|
[1]S.-M. Wang, C.-H. Chi, M.-Y. Hsieh, and C.-Y. Chang, “Miniaturized spurious passband suppression microstrip filter using meandered parallel coupled lines,” IEEE Trans. Microw. Theory Techn., vol. 53, no. 2, pp. 747–753, Feb. 2005. [2]S. Sun, J. Shi, L. Zhu, S.-C. Rustagi, K. Kang, and K. Mouthaan, “40 GHz compact TFMS meander-line bandpass filter on silicon substrate,” Electron. Lett., vol. 43, no. 25, pp. 1433–1434, Dec. 2007. [3]X. Jin, Z.-H. Zhang, L. Wang, and B.-R. Guan, “Compact dual-band bandpass filter using single meander multimode DGS resonator,” Electron. Lett., vol. 49, no. 17, pp. 1083–1084, Aug. 2013. [4]H. Ghali and T. A. Moselhy, “Miniaturized fractal rat-race, branch-line, and coupled-line hybrids,” IEEE Trans. Microw. Theory Techn., vol. 52, no. 11, pp. 2513–2520, Nov. 2004. [5]G. Karimi, F. Khamin-Hamedani, and H. Siahkamari, “Miniaturised microstrip lowpass filter with sharp roll-off and ultra-wide stopband,” Electron. Lett., vol. 49, no. 21, pp. 1343–1345, Oct. 2013. [6]Y.-C. Chiang and C.-Y. Chen, “Design of a wide-band lumped-element 3-dB quadrature coupler,” IEEE Trans. Microw. Theory Techn., vol. 49, no. 3, pp. 476–479, Mar. 2001. [7]J.-A. Hou and Y.-H. Wang, “Design of compact 90° and 180° couplers with harmonic suppression using lumped-element bandstop resonators,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 11, pp. 2932–2939, Nov. 2010. [8]F.-R. Yang, K.-P. Ma, Y. Qian and T. Itoh, “A uniplanar compact photonic-bandgap (UC-PBG) structure and its applications for microwave circuits,” IEEE Trans. Microw. Theory Techn., vol. 47, no. 8, pp. 1509–1514, Aug. 1999. [9]P. Meissner and M. Kitlinski, “A 3-dB multilayer coupler with UC-PBG structure,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 2, pp. 52–54, Feb. 2005. [10]C.-C. Chen and C.-K. C. Tzuang, “Synthetic quasi-TEM meandered transmission lines for compacted microwave integrated circuits,” IEEE Trans. Microw. Theory Techn., vol. 52, no. 6, pp. 1637–1647, Jun. 2004. [11]H.-S. Wu, H.-J. Yang, C.-J. Peng, and C.-K. C. Tzuang, “Miniaturized microwave passive filter incorporating multilayer synthetic quasi-TEM transmission line,” IEEE Trans. Microw. Theory Techn., vol. 53, no. 9, pp. 2713–2720, Sep. 2005. [12]M.-J. Chiang, H.-S. Wu, and C.-K. C. Tzuang, “Artificial-synthesized edge-coupled transmission lines for compact CMOS directional coupler designs,” IEEE Trans. Microw. Theory Techn., vol. 57, no. 12, pp. 3410–3417, Dec. 2009. [13]Y. Chung, S.-S. Jeon, S. Kim, D. Ahn, J.-I. Choi, and T. Itoh, “Multifunctional microstrip transmission lines integrated with defected ground structure for RF front-end application,” IEEE Trans. Microw. Theory Techn., vol. 52, no. 5, pp. 1425–1432, May 2004. [14]W.-T. Liu, C.-H. Tsai, T.-W. Han, and T.-L. Wu, “An embedded common-mode suppression filter for GHz differential signals using periodic defected ground plane,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 4, pp. 248–250, Apr. 2008. [15]S. Shi, W.-W. Choi, W. Che, K.-W. Tam, and Q. Xue, “Ultra-wideband differential bandpass filter with narrow notched band and improved common-mode suppression by DGS,” IEEE Microw. Wireless Compon. Lett., vol. 22, no. 4, pp. 185–187, Apr. 2012. [16]W.