跳到主要內容

臺灣博碩士論文加值系統

(44.221.73.157) 您好!臺灣時間:2024/06/15 13:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:曾鈞煜
研究生(外文):Chun-yu Tseng
論文名稱:奈米材料改良纖維特性之研究
論文名稱(外文):The properties of fibers improved by nano materials
指導教授:吳翼貽
口試委員:吳翼貽
口試日期:2014-06-16
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:112
中文關鍵詞:奈米材料磁性氧化鐵遠紅外線電磁遮蔽
外文關鍵詞:nano materialsferrous-ferric oxidefar-infraredEM shielding effect
相關次數:
  • 被引用被引用:0
  • 點閱點閱:482
  • 評分評分:
  • 下載下載:66
  • 收藏至我的研究室書目清單書目收藏:0
近年來由於環境的變遷,輕薄保暖衣服的需求大增;本研究係應用奈米材料的塗佈來提高纖維布的蓄熱升溫功能,並探討奈米材料的類別及塗佈量多寡對纖維布蓄熱升溫能力的影響。
在本研究內所應用的奈米材料計有:使用沉澱法製作之奈米級磁性氧化鐵及氧化鎳,及外購的奈米級氧化鋁、氧化矽、氧化鈦。利用溶膠-浸塗法將上述氧化物塗佈至3種不同纖維(cotton、PET、PP)布的表面,再以25W及40W鹵素燈為熱源照射纖維布面,量測纖維布面的溫升效果,進行比較。並利用磁場測試儀測量經浸塗處理後之纖維布阻擋電磁波的效率,並以UV-VIS-NIR光譜儀觀察纖維布所吸收電磁波的波長範圍及應用SEM、XRD觀察顆粒大小和其結晶度,最後進行耐水洗測試,探討添加物/纖維布的結合程度。
研究結果顯示,奈米級磁性氧化鐵濃度(0.5Wt%以上)和PP纖維布的組合具有最佳的溫升效果,因磁性氧化鐵具鐵磁性和較窄的能隙,可以有效的吸收電磁波(能量),再以遠紅外線的形式釋放出熱能,故有最佳的蓄熱升溫能力;且磁性氧化鐵亦可幫助纖維布吸收電磁波,達到電磁波遮蔽的效果。由於奈米級磁性氧化鐵可有效地吸附在纖維布上,纖維布經10次水洗後,尚能保有83%的蓄熱升溫能力。
Recently abnormal weather and volatile changes in the environment increase the temperature difference between day and night. This temperature difference increases the demand of functional garments having high warmth to weight ratio. The objective of this study is to investigate the effectiveness of nano particles and its solution concentration on heat regeneration ability of coated fabric.
The nano particles under investigations are ferrous-ferric oxide, nickel oxide, alumina, silica and titanium oxide. Dip coating method is applied to coat these nano particles on three different fabrics, cotton, PET and PP. Solutions containing various wt % of nano particles were utilized to seek the maximum coatability of nano particles onto each fabric. Temperature rise tests were conducted to study the endothermic capability of these fabrics. Magnetic field tester and the absorption of spectrum measured by UV-VIS-NIR were also conducted to understand the electromagnetic shielding ability of the nano particles. Finally, washing tests were carried out on the fabric having the best endothermic capability to decide its laundry performance.
Experimental results showed that PP fabric after dip coating with solution having more than 0.5wt % of ferrous-ferric oxide nano particles possesses good endothermic capability and can have large temperature rising range after heating test. This result can be attributed to the ferromagnetic properties and the narrow energy band gap of the ferrous–ferric oxide which can efficiently absorb any short wavelength light form energy and release the energy through emitting far-infrared light. The fabric coated with ferrous-ferric oxide can also effectively absorb EM waves resulting in good EM shielding effect. In addition, this nano ferrous-ferric oxide coated fabric has good laundry performance, 83% of its endothermic capability can be retained after washing 10 times.
摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 VI
表目錄 VIII
第一章 前言 1
1.1研究緣起 1
1.2研究目的 2
1.3 研究方法 3
第二章 文獻探討 4
2.1發熱衣原理 5
2.1.1 市面上發熱衣的原理 5
2.2奈米級金屬的基本性質 8
2.2.1奈米材料與塊材的比較 8
2.3 纖維之種類及性質 13
2.3.1 PET的基本特性 14
2.3.2 PP的基本特性 16
2.3.3 Cotton的基本特性 17
2.3.4 三種纖維母材之比較 18
2.4 五種添加物的性質 19
2.4.1 磁性氧化鐵(Fe3O4) 的基本性質 19
2.4.2 氧化鎳(NiO) 的基本性質 21
2.4.3 氧化鋁(Al2O3) 的基本性質 22
2.4.4 二氧化矽(SiO2) 的基本性質 23
2.4.5 氧化鈦(TiO2) 的基本性質 25
2.4.6 五種添加物性質比較 26
2.5 蓄熱升溫理論 28
2.5.1 基本熱輻射理論[50] 28
2.5.2 遠紅外線簡介[51, 52] 31
2.5.3 遠紅外線加熱原理[51, 52] 34
2.6 電磁波遮蔽原理[56] 37
第三章 實驗方法與步驟 40
3.1 實驗材料 42
3.2 奈米級粉末製備 43
3.2.1 化學液相法(共沉澱法)-奈米氧化鐵 44
3.2.2 化學液相法(沉澱法)-奈米氧化鎳 44
3.3 溶膠-浸塗法 45
3.4 溫升測試 46
3.4.1 熱源計算 46
3.5 耐水洗測試 48
3.6 電磁波遮蔽效率和遠紅外放射率測試 50
3.7 數字溫度計 51
3.8 UV-VIS-NIR光譜儀 53
3.9 磁場測試儀 55
3.10 X光繞射(XRD)分析 56
3.11 掃描式電子顯微鏡(SEM)與能量散佈光譜儀(EDS) 57
第四章 結果與討論 59
4.1 溫升實驗 60
4.1.1 母材本身之溫升效率 60
4.1.2 不同添加物對溫升效果之影響 62
4.1.3 不同濃度對溫升效果之影響 66
4.1.4 不同浸塗溫度對溫升效果之影響 73
4.2 紫外線-可見光-近紅外線UV-VIS-NIR 之分析 74
4.2.1 不同添加物對吸收率的影響 75
4.2.2不同濃度對吸收率的影響 77
4.2.3不同添加物的可見光吸收率 78
4.3添加物對遠紅外線放射率之影響 81
4.4 電磁遮蔽效率 82
4.5 X-ray繞射分析 83
4.6 電子顯微鏡觀察與EDS元素分析 86
4.6.1 奈米粒子大小觀察 86
4.6.2 添加物塗佈於纖維布表面之觀察與EDS元素分析 88
4.7 耐水洗測試 91
4.8 添加物塗佈於纖維布表面之顏色觀察 92
第五章 結論 93
參考文獻 95
附錄 101
A.1 五種不同添加物/纖維布之溫度-時間曲線 101
A.2 添加物/纖維布 不同濃度下之溫度-時間曲線 105
[1]曾泳源,奈米顆粒於織品保溫特性之理論分析與量測,國立雲林科技大學機械工程系碩士論文,民國95年。
[2]曾慧雯,抗寒冬!全方位保暖對策,康健雜誌,民國100年。
[3]發熱衣的原理與保暖衣的差別網路口碑評比,王子登山網站http://prince-outdoor.com.tw/。
[4]毛賢為,以環糊精修釋之二氧化矽-磁性奈米粒子包覆披落卡藥物之探討,國立成功大學化學工程學系碩士論文,民國96年。
[5]柯揚船,皮特.斯壯,聚合物-無機奈米複合材料總論,第180頁,民國93年。
[6]林鴻明,奈米材料之結構與特性,大同大學奈米科技教學網站 http://nano.mse.ttu.edu.tw/。
[7]蔡建瑩,多層金奈米粒子暨電極式DNA雜合檢測晶片之研究,國立台灣大學機械工程學研究所博士論文,民國93年。
[8]S. P. Kim, D. U. Lee, and E. K. Kim,“Optical properties of metal–oxide nano-particles embedded in the polyimide layer for photovoltaic applications,”Current Applied Physics, Vol. 10, pp. S478-S480, 2010.
