M. Jung, H. J. Lee, P. K. Son, J. C. Kim, T. H. Yoon, and M. S. Yi, “Performance Enhancement of Organic Thin-Film Transistors by Low-Energy Argon Ion Beam Treatment of Gate Dielectric Surface,” Japanese Journal of Applied Physics, Vol. 46, No. 4B, pp. 2696–2699 (2007). [69]Y. S. Jang, J. H. Cho, D. H. Kim, Y. D. Park, M. K. Hwang, and K. W. Cho, “Effects of the Permanent Dipoles of Self-Assembled Monolayer-Treated Insulator Surfaces on the Field-Effect Mobility of a Pentacene Thin-Film Transistor,” Applied Physics Letters, Vol. 90, No. 13, pp. 132104-1–132104-3 (2007). [70]D. Guo, S. Entani, S. Ikeda, and K. Saiki, “Effect of UV/ozone Treatment of the Dielectric Layer on the Device Performance of Pentacene Thin Film Transistors,” Chemical Physics Letters, Vol. 429, No. 1-3, pp. 124–128 (2006). [71]M. Susukida, M. Kamei, H. Takezoe, and K. Ishikawa, “Usefulness of Substrate Cleaning with Carbon Dioxide for Organic Electronic Devices,” Japanese Journal of Applied Physics, Vol. 46, No. 36-40, pp. L910–L912 (2007). [72]J. B. Koo, S. Y. Kang, I. K. You, and K. S. Suh, “Effect of UV/ozone Treatment on Hysteresis of Pentacene Thin-Film Transistor with Polymer Gate Dielectric,” Solid-State Electronics, Vol. 53, No. 6, pp. 621–625 (2009). [73]A. Wang, I. Kymissis, V. Bulović, and A. I. Akinwande, “Tunable Threshold Voltage and Flatband Voltage in Pentacene Field Effect Transistors,” Applied Physics Letters, Vol. 89, No. 11, pp. 112109-1–112109-3 (2006). [74]H. Ohnuki, W. Changhai, M. Izumi, T. Tatewaki, and K. Ikegami, “Effects of Interfacial Modification on the Performance of an Organic Transistor Based on TCNQ LB Films,” Thin Solid Films, Vol. 516, No. 9, pp. 2747–2752 (2008). [75]W. Y. Chou, C. W. Kuo, H. L. Cheng, Y. R. Chen, F. C. Tang, F. Y. Yang, D. Y. Shu, and C. C. Liao, “Effect of Surface Free Energy in Gate Dielectric in Pentacene Thin-Film Transistors,” Applied Physics Letters, Vol. 89, No. 11, pp. 112126-1–112126-3 (2006). [76]I. Yagi, K. Tsukagoshi, and Y. Aoyagi, “Modification of the Electric Conduction at the Pentacene/SiO2 Interface by Surface Termination of SiO2,” Applied Physics Letters, Vol. 86, No. 10, pp. 103502-1–103502-3 (2005). [77]M. Yoshida, S. Uemura, T. Kodzasa, T. Kamata, M. Matsuzawa, and T. Kawai, “Surface Potential Control of an Insulator Layer for the High Performance Organic FET,” Synthetic Metals, Vol. 137, No. 1-3, pp. 967–968 (2003). [78]J. B. Koo, S. H. Kim, J. H. Lee, C. H. Ku, S. C. Lim, and T. Zyung, “The Effects of Surface Treatment on Device Performance in Pentacene-Based Thin Film Transistor,” Synthetic Metals, Vol. 156, No. 2-4, pp. 99–103 (2006). [79]C. R. Newman, C. D. Frisbie, D. A. Da Silva Filho, J. L. Bredas, P. C. Ewbank, and K. R. Mann, “Introduction to Organic Thin Film Transistors and Design of n-Channel Organic Semiconductors,” Chemistry of Materials, Vol. 16, No. 23, pp. 4436–4451 (2004). [80]E. V. Jelenkovic, and K. Y. Tong, “Stability of Nitrided Silicon Dioxide Deposited by Reactive Sputtering,” Applied Physics Letters, Vol. 67, No. 18, pp. 2693–2695 (1995). [81]K. Sekine, Y. Saito, M. Hirayama, and T. Ohmi, “Highly Reliable Ultrathin Silicon Oxide Film Formation at Low Temperature by Oxygen Radical Generated in High-Density Krypton Plasma,” IEEE Transactions on Electron Devices, Vol. 48, No. 8, pp. 1550–1555 (2001). [82]L. L. Chua, J. Zaumseil, J. F. Chang, E. C. W. Ou, P. K. H. Ho, H. Sirringhaus, and R. H. Friend, “General Observation of n-Type Field-Effect Behaviour in Organic Semiconductors,” Nature, Vol. 434, No. 7030, pp. 194–199 (2005). [83]S. K. Park, T. N. Jackson, J. E. Anthony, and D. A. Mourey, “High Mobility Solution Processed 6, 13-Bis(Triisopropyl-Silylethynyl) Pentacene Organic Thin Film Transistors,” Applied Physics Letters, Vol. 91, No. 6, pp. 063514-1–063514-3 (2007). [84]J. S. Park, W. S. Jeon, J. S. Park, J. H. Kwon, and M. C. Suh, “The Effect of Surface Treatment of Bottom Contact Organic Thin Film Transistor,” Synthetic Metals, Vol. 161, No. 17-18, pp. 1953–1957 (2011). [85]C. C. Li, “Investigation of Top-Contact Organic Thin-Film Transistor with New Patterning Active Layer by Traditional Photolithography,” Masters Dissertation, National Taiwan University of Science and Technology, Taipei, Taiwan (2013). [86]H. S. Chang, “Investigation on Performance Improvement of Organic Thin-Film Transistor Using p-Type Doped Injection Layer,” Masters Dissertation, National Taiwan University of Science and Technology, Taipei, Taiwan (2013).
|