-H. Tu and K. Chang, “Compact second harmonic-suppressed bandstop and bandpass filters using open stubs,” IEEE Trans. Microw. Theory Techn., vol. 54, no. 6, pp. 2497–2502, Jun. 2006. [17]C.-W. Tang and M.-G. Chen, “Wide stopband parallel-coupled stacked SIRs bandpass filters with open-stub lines,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 12, pp. 666–668, Dec. 2006. [18]K.-K. M. Cheng and W.-C. Ip, “A novel power divider design with enhanced spurious suppression and simple structure,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 12, pp. 3903–3908, Dec. 2010. [19]C.-H. Li, C.-L. Yeh, M.-H. Huang, and S.-M. Wu, “A harmonic suppression bandpass filter designed by E-type SIR with shunt open stub,” in Proc. 2011 Asia-Pacific Microw. Conf., Melbourne, Australia, pp. 1031–1034. [20]S.-S. Gao, S. Sun, and S. Xiao, “A novel wideband bandpass power divider with harmonic-suppressed ring resonator,” IEEE Microw. Wireless Compon. Lett., vol. 23, no. 3, pp. 119–121, Mar. 2013. [21]Y.-H. Cho and S.-W. Yun, “Design of Balanced Dual-Band Bandpass Filters Using Asymmetrical Coupled Lines,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 8, pp. 2814–2820, Aug. 2013. [22]J.-T. Kuo, Y.-C. Chiou, and J.-S. Wu, “Miniaturized rat race coupler with microstrip-to-CPW broadside-coupled structure and stepped-impedance sections,” in IEEE MTT-S Int. Microw. Symp. Dig., Honolulu, HI, pp. 169–172, 2007. [23]K.-S. Chin, K.-M. Lin, Y.-H. Wei, T.-H. Tseng, and Y.-J. Yang, “Compact dual-band branch-line and rat-race couplers with stepped-impedance-stub lines,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 5, pp. 1213–1221, May 2010. [24]C.-H. Kim and K. Chang, “Wide-stopband bandpass filters using asymmetric stepped-impedance resonatorsr,” IEEE Microw. Wireless Compon. Lett., vol. 23, no. 2, pp. 69–71, Feb. 2013. [25]K. W. Eccleston and S. H. M. Ong, “Compact planar microstripline branch-line and rat-race couplers,” IEEE Trans. Microw. Theory Techn., vol. 51, no. 10, pp. 2119–2125, Oct. 2003. [26]C.-W. Wang, T.-G. Ma and C.-F. Yang, “A new planar artificial transmission line and its applications to a miniaturized butler matrix,” IEEE Trans. Microw. Theory Techn., vol. 55, no. 12, pp. 2792–2801, Dec. 2007. [27]C.-C. Wang, C.-H. Lai, and T.-G. Ma, “Miniaturized coupled-line couplers using uniplanar synthesized coplanar waveguides,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 8, pp. 2266–2276, Aug. 2010. [28]C.-C. Wang, H.-C. Chiu, and T.-G. Ma, “A slow-wave multilayer synthesized coplanar waveguide and its applications to rat-race coupler and dual-mode filter,” IEEE Trans. Microw. Theory Techn., vol. 59, no. 7, pp. 1719–1728, Jul. 2011. [29]K.-C. Lin, C.-H. Wu, C.-H. Lai, and T.-G. Ma, “Novel dual-band decoupling network for two-element closely spaced array using synthesized microstrip lines,” IEEE Trans. Antennas Propag., vol. 60, no. 11, pp. 5118–5128, Nov. 2012. [30]J.-W. Tsai, C.-H. Wu, and T.-G. Ma, “Novel dual-mode retrodirective array using synthesized microstrip lines,” IEEE Trans. Microw. Theory Techn., vol. 59, no. 12, pp. 3375–3388, Dec. 2011. [31]J.-Y. Zou, C.-H. Wu, and T.-G. Ma, “Heterogeneous integrated beam-switching/retrodirective array using synthesized transmission lines,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 8, pp. 3128–3139, Aug. 2013. [32]C.-H Lai, C.-Y. Shiau, and T.