[9]張松文,以氧化鐵磁性奈米粒子分離伴刀豆球蛋白之研究,國立成功大學化學工程學系碩士論文,民國96年。
[10]王文峰,奈米材料在光學上的原理與應用,2010。
[11]K. J. Klabunde,“Nanoscale Material in Chemistry,”John Wiley&;Sons, 2004.
[12]蘇怡帆,磁性基本特性及磁性材料應用,民國97年。
[13]H. Daiji, Y. Haitao, O. Tomoyuki, and T. Migaku,“Challenge of ultra high frequency limit of permeability for magnetic nanoparticle assembly with organic polymer—Application of superparamagnetism,”Journal of Magnetism and Magnetic Materials, Vol. 321, pp. 746-749, 2009.
[14]D. L. Leslie-Pelecky and R. D. Rieke,“Magnetic Properties of Nanostructured Materials,”Chemistry of Materials, Vol. 8, pp. 1770-1783, 1996.
[15]黃美華,紡織工業日新月異,科學發展,2013。
[16]張朝誠,纖維含量對短纖射出成型複材收縮及翹曲之影響,國立成功大學工程科學系碩士論文,民國82年。
[17]楊芙宜,紡織衣材大革命,台灣光華雜誌,2011。
[18]C. H. Xue, W. Yin, P. Zhang, J. Zhang, P. T. Ji, and S. T. Jia, “UV-durable superhydrophobic textiles with UV-shielding properties by introduction of ZnO/SiO2 core/shell nanorods on PET fibers and hydrophobization,”Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 427, pp. 7-12, 2013.
[19]E. G. Han, E. A. Kim, and K. W. Oh,“Electromagnetic interference shielding effectiveness of electroless Cu-plated PET fabrics,”Synthetic Metals, Vol. 123, pp. 469-476, 2001.
[20]王秀芳,創新纖維穿上身 乾爽舒適好自在,工業技術與資訊,2009。
[21]趙敏、高俊剛、郝奎林、趙興藝,改性聚丙烯新材料,第12-13頁,2002。
[22]張正杰、龔健瑋,複合型廢棄毯毛回收處理之製程評估,2013綠色科技工程與應用研討會,民國102年。
[23]常見纖維物性比較表,樂福織品網站 http://www.alovetex.com/。
[24]J. Xu, H. Yang, W. Fu, Y. Sui, H. Zhu, M. Li, et al.,“Preparation and characterization of carbon fibers coated by Fe3O4 nanoparticles,” Materials Science and Engineering: B, Vol. 132, pp. 307-310, 2006.
[25]R. Y. Hong, T. T. Pan, and H. Z. Li,“Microwave synthesis of magnetic Fe3O4 nanoparticles used as a precursor of nanocomposites and ferrofluids,”Journal of Magnetism and Magnetic Materials, Vol. 303, pp. 60-68, 2006.
[26]J. Zheng, H. Lv, X. Lin, G. Ji, X. Li, and Y. Du,“Enhanced microwave electromagnetic properties of Fe3O4/graphene nanosheet composites,”Journal of Alloys and Compounds, Vol. 589, pp. 174-181, 2014.
[27]L. Yuan, X. Weng, J. Xie, W. Du, and L. Deng,“Solvothermal synthesis and visible/infrared optical properties of Al/Fe3O4 core–shell magnetic composite pigments,”Journal of Alloys and Compounds, Vol. 580, pp. 108-113, 2013.
