跳到主要內容

臺灣博碩士論文加值系統

(44.221.73.157) 您好!臺灣時間:2024/06/17 23:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:侯炫竹
研究生(外文):Hsuan-chu Hou
論文名稱:雙向驅動壓電雙層圓盤應用於不同幫浦結構之固液耦合振動特性與流率之量測
論文名稱(外文):Two-way Drive Piezoelectric Disk of Solid-Liquid Coupling Vibration Characteristics in the Different Structure of the Pump and Flow Rates Experiment
指導教授:黃育熙
指導教授(外文):Yu-Hsi Huang
口試委員:黃育熙
口試委員(外文):Yu-Hsi Huang
口試日期:2014-07-18
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:98
中文關鍵詞:壓電式幫浦壓電雙層圓盤固液耦合振動特性電子斑點干涉術雷射都卜勒振動PVDF薄膜感測器有限元素法共振頻率振動模態流量
外文關鍵詞:piezoelectric pumppiezoelectric bimorph disksolid-liquid coupled vibrationelectronic speckle pattern interferometrylaser Doppler vibrometerfinite element methodresonant frequencymode shapeflow rate
相關次數:
  • 被引用被引用:1
  • 點閱點閱:168
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
本研究探討壓電材料於有限空間的腔體中振動並與液體相互耦合之振動特性的影響,並應用於壓電式幫浦以逆壓電效應作動進而推動液體產生流量,透過實驗量測及數值計算的研究方法得知壓電材料於不同流體的共振頻率及振動模態。研究主要探討壓電材料與空氣與水等不同流體耦合作動之下影響的振動特性,並設計兩種不同的壓電幫浦進行比較,其一設計是利用串聯型壓電雙層圓盤結合PDMS高分子薄膜於共振頻率產生位移改變腔體體積,使液體因腔體體積的改變增加流體的流量;另一則是利用並聯型壓電雙層圓盤直接與水接觸壓電微幫浦。故壓電圓盤結合於PDMS薄膜與壓電圓盤直接對水接觸的固液耦合振動特性於本文進行討論。本研究之壓電材料與液體耦合特性使用三種量測設備進行實驗量測,包括垂直式的全域式電子斑點干涉術(Electronic Speckle Pattern Interferometry, ESPI)對壓電材料於流體中的振動進行即時量測,紀錄壓電材料與不同流體耦合作用下的共振頻率與振動模態,雷射都卜勒振動儀(Laser Doppler Vibrometer, LDV)以單點量測壓電材料與流體耦合的面外振動位移,並可使用穩態掃頻的方式獲得壓電幫浦於固液耦合的面外共振頻率,阻抗分析儀則針對壓電材料的電性進行量測,主要獲得面內振動的共振頻率與反共振頻率,使用聚偏二氟乙烯(PVDF)薄膜感測器去實際量測上下兩個結構中的壓電圓盤相位,本研究可對具有三維耦合振動特性的壓電雙層圓盤進行量測,以獲得該元件與流體相互耦合作用下的共振頻率。所有的實驗量測結果皆與固液耦合的有限元素數值計算進行分析比較,無論在共振頻率或振動模態皆可相互對應,對於壓電材料的動態特性於實驗與數值分析皆有良好的驗證結果,成功獲得壓電元件於流體上與流體內的振動特性,準確獲得其共振頻率與振動模態。本研究並將得到的振動特性結果應用於壓電雙層圓盤結合PDMS薄膜式壓電幫浦中,在空氣與水作用分析的共振頻率探討振動模態對於壓電為幫浦流量的影響進行探討,對於PDMS薄膜式壓電幫浦的設計與壓電材料於空氣與水中的固液耦合下的共振頻率及振動模態分析提供完整且豐富的資訊。
The vibration characteristics of piezoceramic bimorph disks are studied on the solid-liquid coupled effect for the micro-pump devices. Resonant frequencies and mode shapes of piezoelectric elements, which promote flow in different fluids including air and water, are obtained by experimental measurements and finite element numerical calculations. Two different piezoelectric pumps are designed for verifying the solid-liquid coupled vibrations of piezoelectric bimorphs both on the fluid surface and under fluids. One of piezoelectric pump uses a piezoelectric disks bonding on the PDMS polymer, and the vibration in resonance produces the changes of chamber volume for increasing fluid flow. Another is the contact-directly design, which piezoelectric disks contact water directly in the pump chamber. Piezoelectric bimorph disks are investigated by using four experimental techniques obtaining the solid-liquid coupled vibration characteristics. First, the self-arranged vertically electric speckle pattern interferometry (ESPI) is used to measure simultaneously the resonant frequencies and mode shapes for the vibrations of piezoelectric bimorphs in the fluid. Second, the laser Doppler vibrometer (LDV) can obtain frequency spectrum of vibrating displacement by dynamic signal swept-sine analysis. Third, the correspondent resonant frequencies and anti-resonant frequencies in fluids are obtained by impedance analysis for the piezoelectric bimorph disk. Last, use PVDF senor to check the phase between upper piezoelectric disk and lower piezoelectric disk. Moreover, the