-G. Ma “Novel tri-operational mode synthesized transmission line,” in Proc. 43th Eur. Microw. Conf., Nuremberg, Germany, pp. 581-584, 2013. [33]C.-H. Lai, C.-Y. Shiau, and T.-G. Ma, “Microwave three-channel selector using tri-mode synthesized transmission lines,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 10, pp. 3529–3540, Oct. 2013. [34]K.-H. Yi and B. Kang, “Modified Wilkinson power divider for nth harmonic suppression,” IEEE Microw. Wireless Compon. Lett., vol. 13, no. 5, pp. 178–180, May 2003. [35]D.-J. Woo and T.-K. Lee, “Suppression of harmonics in Wilkinson power divider using dual-band rejection by asymmetric DGS,” IEEE Trans. Microw. Theory Techn., vol. 53, no. 6, pp. 2139–2144, Jun. 2005. [36]C.-M. Lin, H.-H. Su, J.-C. Chiu, and Y.-H. Wang, “Wilkinson power divider using microstrip EBG cells for the suppression of harmonics,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 10, pp. 700–702, Oct. 2007. [37]F. Zhang and C.-F. Li, “Power divider with microstrip electromagnetic bandgap element for miniaturisation and harmonic suppression,” Electron. Lett., vol. 44, no. 6, pp. 422–423, Mar. 2008. [38]J. Wang, J. Ni, Y.-X. Guo, and D. Fang, “Miniaturized microstrip Wilkinson power divider with harmonic suppression,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 7, pp. 440–442, Jul. 2009. [39]J. Yang, C. Gu, and W. Wu, “Design of novel compact coupled microstrip power divider with harmonic suppression,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 9, pp. 572–574, Sep. 2008. [40]J. Zhang, L. Li, J. Gu, and X. Sun, “Compact and harmonic suppression Wilkinson power divider with short circuit anti-coupled line,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 9, pp. 661–663, Sep. 2007. [41]P. Mondal and A. Chakrabarty, “Design of miniaturised branch-line and rat-race hybrid couplers with harmonics suppression,” IET Microw., Antennas, Propag., vol. 3, no. 1, pp. 109–116, Jan. 2009. [42]K. Srisathit, P. Jadpum, and W. Surakampontorn, “Miniature Wilkinson divider and hybrid coupler with harmonic Suppression using T-shaped transmission line,” in Proc. 2007 Asia-Pacific Microw. Conf., Bangkok, Thailand, pp. 1–4. [43]J. Wang, B.-Z. Wang, Y.-X. Guo, Y.-X. Guo, L. C. Ong, and S. Xiao, “A compact slow-wave microstrip branch-line coupler with high performance,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 7, pp. 501–503, Jul. 2007. [44]J. Wang, B.-Z. Wang, Y.-X. Guo, Y.-X. Guo, L. C. Ong, and S. Xiao, “A miniaturized 3 dB branch-line hybrid coupler with harmonics suppression,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 10, pp. 537–539, Oct. 2011. [45]C.-H. Lai and T.-G. Ma, “Novel synthesized microstrip line with quasi-elliptic response for harmonic suppressions,” in IEEE MTT-S Int. Microw. Symp. Dig., Anaheim, CA, pp. 1540–1543, 2010. [46]J. Gu and X. Sun, “Miniaturization and harmonic suppression rat-race coupler using C-SCMRC resonators with distributive equivalent circuit,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 12, pp. 880–882, Dec. 2005. [47]H.-S. Lee, K. Choi, and H.-Y. Hwang, “A harmonic and size reduced ring hybrid using coupled lines,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 4, pp. 259–261, Apr. 2007. [48]C.-H. Lai, Y.-C. Tseng, and T.-G. Ma, “Novel synthesized microstrip line with controllable transmission zeros for harmonic suppressions,” in Proc. 2010 Asia-Pacific Microw. Conf., Yokohama, Japan, pp. 602–605. [49]J.