[28]T. Neuberger, B. Schopf, H. Hofmann, M. Hofmann, and B. von Rechenberg,“Superparamagnetic nanoparticles for biomedical applications: Possibilities and limitations of a new drug delivery system,”Journal of Magnetism and Magnetic Materials, Vol. 293, pp. 483-496, 2005.
[29]N. M. Deraz,“Magnetic behavior and physicochemical properties of Ni and NiO nano-particles,”Current Applied Physics, Vol. 12, pp. 928-934, 2012.
[30]A.Manikandan, J.Judith Vijaya,and L.John Kennedy,“Comparative investigation of NiO nano- and microstructures for structural, optical and magnetic properties,”Physica E: Low-dimensional Systems and Nanostructures, Vol. 49, pp. 117-123, 2013.
[31]T. H. Cho and H. T. Chung,“Preparation and characterization of LiNi0.8Co0.2O2 synthesized by an emulsion drying method”Journal of Applied Electrochemistry, pp. 1033-1038, 2005.
[32]K. M. Dooley, S. Y. Chen, and J. R. H. Ross,“Stable nickel-cotaining catalysts for the oxidative coupling of methane,”Journal of Catalysis, Vol. 145, pp. 402-408, 1994.
[33]A. R. Hind, S. K. Bhargava, and S. C. Grocott,“The surface chemistry of Bayer process solids: a review,”Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 146, pp. 359-374, 1999.
[34]Q. Feng, T. Li, H. Teng, X. Zhang, Y. Zhang, C. Liu, et al., “Investigation on the corrosion and oxidation resistance of Ni–Al2O3 nano-composite coatings prepared by sediment co-deposition,”Surface and Coatings Technology, Vol. 202, pp. 4137-4144, 2008.
[35]J. K. Lee, J. Koo, H. Hong, and Y. T. Kang,“The effects of nanoparticles on absorption heat and mass transfer performance in NH3/H2O binary nanofluids,”International Journal of Refrigeration, Vol. 33, pp. 269-275, 2010.
[36]P. Konttinen, R. Kilpi, and P. D. Lund,“Microstructural analysis of selective C/Al2O3/Al solar absorber surfaces,”Thin Solid Films, Vol. 425, pp. 24-30, 2003.
[37]P. H. Chiu, C. J. Huang, and Y. H. Wang,“Characterization and synthesis of GSCS nanoparticles by sol-gel method with controlling of adding water amount,”Journal of The Electrochemical Society, Vol. 155, pp. K183-K189, 2008.
[38]Y. Cai, H. Ke, J. Dong, Q. Wei, J. Lin, Y. Zhao, et al.,“Effects of nano-SiO2 on morphology, thermal energy storage, thermal stability, and combustion properties of electrospun lauric acid/PET ultrafine composite fibers as form-stable phase change materials,”Applied Energy, Vol. 88, pp. 2106-2112, 2011.
[39]鄧各余,二氧化矽奈米微粒對壓克力膠耐溫與抗UV性能提升之研究,逢甲大學化學工程系碩士論文,民國96年。
[40]S. Naghibi, M. A. Faghihi Sani, and H. R. Madaah Hosseini, “Application of the statistical Taguchi method to optimize TiO2 nanoparticles synthesis by the hydrothermal assisted sol–gel technique,”Ceramics International, Vol. 40, pp. 4193-4201, 2014.
[41]李波,二氧化鈦成PM2.5新殺手 相關股票有望獲資金青睞,北京新浪網,2013。
[42]林有銘,無所不在的環境清潔工-奈米光觸媒,科學發展,2006。
[43]S. Chakrabarty and K. Chatterjee,“Synthesis and characterization of nano-dimensional nickelous oxide(NiO) semiconductor,”Journal of Physical Sciences, Vol. 13, pp. 245-250, 2009.
