(3.238.96.184) 您好!臺灣時間:2021/05/12 15:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:安德立
研究生(外文):Andri Ashfahani
論文名稱:以H∞/LTR具輸出入限制非線性動用系统模糊控制設計基于t-s模糊模型
論文名稱(外文):Fuzzy control design for nonlinear dynamic systems using constrained H∞/LTR via T-S fuzzy model
指導教授:蘇順豐
指導教授(外文):Shun-Feng Su
口試委員:蘇順豐
口試委員(外文):Shun-Feng Su
口試日期:2013-12-30
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:電機工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:50
中文關鍵詞:t-s模糊模型限制H∞LTR
外文關鍵詞:T-S fuzzy modelconstrained H∞LTR
相關次數:
  • 被引用被引用:0
  • 點閱點閱:122
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:30
  • 收藏至我的研究室書目清單書目收藏:0
跟踪问题或稳定问题的非线性系统是困难的,尤其是当不是所有的国家都可用。本研究提出的约束H∞和回路传递恢复(LTR)通过T-S模糊模型来控制非线性系 - 近系统的组合。一,高木 - 关野模糊模型被用来代表一个非线性系统。接着,基于模糊模型,卡尔曼滤波器被显影。控制器增益是通过使用约束H∞理论计算。 LTR,然后应用到加强了控制器的鲁棒性。模拟结果应用到两连杆机器人系统是数字高程模型了证实。所设计的系统的性能进行评估的频域,并通过时域仿真。仿真结果表明,亲提出的方法更适用于实际执行
Tracking problems or stabilization problems for nonlinear systems are difficult, especially when not all the state are available. This study proposed a combination of constrained H∞ and loop transfer recovery (LTR) to control nonli-near systems via Takagi-Sugeno fuzzy model. First, the Takagi-Sugeno fuzzy model is employed to represent a nonlinear system. Next, based on the fuzzy model, a Kalman filter is developed. The controller gain is calculated by using constrained H∞ theory. LTR is then applied to reinforce the robust property of the controller. Simulation results for application to a two-link robot system are dem-onstrated. The performance of the designed system is assessed in the frequency domain and via the time-domain simulation. The simulation shows that the pro-posed method is more applicable in practical implementation.
COVER i
ABSTRACT ii
ACKNOWLEDGMENT iii
CONTENTS iv
LIST OF FIGURES v
CHAPTER I INTRODUCTION 1
1.1 Background 1
1.2 Organization of the Thesis 3
CHAPTER II BASIC THEORY 4
2.1 Takagi Sugeno Fuzzy Model 4
2.2 Continous-Time T-S Controllers and Closed-Loop Stability 5
2.3 Loop Transfer Recovery 6
CHAPTER III FUZZY CONSTRAINED H∞/LTR CONTROL DESIGN 11
3.1 Introduction 11
3.2 Problem Statement 11
3.3 Fuzzy Constrained H∞/LTR Control Design 14
CHAPTER IV SIMULATION RESULT 23
CHAPTER V CONCLUSION AND FUTURE WORKS 42
5.1 Conclusion 42
5.2 Future Works 42
BIBLIOGRAPHY 43
[1]X. J. Ma and Z. Q. Sun, "Output tracking and regulation of nonlinear system based on takagi-sugeno fuzzy model," IEEE Trans. Syst., Man, and Cyber-natics, vol. 30, no. 1, pp. 47-59, Feb. 2000.
[2]T. Agustinah, A. Jazidie, M. Nuh, and H. Du "Fuzzy tracking control design using observer-based stabilizing compensator for nonlinear systems," Int. Conf. on Syst. Science and Engineering, pp. 275-280, Jul. 2010.
[3]C. W. Tao, J. S. Taur, T. W. Hsieh and C. L. Tsai, "Design of a fuzzy con-troller with fuzzy swing-up and parallel distributed pole assigment schemes for an inverted pendulum and cart system," IEEE Trans. Cont. Syst. Tech., vol. 16, no. 6, pp. 381-392, Nov. 2008.
[4]T. Takagi and M. Sugeno, "Fuzzy identification of systems and its applica-tions to modeling and control," IEEE Trans. Syst., Man, Cybern., vol. 15, pp. 116-132, Jan. 1985.
[5]H. K. Khalil, Nonlinear Systems. Englewood Cliffs, NJ: Prentice-Hall, 1996.