-T. Kuo, J.-S. Wu, and Y.-C. Chiou, “Miniaturized rat race coupler with suppression of spurious passband,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 1, pp. 46–48, Jan. 2007. [50]J.-Y. Zou, C.-H. Wu, and T.-G. Ma, “Miniaturized diplexer using synthesized microstrip lines with series LC tanks,” IEEE Microw. Wireless Compon. Lett., vol. 22, no. 7, pp. 354–356, Jul. 2012. [51]S. Srisathit, S. Patisang, R. Phromloungsri, S. Bunnjaweht, S. Kosulvit, and M. Chongcheawchamnan, “High isolation and compact size microstrip hairpin diplexer,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 2, pp. 101–103, Feb. 2005. [52]M.-H. Weng, C.-Y. Hung, and Y.-K. Su, “A hairpin line diplexer for direct sequence ultra-wideband wireless communications,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 7, pp. 519–521, Jul. 2007. [53]M.-L. Chuang and M.-T. Wu, “Microstrip diplexer design using common T-shaped resonator,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 11, pp. 583–585, Nov. 2011. [54]C.-F. Chen, T.-Y. Huang, C.-P. Chou, and R.-B. Wu, “Microstrip diplexers design with common resonator sections for compact size, but high isolation,” IEEE Trans. Microw. Theory Techn., vol. 54, no. 5, pp. 1945–1952, May 2006. [55]T. Yang, P.-L. Chi, and T. Itoh, “High isolation and compact diplexer using the hybrid resonators,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 10, pp. 551–553, Oct. 2010. [56]E. Ofli, R. Vahldieck, and S. Amari, “Novel E-plane filters and diplexers with elliptic response for millimeter-wave applications,” IEEE Trans. Microw. Theory Techn., vol. 53, no. 3, pp. 843–851, Mar. 2005. [57]H.-J. Tang, W. Hong, J.-X. Chen, G.-Q. Luo, and K. Wu, “Development of millimeter-wave planar diplexers based on complementary characters of dual-mode substrate integrated waveguide filters with circular and elliptic cavities,” IEEE Trans. Microw. Theory Techn., vol. 55, no. 4, pp. 776–782, Apr. 2007. [58]T. Yang, P.-L. Chi, and T. Itoh, “Substrate integrated waveguide loaded by complementary split-ring resonators for miniaturized diplexer design,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 1, pp. 10–12, Jan. 2011. [59]J. D. Rhodes and R. Levy, “Design of general manifold multiplexers,” IEEE Trans. Microw. Theory Techn., vol. MTT-27, no. 2, pp. 111–123, Feb. 1979. [60]J. D. Rhodes and R. Levy, “A generalized multiplexer theory,” IEEE Trans. Microw. Theory Techn., vol. MTT-27, no. 2, pp. 99–111, Feb. 1979. [61]T. Yang, P.-L. Chi, and T. Itoh, “Compact quarter-wave resonator and its applications to miniaturized diplexer and triplexer,” IEEE Trans. Microw. Theory Techn., vol. 59, no. 2, pp. 260–269, Feb. 2011. [62]T. Ohno, K. Wada, and O. Hashimoto, “Design methodologies of planar duplexers and triplexers by manipulating attenuation poles,” IEEE Trans. Microw. Theory Techn., vol. 53, no. 6, pp. 2088–2095, Jun. 2005. [63]M. Karlsson, P. Hakansson, and S. Gong, “A frequency triplexer for ultra-wideband systems utilizing combined broadside- and edge-coupled filters,” IEEE Trans. Adv. Packag., vol. 31, no. 4, pp. 794–801, Nov. 2008. [64]P.-H. Deng, M.-I. Lai, S.-K. Jeng, and C.-H. Chen, “Design of matching circuits for microstrip triplexers based on stepped-impedance resonators,” IEEE Trans. Microw. Theory Techn., vol. 54, no. 12, pp. 4185–4192, Dec. 2006. [65]C.