[1]R. E. Reed-Hill and R. Abbaschian, "Physical metallurgy principles," PWS-Kent, Boston, p. 5590, 1994.
[2]N. Birks, G. H. Meier, and F. S. Pettit, Introduction to the high temperature oxidation of metals, Cambridge University Press, 1983.
[3]E. T. Turkdogan, "Physical chemistry of high temperature technology," 1980
[4]林敬二、楊美惠、楊寶旺、廖德章、薛敬和, 英中日化學大辭典, 1993.
[5]C. Xu and W. Gao, "Pilling-Bedworth ratio for oxidation of alloys" Material Research Innovations, vol. 3, pp. 231-235, 2000.
[6]李鐵藩,金屬高溫氧化和熱腐蝕, pp. 52-54, 2003.
[7]C. Wagner, "Z. physik," Chem.(Leipzig) B, vol. 21, p. 25, 1933.
[8]B. Chattopadhyay and G. Wood, "The transient oxidation of alloys," Oxidation of metals, vol. 2, pp. 373-399, 1970.
[9]Z. A. Munir and R. M. German, Oxid. Met., vol. 8, pp. 123, 1974.
[10]H. E. Evans, Inter. Mater. Rev, vol. 40, 1995.
[11]A. S. Khanna, Introduction to high temperature oxidation and corrosion: ASM international, 2002.
[12]Y. N. Chang and F. I. Wei, "High temperature oxidation of low alloy steels," Journal of materials science, vol. 24, pp. 14 -22, 1989.
[13]J. Perrow and W. Smeltzer, "The Oxidation of an Iron‐5 Percent Chromium Alloy in the Temperature Range 600 – 850 ℃," Journal of the Electrochemical Society, vol. 109, pp. 1023-1026, 1962.
[14]B. Chattopadhyay and G. C. Wood, “ The Transient Oxidation of Alloys”, Oxidation of Metals, Vol. 10, p.155, 1976.
[15]黃忠良, 金屬材料之高溫氧化與腐蝕之日本工業制定耐用溫度標準. 台南: 復漢出版社, pp. 1- 16, 1988.
[16]F. Stott, G. Wood, and J. Stringer, "The influence of alloying elements on the development and maintenance of protective scales," Oxidation of Metals, vol. 44, pp. 113-145, 1995.
[17]R. I. Dunn, P. J. Hearps, and M. N. Wright, "Molten-salt power towers: newly commercial concentrating solar storage," Proceedings of the IEEE, vol. 100, pp. 504-515, 2012.
[18]D. Lainga, T. Bauera, and R. Tammea, "Recent Progress in Alkali Nitrate/Nitrite Developments for Solar Thermal Power Applications," Molten Salts Chemistry and Technology, vol. MS9, 2011.
[19]T. Wang, D. Mantha, and R. G. Reddy, "Thermal stability of the eutectic composition in LiNO3–NaNO3–KNO3 ternary system used for thermal energy storage," Solar Energy Materials and Solar Cells, vol. 100, pp. 162-168, 2012.
[20]D. Mantha, T. Wang, and R. Reddy, "Thermodynamic modeling of eutectic point in the LiNO3-NaNO3-KNO3 ternary system," Journal of phase equilibria and diffusion, vol. 33, pp. 110-114, 2012.
[21]X. J. Zhang, J. Tian, K. C. Xu, and Y. C. Gao, "Thermodynamic evaluation of phase equilibria in NaNO3-KNO3 system," Journal of phase equilibria, vol. 24, pp. 441-446, 2003.
[22]R. G. Reddy, "Novel Molten Salts Thermal Energy Storage for Concentrating Solar Power Generation," The University of Alabama, Tuscaloosa2013.
[23]S. Goods, R. Bradshaw, M. Prairie, and J. Chavez, "Corrosion of stainless and carbon steels in molten mixtures of industrial nitrates," Sandia National Labs., Livermore, CA (United States), 1994.
[24]S. Goods and R. Bradshaw, "Corrosion of stainless steels and carbon steel by molten mixtures of commercial nitrate salts," Journal of materials engineering and performance, vol. 13, pp. 78-87, 2004.
[25]P. Biedenkopf, M. Spiegel, and H. Grabke, "The corrosion behavior of Fe‐Cr alloys containing Co, Mn, and/or Ni and of a Co‐base alloy in the presence of molten (Li, K)‐carbonate," Materials and Corrosion, vol. 48, pp. 731-743, 1997.
[26]P. Biedenkopf, M. Spiegel, and H. Grabke, "High temperature corrosion of low and high alloy steels under molten carbonate fuel cell conditions," Materials and Corrosion, vol. 48, pp. 477-488, 1997.
[27]M. Spiegel, P. Biedenkopf, and H. Grabke, "Corrosion of iron base alloys and high alloy steels in the Li2CO3-K2CO3 eutectic mixture," Corrosion Science, vol. 39, pp. 1193-1210, 1997.
[28]P. Biedenkopf, M. Spiegel, and H. Grabke, "The corrosion behaviour of iron and chromium in molten (Li0.62K0.38)2CO3," Electrochimica acta, vol. 44, pp. 683-692, 1998.
[29]R. I. Olivares, "The thermal stability of molten nitrite/nitrates salt for solar thermal energy storage in different atmospheres," Solar Energy, vol. 86, pp. 2576-2583, 2012.
[30]姜志華、蔡金峰, “焊接冶金概論” 徐氏基金會出版, p. 10, 1965
[31]N. Arivazhagan, S. Singh, S. Prakash, and G. Reddy, "Investigation on AISI 304 austenitic stainless steel to AISI 4140 low alloy steel dissimilar joints by gas tungsten arc, electron beam and friction welding," Materials &; Design, vol. 32, pp. 3036-3050, 2011.
[32]R. Kumar, V. Tewari, and S. Prakash, "Oxidation behavior of base metal, weld metal and HAZ regions of SMAW weldment in ASTM SA210 GrA1 steel," Journal of Alloys and Compounds, vol. 479, pp. 432-435, 2009.
[33]S. K. Samanta, S. K. Mitra, and T. K. Pal, “Microstructure and oxidation characteristics of laser and GTAW weldments in austenitic stainless steels,” Journal of Materials Engineering and Performance, Vol. 17, 2008.
[34]S. Bae, H. Kang, H. Yun, C. Kim, D. Lee, and B. Lim, "Oxidation and fatigue crack propagation in the range of low stress intensity factor in relation to the microstructure in P122 Cr–Mo steel," Materials Science and Engineering: A, vol. 499, pp. 262-266, 2009.
[35] H. J. Engell and F. wever, Acta Metal, Vol. 5, p. 695, 1957.
[36] J. A. Von Fraunhofer and G. A. Pickup, Corros. Sci., Vol. 10, p. 253, 1970.
[37] 游晴暉, ”機車排氣管用鋼料之高溫氧化”,機械研究所碩士論文,國立台灣科技大學,民國97年7月。[38] 陳丁誌, ”鉻鉬鋼於空氣/氮氣氣氛下之LiNO3-NaNO3-KNO3共晶融鹽的高溫腐蝕”,機械研究所碩士論文,國立台灣科技大學,民國102年7月。