[44]D. A. Kumar and J. M. Shyla,“Synthesis and characterization of TiO2/SiO2 nano composites for solar cell applications,”Appl Nanosci, pp. 429-436, 2012.
[45]H. E. Ghandoor, H. M. Zidan, M. M. H. Khalil, and M. I. M. Ismail, “Synthesis and some physical properties of magnetite (Fe3O4) nanoparticles,”International Journal of Electrochemical Science, pp. 5734-5745, 2012.
[46]D. H. Xiao and M. S. Xian,“Chloride permeability and microstructure of portland cement mortars incorporating nanomaterials,”Journal of the Transportation Research Board, pp. 13-21, 2008.
[47]J. Li, R. Yan, B. Xiao, D. T. Liang, and D. H. Lee,“Preparation of nano-NiO particles and evaluation of their catalytic activity in pyrolyzing biomass components,”2007.
[48]L. Wang, H. Ji, S. Wang, L. Kong, X. Jiang, and G. Yang, “Preparation of Fe3O4 with high specific surface area and improved capacitance as a supercapacitor,”nanoscale, 2013.
[49]L. Feng, M. Cao, X. Ma, Y. Zhu, and C. Hu,“Superparamagnetic high-surface-area Fe3O4 nanoparticles as adsorbents for arsenic removal,”Journal of Hazardous Materials, Vol. 217–218, pp. 439-446, 2012.
[50]蔡建瑩,高熱輻射吸收材料 塗佈PET高分子材之研究,2013。
[51]陳林照,功能性抗電磁波/遠紅外線複合梭織物之織造技術及其特性分析,逢甲大學紡織工程研究所碩士論文,民國98年。
[52]邱垂豪,遠紅外線功能之聚乙烯醇纖維,逢甲大學紡織工程研究所碩士論文,民國91年。
[53]蕭清松,遠紅外線陶瓷輻射體的製作,第21-22頁,1995。
[54]“Wien's displacement law,”wikipedia http://en.wikipedia.org/.
[55]S. Hwang, D. H. Lee, I. K. Lee, Y. M. Park, and I. Jo,“Far-infrared radiation inhibits proliferation, migration, and angiogenesis of human umbilical vein endothelial cells by suppressing secretory clusterin levels,”Cancer Letters, Vol. 346, pp. 74-83, 2014.
[56]陳人豪,磁性奈米粒子製備及其於電磁波遮蔽之應用,國立中央大學化學工程與材料工程研究所碩士論文,民國95年。
[57]W. Graf and E. F. Vance,“Shielding effectiveness and electromagnetic protection,”Transactions on Electromagnetic Compatibility, Vol. 30, 1988.
[58]Y. Lu, S. Jiang, and Y. Huang,“Ultrasonic-assisted electroless deposition of Ag on PET fabric with low silver content for EMI shielding,”Surface and Coatings Technology, Vol. 204, pp. 2829-2833, 2010.
[59]R. Wang, F. He, Y. Wan, and Y. Qi,“Preparation and characterization of a kind of magnetic carbon fibers used as electromagnetic shielding materials,”Journal of Alloys and Compounds, Vol. 514, pp. 35-39, 2012.
[60]連昭晴,鐵/金核殼型磁性複合奈米粒子之製備與應用,國立成功大學化學工程學系碩士論文,民國93年。
[61]李進源,濕式化學法製作抗UV撥水薄膜於玻璃表面之研究,逢甲大學材料與製造工程所碩士論文,民國97年。
[62]戴崇峰,環氧樹脂奈米複合材料及孔洞性材料之製備與性質探討,中原大學化學研究所碩士論文,民國95年。
[63]L. W. Black and J. H. Hauck, college physics, pp. 321-330, 1994.
[64]“Table of total emissivity,” http://www.omega.com/.
[65]經濟部標準檢驗局,經濟部標準檢驗局九十五年度委辦計畫期末成果報告,國家標準調和規劃-紡織品相關檢驗法標準研究,民國95年。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top