-W. Tang and M.-G. Chen, “Packaged microstrip triplexer with star-junction topology” Electron. Lett, vol. 48, no. 12, pp. 699–701, Jun. 2012. [66]J.-Y. Wu, K.-W. Hsu, Y.-H. Tseng, and W.-H. Tu, “High-isolation microstrip triplexer using multiple-mode resonators,” IEEE Microw. Wireless Compon. Lett., vol. 22, no. 4, pp. 173–175, Apr. 2012. [67]C.-F. Chen, T.-M. Shen, T.-Y. Huang, and R.-B. Wu, “Design of multimode net-type resonators and their applications to filters and multiplexers,” IEEE Trans. Microw. Theory Techn., vol. 59, no. 4, pp. 848–856, Apr. 2011. [68]C.-F. Chen, T.-M. Shen, T.-Y. Huang, and R.B. Wu, “Design of compact quadruplexer based on the tri-mode net-type resonators,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 10, pp. 534–536, Oct. 2011. [69]S.-J. Zeng, J.-Y. Wu, and W.-H. Tu, “Compact and high-isolation quadruplexer using distributed coupling technique,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 4, pp. 197–199, Apr. 2011. [70]J.-W. Sheen, “LTCC-MLC duplexer for DCS-1800,” IEEE Trans. Microw. Theory Techn., vol. 47, no. 9, pp. 1883–1890, Sep. 1999. [71]C.-W. Tang and S.-F. You, “Design methodologies of LTCC bandpass filters, diplexer, and triplexer with transmission zeros,” IEEE Trans. Microw. Theory Techn., vol. 54, no. 2, pp. 717–723, Feb. 2006. [72]T.-W. Kim and Y.-C. Lee, “A compact sized LTCC diplexer with high-band selectivity and high isolation for GSM and CDMA multi-band applications,” in Proc. 2009 Asia-Pacific Microw. Conf., Singapore, pp. 2080–2083. [73]M. Fritz and W. Wiesbeck, “A diplexer based on transmission lines, implemented in LTCC,” IEEE Trans. Adv. Packag., vol. 29, no. 3, pp. 427–432, Aug. 2006. [74]T. Kamgaing, R. Vilhauer, V. Nair, and D. Choudhury, “Embedded RF passive technology using a combination of multilayer organic package substrate and silicon-based integrated passive devices,” in Proc. 60th Electron. Comp. Technol. Conf., pp. 1547-1551, 2010. [75]J.-I. Yu, J.-M. Yook, J.-C. Park, C. H. Kim, and Y.-S. Kwon, “Compact front end modules for WLAN applications with integrated passive devices using selectively anodized aluminum substrate,” in Proc. 5th Eur. Microw. Integr. Circuits Conf., pp. 329–332, 2010. [76]J. Butler and R. Lowe, “Beam forming matrix simplifies design of electronically scanned antennas,” Electron. Design, vol. 9, pp. 170–173, Apr. 1961. [77]A. Corona and M. J. Lancaster, “A high-temperature superconducting Butler matrix,” IEEE Trans. Appl. Supercond., vol. 13, no. 4, pp. 3867-3872, Dec. 2003. [78]E. Gandini, M. Ettorre, R. Sauleau, and A. Grbic, “A lumped-element unit cell for beam-forming networks and its application to a miniaturized Butler matrix,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 4, pp. 1477-1487, Apr. 2013. [79]H.-X. Xu, G.-M. Wang, and X. Wang, “Compact Butler matrix using composite right/left handed transmission line,” Electron. Lett., vol. 47, no. 19, pp. 1081–1083, Sep. 2011. [80]Y. S. Jeong and T. W. Kim, “Design and analysis of swapped port coupler and its application in a miniaturized Butler matrix,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 4, pp. 764–770, Apr. 2010. [81]C.-J. Chen and T.