quadratic, three-dimensional piezoelectric-solid element and acoustic coupling element, respectively, are used to setup the piezoelectric device and different fluids in finite element method (FEM). All the experimental results are compared with the solid-liquid coupled vibration characteristics in FEM calculation. Finally, the piezoelectric pump with PDMS layer operates on the resonant frequencies to measure the flow rate in water. It has good consistence in resonant frequencies and mode shapes by experimental measurements and finite element numerical calculations
摘要
Abstract
致謝
目錄
圖目錄
表目錄
符號索引
第一章 緒論
1.1 研究動機
1.2 文獻回顧
1.3 內容介紹
第二章 壓電與聲學耦合基本理論與實驗儀器介紹
2.1 壓電基本理論
2.2 壓電材料常數轉換
2.3 聲學耦合轉換
2.4 電子斑點干涉術
2.4.1 面外振動量測
2.5 雷射都卜勒振動儀
2.5.1 都卜勒效應動態量測
2.5.2 雷射都卜勒振動儀量測原理
2.5.3 雷射都卜勒振動儀量測動態訊號系統
2.6 阻抗分析儀
2.7聚偏二氟乙烯(PVDF)薄膜感測器
第三章 壓電幫浦設計與製作過程
3.1 壓電無閥式幫浦設計概念
3.1.1 結合PDMS薄膜式無閥式壓電幫浦(Pump A)
3.1.2 直接接觸式無閥壓電幫浦(Pump B)
3.2 壓電無閥式幫浦製作過程
3.2.1 結合PDMS薄膜式無閥壓電幫浦(Pump A)
3.2.2直接接觸式無閥壓電幫浦(Pump B)
第四章 壓電元件固液聲場耦合振動分析及量測
4.1 壓電陶瓷雙晶片介紹及理論
4.2 固液聲場耦合振動分析實驗方法及量測步驟
4.3固液聲場耦合振動特性數值計算結果比較
4.3.1 PDMS薄膜式無閥式壓電幫浦(Pump A)
4.3.2直接接觸式無閥壓電幫浦(Pump B)
4.4 固液聲場耦合振動特性實驗量測與數值計算結果比較
4.4.1 結合PDMS薄膜式無閥壓電幫浦(Pump A)分析結果
4.4.2直接接觸式無閥壓電幫浦(Pump B)分析結果
4.5固液耦合數值分析壓電雙層圓盤相位差異與壓電雙層圓盤相位實際測量方法
4.5.1壓電雙層圓盤相位差異與實際測量方法
4.6討論 76
第五章 壓電幫浦流率實驗方法及量測
5.1 結合PDMS薄膜式無閥壓電幫浦(Pump A)實驗方法及量測結果
5.2 結合PDMS薄膜式無閥式壓電幫浦(Pump A)流率實驗方法及量測結果
5.3討論 88
第六章 結論與未來展望
6.1 結論
6.2 未來展望
參考文獻
[1]Liua G.J., Shen C.l., Yang Z.G., Cai Xin., Zhang H.Ha., “A disposable piezoelectric micropump with high performance for closed-loopinsulin therapy system”, Sensors and Actuators, A(163), pp.291–296, 2010.
[2]Tiersten H.F., Linear Piezoelectric Plate Vibrations. New York: Plenum, 1969.
[3]IEEE standard on piezoelectricity. IEEE Ultrasonics Ferroelectrics and Frequency Control Society, ANSI/IEEE Std 176-1987.
[4]Tzou H.S., Piezoelectric shells: distributed sensing and control of continua. Kluwer Academic Publishers, 1993.
[5]Heywang W., Lubitz K. and Wersing W., Piezoelectricity-evolution and future of a technology. Springer, 2008.
[6]Butters J.N. and Leendertz J.A., “Speckle pattern and holographic techniques in engineering metrology”, Optics and Laser Technology, 3(1), pp. 26-30, 1971.
[7]H?狿moen K. and L?珶berg O.J., “Detection and measurement of small vibrations using electronic speckle pattern interferometry”, Applied Optics, 16(7), pp. 1869-1875, 1977.
[8]Wykes C., “Use of electronic speckle pattern interferometry/ESPI/ in the measurement of static and dynamic surface displacements”, Optical Engineering, 21, pp.400-406, 1982.
[9]Nakadate S., Saito H. and Nakajima T., “Vibration measurement using phase-shifting stroboscopic holographic interferometry”, Journal of Modern Optics, 33(10), pp. 1295-1309, 1986.
[10]Wang W.C., Hwang C.H. and Lin S.Y., “Vibration measurement by the time-averaged electronic speckle pattern interferometry methods”, Applied Optics, Vol. 35, No. 22, pp.4502-4509, 1996.
[11]Ma C.C. and Huang C.H., “Experimental and numerical analysis of vibrating cracked plates at resonant frequencies”, Experimental Mechanics, 41(1), pp.8-18, 2001.
[12]Ma C.C. and Huang C.H., “Experimental full field investigations of resonant vibrations for piezoceramic plates by an optical interferometry method”, Experimental Mechanics, 42(2), pp.140-146, 2002.
