跳到主要內容

臺灣博碩士論文加值系統

(100.28.2.72) 您好!臺灣時間:2024/06/16 06:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:江衍弘
研究生(外文):Eng-hong Chiang
論文名稱:高阻尼橡膠隔震支承墊之分析模型修訂與驗證試驗研究
論文名稱(外文):Experimental Modification and Validation of Mathematical Models of High-Damping Rubber Bearings
指導教授:黃震興黃震興引用關係
指導教授(外文):Jenn-shin Hwang
口試委員:黃震興
口試委員(外文):Jenn-shin Hwang
口試日期:2014-06-12
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:營建工程系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:125
中文關鍵詞:高阻尼橡膠支承墊遲滯迴圈數學分析模型試驗驗證
外文關鍵詞:high-damping rubber bearinghysteresis loopmathematical modelexperimental verification
相關次數:
  • 被引用被引用:4
  • 點閱點閱:221
  • 評分評分:
  • 下載下載:30
  • 收藏至我的研究室書目清單書目收藏:0
高阻尼橡膠支承墊為結構隔震系統常用隔震器之一,然由於高阻尼橡膠材料性質組成複雜,使得該支承墊之力與位移呈現高度非線性關係,故目前使用雙線性分析模型並無法準確模擬高阻尼橡膠支承墊受地震作用下之遲滯行為。而過去研究中指出,使用數學分析模型模擬高阻尼橡膠支承墊之遲滯行為時,該數學分析模型係將高阻尼橡膠支承墊承受之水平剪力,表示為水平勁度乘以剪力變形以及阻尼係數乘以變形速度兩者之合的函數,故不同加載型式或支承墊受力後之位移與速度反應皆影響該數學分析模型之適用性甚鉅。本研究透過性能試驗以探討數學分析模型之特性以及高阻尼橡膠支承墊受不同反覆載重加載型式下之遲滯行為,進而針對該數學分析模型提出修訂,透過試驗結果與數值分析結果之比較以驗證修訂過程之合理性,藉此提升採用數學分析模型於模擬高阻尼橡膠支承墊遲滯行為時之準確性。
High-damping rubber (HDR) bearing is one of common isolator used in seismic isolation system. Because of the complex rubber compound, the mechanical properties of HDR bearings are highly nonlinear such that the existing bilinear analytical model could not be appropriate for describing the hysteresis behavior of HDR bearings under earthquake excitation. A mathematical hysteresis model regarding the shear force experienced by HDR bearings as a combination of the restoring force and damping force was proposed in the previous research to characterize the hysteresis behavior of HDR bearings. However, it was revealed that the different load patterns or the displacement and velocity responses of HDR bearings arise significant influence on modeling the hysteresis behavior of HDR bearings. In this research, the mathematical model is further investigated and modified in cooperation with the performance tests on HDR bearings subjected to triangular and sinusoidal cyclic reversals. By comparing the analysis predictions to the experimental results, the applicability of the modified model is then discussed.
摘要 i
Abstract ii
致謝 iii
目錄 iv
表索引 vii
圖索引 ix
第一章 緒論 1
1.1研究背景與目的 1
1.2研究重點與內容 4
第二章 高阻尼橡膠支承墊之力學行為 5
2.1前言 5
2.2不同效應對高阻尼橡膠材料力學特性之影響 6
2.2.1最大剪應變效應之影響 6
2.2.2頻率、溫度效應之影響 6
2.2.3軸向力效應之影響 6
2.2.4橡膠軟化效應之影響 8
第三章 高阻尼橡膠支承墊之分析模型 11
3.1前言 11
3.2分析模型介紹 11
3.2.1等效線性分析模型 11
3.2.2分數微分分析模型 12
3.2.2.1分數微分凱文分析模型 13
3.2.2.2分數麥斯威爾分析模型 13
3.2.3 Pan和Yang分析模型 14
3.2.4 Hwang分析模型 15
3.2.5 Abe分析模型 18
3.3 Hwang分析模型的修訂 20
3.4模型參數識別 22
3.4.1非線性最小平方差法 22
3.4.2下降式單純形法 23
3.4.3最佳化方法之比較 25
第四章 試驗驗證與數值分析 27
4.1試驗裝置 27
4.2試驗用高阻尼橡膠支承墊 27
4.3試驗程序 28
4.4試驗結果與數值分析結果之比較 28
第五章 結論 31
參考文獻 33
羅俊雄,“九二一集集大地震全面勘災精簡報告”,國家地震工程研究中心研究報告,NCREE-99-033,民國八十八年。
內政部營建署,“建築物耐震設計規範及解說”民國一百年七月。
SAP2000.Computer and Structures, Inc., Berkeley, California, USA
ETABE. Computer and Structures, Inc., Berkeley, California, USA
Guide Specilcations for Seismic Isolation Design. American Association of State Highway and Transportation Officials, Washington, DC, 1999.
Manual for Menshin Design of Highway Bridges. Public Works Research Institute, Ministry of Construction of Japan, Tsukuba City, 1991.
Hwang JS, Ku SW. Analytical Modeling of High Damping Rubber Bearing. Journal of Structural Engineering, ASCE, 1997; 123(8): 1029-1036.
Hwang JS and Wang JC. Seismic Response Prediction of HDR Bearing Using Fractional Derivative Maxwell Model. Engineering Structures, 1998; 20(9): 849-856.