-H. Chu, “Design of a 60-GHz substrate integrated waveguide Butler matrix—a systematic approach,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 7, pp. 1724–1733, Jul. 2010. [82]A. A. M. Ali, N. J. G. Fonseca, F. Coccetti, and H. Aubert, “Design and implementation of two-layer compact wideband Butler matrices in SIW technology for Ku-band applications,” IEEE Trans. Antennas Propagat., vol. 59, no. 2, pp. 503–512, Feb. 2011. [83]C.-C. Chang, R.-H. Lee, and T.-Y. Shih, “Design of a beam switching/steering Butler matrix for phased array system,” IEEE Trans. Antennas Propagat., vol. 58, no. 2, pp. 367–374, Feb. 2010. [84]T.-Y. Chin, S.-F. Chang, J.-C. Wu, and C.-C. Chang, “A 25-GHz compact low-power phased-array receiver with continuous beam steering in CMOS technology,” IEEE J. Solid-State Circuits, vol. 45, no. 11, pp. 2273–2282, Nov. 2010. [85]C.-C. Chang, T.-Y. Chin, J.-C. Wu, and S.-F. Chang, “Novel design of a 2.5-GHz fully integrated CMOS Butler matrix for smart-antenna systems,” IEEE Trans. Microw. Theory Techn., vol. 56, no. 8, pp. 1757–1763, Aug. 2008. [86]B. Cetinoneri, Y. A. Atesal, and G. M. Rebeiz, “An 8 × 8 Butler matrix in 0.13-um CMOS for 5-6 GHz multibeam applications,” IEEE Trans. Microw. Theory Techn., vol. 59, no. 2, pp. 295–301, Feb. 2011. [87]C.-C. Kuo, H.-C. Lu, P.-A. Lin, C.-F. Tai, Y.-M. Hsin, and Huei Wang, “A fully SiP integrate V-band Butler matrix end-fire beam-switching transmitter using flip-chip assembled CMOS chips on LTCC,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 5, pp. 1424–1436, May 2012. [88]Y.-S. Lin and J.-H. Lee, “Miniature Butler matrix design using glass-based thin-film integrated passive device technology for 2.5-GHz application,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 7, pp. 2594–2602, Jul. 2013. [89]Y.-J. Ren and K. Chang, “New 5.8-GHz circularly polarized retrodirective rectenna arrays for wireless power transmission,” IEEE Trans. Microw. Theory Techn., vol. 54, no. 7, pp. 2970–2976, Jul. 2006. [90]Y. Li and V. Jandhyala, “Design of retrodirective antenna arrays for short-range wireless power transmission,” IEEE Trans. Antennas Propagat., vol. 60, no. 1, pp. 206–211, Jan. 2012. [91]J. A. Vitaz, A. M. Buerkle, and K.S. Sarabandi, “Tracking of metallic objects using a retro-refective array at 26 GHz,” IEEE Trans. Antennas Propagat., vol. 58, no. 11, pp. 3539–3544, Nov. 2010. [92]K. M. K. H. Leong, Y. Wang, and T. Itoh, “A full duplex capable retrodirective array system for high-speed beam tracking and pointing applications,” IEEE Trans. Microw. Theory Techn., vol. 52, no. 5, pp. 1479–1489, May 2004. [93]M. S. Trotter, C. R. Valenta, G. A. Koo, B. R. Marshall, and G. D. Durgin, “Multi-antenna techniques for enabling passive RFID tags and sensors at microwave frequencies,” in Proc. 2012 IEEE International Conference on RFID, Orlando, FL, pp. 1–7. [94]R. Y. Miyamoto, Y. Qian, and T. Itoh, “An active integrated retrodirective transponder for remote information retrieval-on-demand,” IEEE Trans. Microw. Theory Techn., vol. 49, no. 9, pp. 1658–1662, Sep. 2001. [95]D. S. Goshi, K. M. K. H. Leong, and T. Itoh, “A sparse retrodirective transponder array with a time shared phase-conjugator,” IEEE Trans. Antennas Propagat., vol. 55, no. 8, pp. 2367–2372, Nov. 2010. [96]R. Y. Miyamoto, K. M. K. H. Leong, S.