[6]J. J. E. Slotine and W. Li, Applied Nonlinear Control. Englewood Cliffs, NJ: Prentice-Hall, 1991.
[7]B. S. Chen, C. H. Lee, and Y. C. Chang, "H∞ tracking design of uncertain nonlinear SISO systems: Adaptive fuzzy approach," IEEE Trans. Fuzzy Syst., vol. 4, no. 1,pp. 32-43, February 1996.
[8]B. S. Chen, H. J. Uang, and C. S. Tseng, "Robust tracking enhancement of robot systems including motor dynamics: A fuzzy-based dynamic game ap-proach," IEEE Trans. Fuzzy Syst., vol. 6, pp. 538-552, Nov. 1998.
[9]S. Seshagiri and H. K. Khalil, "Output feedback control of nonlinear systems using RBF neural network," IEEE Trans. Neural Networks, vol. 11, pp. 69-79, Jan. 2000.
[10]H. K. Khalil, "Adaptive output feedback control of nonlinear systems represented by input-output models," IEEE Trans. Automat. Contr., vol. 41, pp. 177-188, 1996.
[11]W. J. Wang and H. R. Lin, "Fuzzy control design for the trajectory tracking on uncertain nonlinear systems," IEEE Trans. Fuzzy Syst., vol. 7, pp. 53-62, Feb. 1999.
[12]C. S. Tseng, B. S. Chen, H. J. Uang, "Fuzzy Tracking Control Design for Nonlinear Dynamic Systems via T-S Fuzzy Model, " IEEE Trans. Fuzzy Syst., vol. 9, no. 3, pp. 381-392, Jun. 2001.
[13]T. Agustinah, A. Jazidie, and M. Nuh, "Fuzzy tracking control based on H∞ performance for nonlinear systems," WSEAS Trans. Sys. Cont., vol. 6, pp. 393-403, Nov. 2011.
[14]T. Agustinah, A. Jazidie, and M. Nuh, "Hybrid Fuzzy Control for Swinging Up and Stabilizing of The Pendulum-Cart System," IEEE Int. Conf. on Comp. Science and Automat. Engineering, vol. 4, pp. 109-113, Jun. 2011.
[15]X. Gao and H. Chen, "Constrained H∞ Control for T-S Fuzzy Systems and Its Application to Inverted Pendulum," IEEE Conf. Cont. Applications, pp. 277-282, 2005.
[16]J. M. Maciojowski, Multivariable Feedback Design, Cambridge: Addison Wesley Publishers Ltd., pp. 222-261, 1989.
[17]J. C. Doyle and G. Stein, "Multivariable Feedback Design: Concepts for a Moderns/Classical Synthesis, " IEEE Trans. Autom. Control, vol. AC-26, no. 1, pp. 4-16, Feb. 1981.
[18]J. C. Doyle, K. Glover, P. P. Khargonekar, and B. A. Francais, "State-Space Solutions to Standard H2 and H∞ Control Problems," IEEE Trans. Autom. Control, vol. 34, no. 8, pp. 831-847, Aug. 1989.
[19] A. Jadbabaie, et al. "Observer-Based Controller Synthesis for Model-Based Fuzzy Systems via Linear Matrix Inequalities," Fuzzy control. Synthesis and analysis, pp. 239-252, 2000.
[20]K. Tanaka and M. Sugeno, "Stability Analysis and Design of Fuzzy Control Systems,” Fuzzy Sets and systems, Vol. 45, No. 2, pp. 135-156, 1992.
[21]S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequa-lities in System and Control Theory, Philadelphia: Society for Industrial and Applied Mathematics, 1994.
[22]T. V. Dang, W. J. Wang, C. H. Huang, C. H. Sun, and L. Luoh, "Observer synthesis for the T-S fuzzy system with uncertainty and output disturance,” Journal of Intelligent & Fuzzy Syst., Vol. 22, No. 4, 2011.
[23]C. F. de Paula and L. H. C. de Ferreira, "An easy-to-use H∞/LTR control so-lution with mixed sensitivity properties,” IEEE Trans. Autom. Control, Vol. 56, No. 7, pp. 1709-1713, 2011.
[24]D. L. F. da Silva, C. F. de Paula, and L. H. C. de Ferreira, "On the target feedback loop parameterization H∞/LTR for control,” IEEE Int. Symp. On In-dustrial Electronics, pp. 1-5, 2013.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
系統版面圖檔 系統版面圖檔