[13]Ma C.C. and Lin Y.C., “Resonant vibration of piezoceramic plates in fluid”, Interaction and Multiscale Mechanics, 1(2), pp.177-190, 2008.
[14]Lee C.K. and Wu G.Y., “High performance doppler interferometer for advanced optical storage systems”, Japanese Journal of Applied Physics, 38(3B), pp.1730-1741, 1999.
[15]Ma C.C., Lin H.Y., Lin Y.C. and Huang Y.H., “Experimental and numerical investigations on resonant characteristics of a single-layer piezoceramic plate and a cross-ply piezolaminates composite plate”, Journal of the Acoustical Society of America, 119(3), pp.1476-1486, 2006.
[16]Cady W.G., Piezoelectricity. McGraw-Hill Book Co. Inc., New York, 1946.
[17]Mason W.P., Piezoelectric crystals and their application to ultrasonics. New York: Van Nostrand, 1950.
[18]Wu J., Lu L., “LIQUID-SOLID COUPLED SYSTEM OF MICROPUMP”, Acta Mechanica Solida Sinica, Vol.19, No.1, March, 2006.
[19]Hou W., Das B., Jiang Y., Quin S., Zheng X.I., Pi X., Yang J., Liu H.G., Zeng J. and Zeng Z.G., “Simulation of the Diaphragm Properties of APZT-based Valveless Micropump”, IEEE Nano/Micro Engineered and Molecular Systems, 2008.
[20]Ma H.K., Hou B.R., Wu H.Y., Lim C.Y., Gao J.J., Kou M.C., “Development and application of a diaphragm micro-pump with piezoelectric device”, Springer-Verlag, 14, pp.1001-1007, 2008.
[21]Ma H.K., Chen B.R., Gao J.J., Lim C.Y., “Development of an OAPCP-micropump liquid cooling system in a laptop”, International Communications in Heat and Mass Transfer, 36, pp.225-232, 2009.
[22]Ma H.K., Su H.C., Wu J.Y., “Study of an innovative one-sided actuating piezoelectric valveless micropump with a secondary chamber”, Sensors and Actuators, A (171), pp.297–305, 2011.
[23]De Lima C.R., Vatanabe S.L., CHoi A., Nakasone P.H., Felipe Pires R., Carlos Nelli Silva E., “A biomimetic piezoelectric pump: Computational and experimental Characterization”, Sensors and Actuators, A(152), pp.110–118, 2009.
[24]Zhou Y. and Amirouche F., “Study of fluid damping effects on resonant frequencyof an electromagnetically actuated valveless micropump”, Springer-Verlag London Limited, pp.1187-1196, 2009.
[25]Ma C.C., Lin Y.C., Huang Y.H. and Lin H.Y., “Experimental measurement and numerical analysis on resonant characteristics of cantilever plates for piezoceramic bimorphs”, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 54(2), pp. 227-239, 2007.
[26]Huang Y.H., Ma C.C., Chao C.K., “High-Frequency Resonant Characteristics of Triple-Layered Piezoelectric Bimorphs Determined Using Experimental Measurements and Theoretical Analysis”, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol.59, No. 6, pp.1219-1232, 2012.
[27]Luo Y., Yin X., Wang X., Zhang Z., “Study of Polymeric MEMS Micro-pump Actuated by PZT Bimorph”, IEEE, pp225-228, April 2013.
[28]Huang Y.H. and Ma C.C., “Experimental and Numerical Investigations of Vibration Characteristics for Parallel-Type and Series Triple-Layered Piezoelectric Bimorphs”, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol.56, No. 12, pp.2598-2611, 2009.
[29]S. Li, S. Chen, “Analytical analysis of a circular PZT actuator for valveless micropumps”, pp151-161, 19 January 2003.
[30]V. Singhal, S.V. Garimella, J.Y. Murthy,” Low Reynolds number flow through nozzle-diffuser elements in valveless micropumps”, pp 226–235, 26 April 2004.
[31]沈弘俊,李青峻,許家睿,吳咨亨,” 無閥門微幫浦裝置元件之介紹與其應用”,中華民國97年。
[32]連誼婷,“以壓電驅動無閥門微幫浦之流固耦合分析”,國立中央大學機械工程學系碩士論文,中華民國101年6月。
[33]“基本壓電材料學”,池田拓郎著、陳世春譯,復漢出版社出版,中華民國74年7月。
[34]“壓電力學”,周卓明,全華科技圖書股份有限公司出版,中華民國92年11月。
[35]Tseng L.Y., Yang A.S., Lee C.Y., Cheng C.H.,” Investigation of a piezoelectric valveless micropump with an integrated stainless-steel diffuser/nozzle bulge-piece design”, IOPscience, 12pp, 12 July 2013.
[36]A.A. Bent, N.W. Hagood,” Piezoelectric Fiber Composites with Interdigitated Electrodes”, Smart Structures and Intelligent, SPIE 1917, 1993, pp.341-352.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