-S. Jeon, Y. Wang, Y. Qian, and T. Itoh, “Digital wireless sensor server using an adaptive smart-antenna retrodirective array,” IEEE Trans. Veh. Technol., vol. 52, no. 5, pp. 1181–1188, Sep. 2003. [97]S. Lim, K. M. K. H. Leong, and T. Itoh, “Adaptive power controllable retrodirective array system for wireless sensor server applications,” IEEE Trans. Microw. Theory Techn., vol. 53, no. 12, pp. 3735–3743, Dec. 2005. [98]S.-C. Yen and T.-H. Chu, “A retro-directive antenna array with phase conjugation circuit using subharmonically injection-locked self-oscillating mixers,” IEEE Trans. Antennas Propagat., vol. 52, no. 1, pp. 154–164, Jan. 2004. [99]L. Chiu, Q. Xue, and C. H. Chan, “Phase-conjugated arrays using low conversion-loss resistive phase-conjugating mixers and stub-loaded patch antennas,” IEEE Trans. Microw. Theory Techn., vol. 56, no. 8, pp.1764–1773, Aug. 2008. [100]L. Chiu, Q. Xue, and C.-H. Chan, “A 4-element balanced retrodirective array for direct conversion transmitter,” IEEE Trans. Antennas Propagat., vol. 59, no. 4, pp. 1185–1190, Apr. 2011. [101]S.-N. Hsieh and T.-H. Chu, “Linear retro-directive antenna array using 90° hybrids,” IEEE Trans. Antennas Propagat., vol. 56, no. 6, pp. 1573–1580, Jun. 2008. [102]S.-J. Chung, S.-M. Chen, and Y.-C. Lee, “A novel bi-directional amplifier with applications in active Van Atta retrodirective arrays,” IEEE Trans. Microw. Theory Techn., vol. 51, no. 2, pp.542–547, Feb. 2003. [103]L. Chen, X.-W. Shi, T.-L. Zhang, C.-Y. Cui, and H.-J. Lin, “Design of a dual-frequency retrodirective array,” IEEE Antennas Wireless Propag. Lett., vol. 9, pp. 478–480, 2010. [104]L. Chen, T.-L. Zhang, S.-F. Liu, and X.-W. Shi, “A bidirectional dual-frequency retrodirective array for full-duplex communication applications,” IEEE Antennas Wireless Propag. Lett., vol. 11, pp. 771–774, 2012. [105]S. Christie, R. Cahill, N. B. Buchanan, V. F. Fusco, N. Mitchell, Y. V. Munro, and G. Maxwell-Cox, “Rotman lens-based retrodirective array,” IEEE Trans. Antennas Propagat., vol. 60, no. 3, pp. 1343–1351, Mar. 2012. [106]Y.-J. Cheng, W. Hong, K. Wu, Z. Q. Kuai, C. Yu, J.-X. Chen, J.-Y. Zou, and H.-J. Tang, “Substrate integrated waveguide (SIW) Rotman lens and its Ka-band multibeam array antenna applications,” IEEE Trans. Antennas Propagat., vol. 56, no. 8, pp. 2504–2513, Aug. 2008. [107]Y.-J. Cheng, P. Chen, W. Hong, T. Djerafi, and K. Wu, “Substrate-integrated-waveguide beamforming networks and multibeam antenna arrays for low-cost satellite and mobile systems,” IEEE Trans. Antennas Propag. Mag., vol. 53, no.6, pp. 18–30, Dec. 2011. [108]C. Caloz and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, New York: Wiley, 2006. [109]W. R. Eisenstadt and Y. Eo, “S-parameter-based IC interconnect transmission line characterization,” IEEE trans. Comp., Hybrids, Manufact. Technol., vol. 15, no. 4, pp. 483–490, Aug. 1992. [110]J.-S. Wight, W.-J. Chudobiak, and V. Makios, “A microstrip and stripline crossover structure,” IEEE Trans. Microw. Theory Techn., vol. MTT-24, no. 5, p. 270, May 1976. [111]P. Bura and R. Dikshit, “FET mixers for communication satellite transponders”, in IEEE MTT-S Int. Microw. Symp. Dig., 1976, pp. 90–92. [112]Y. Qian, W. R. Deal, N. Kaneda, and T. Itoh, “Microstrip-fed quasi-Yagi antenna with broadband characteristics,” Electron. Lett., vol. 34, no. 23, pp. 2194-2196, Nov. 1998.
|