Hwang JS, Wu JD, Pan TC, Yang G.,“ A Mathematical Hysteretic Model for Elastomeric Isolation Bearing.”Earthquake Engineering and Structural Dynamics, 31(4),2002, pp.771-789.
吳健達,“高阻尼橡膠支承墊之分析模式”,碩士論文,國立台灣科技大學,1998。
Abe M, Yoshida J, Fujino Y. Multiaxial Behaviors of Laminated Rubber Bearings and Their Modeling. I: Experimental Study. Journal of Structural Engineering 2004; 130(8): 1119-1132.
Abe M, Yoshida J, Fujino Y. Multiaxial Behaviors of Laminated Rubber Bearings and Their Modeling. II: Modeling. Journal of Structural Engineering 2004; 130(8): 1133-1144.
, H. (1973).“Nonlinear transient dynamic analysis of yielding structures.”PhD dissertation, University of California, Berkeley, Berkeley, Calif.
Osamu Nakano, Hiroaki Nishi , Tadayuki Shirono, Katuhiro Kumagai,“Temperature-Dependency of Base-Isolation Bearing.”
R.F. Kulak and T.H. Hughes(1993). Frequency and Temperature Dependence of High Damping Elastomers, Trans. SmiRT-12, Val. K.
林錦偉,“高阻尼橡膠支承墊之動力特性研究”,碩士論文,國立台灣科技大學,1998。
Haringx, J. A. (1948). ‘‘On highly compressible helical springs and rubber rods and their application for vibration-free mountings. I.’’ Philips Res.Rep., 3, 401–449.
Haringx, J. A. (1949a). ‘‘On highly compressible helical springs and rubber rods and their application for vibration-free mountings. II.’’Philips Res. Rep., 4, 49–80.
Haringx, J. A. (1949b). ‘‘On highly compressible helical springs and rubber rods and their application for vibration-free mountings. III.’’Philips Res. Rep., 4, 206–220.
Koh, C. G., and Kelly, J. M. (1989). ‘‘Viscoelastic stability model for elastomeric isolation bearings.’’ J. Struct. Engrg., ASCE, 115(2), 285–302
Conversy, F.(no title), Memoire, Anales des Ponts et Chaussies, Vol.4, 1967.
Holt WL. Rubber Chem. And Technol., 5, 79, 1932.
Mullins L. Softening of Rubber by Deformation. Rubber Chemistry and Technology, 1969; 42(1): 339-362.
Blanchard A F. Breakage of Rubber-Filler Linkages and Energy Dissipation in Stressed Rubber. Journal of Polymer Science, 1954; 14: 355-374.
Bueche F. Molecular Basis for the Mullins Effects. Journal of Applied Polymer Science, 1960; 4(10): 107-114.
Kraus G, Childers CW, Rollman KW. Stress Softening in Carbon Black-Reinforced Vulcanizates, Strain Rate and Temperature Effects. Journal of Applied Polymer Science, 1966; 10(2): 229-244.
Harwood JAC, Mullins L, Payne A R. Stress Softening in Natural Rubber Vulcanizates. Part II. Stress Softening Effects in Pure Gum and Filler Loaded Rubbers. Journal of Applied Polymer Science, 1966; 9(9): 3011-3021.
Pan TC, Yang G. Nonlinear Analysis of Base-Isolated MDOF Structures. Proceedings of the 11th World Conference on Earthquake Engineering, Mexico, 1996.
Madsen, K., Nielsen, H.B., and Tingleff, O., Method for Non-linear Least squares Problems, 2^nd ed., Informatics and Mathematical Modeling, Technical University of Denmark, 2004.
Kelley, C.T., Iterative Methods for Optimization, SIAM, Frontiers in Applied Mathematics 18, 1999.
Press, H. W., Flannery, B. P., Teukolsky, S. A., and Vetterling, T. W. (1988). “Numerical recipes in C”, Cambridge University Press, London.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top