跳到主要內容

臺灣博碩士論文加值系統

(44.220.44.148) 您好!臺灣時間:2024/06/14 11:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:曹維庭
研究生(外文):Wei-ting Tsao
論文名稱:利用鈷錯合物基礎之陰極觸媒材料應用於燃料電池研究
論文名稱(外文):Cobalt Complexes as Cathode Catalysts Applied in PEMFC and AAEMFC
指導教授:王丞浩
指導教授(外文):Wang, Chen-Hao
口試委員:王丞浩
口試委員(外文):Wang, Chen-Hao
口試日期:2014-07-02
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:材料科學與工程系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:92
中文關鍵詞:氧氣還原反應非貴重金屬觸媒
外文關鍵詞:oxygen reduction reactionnon-precious metal catalyst
相關次數:
  • 被引用被引用:0
  • 點閱點閱:152
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由於能源危機,發展替代能源就成為重要議題。燃料電池是綠色能源的一種,使用氫氣和氧氣當燃料,在反應過程中只會產生水,因此不會造成環境污染。然而,燃料電池使用白金觸媒,造成燃料電池價格偏高。因此,本研究在發展低價格和高效能的非貴重金屬材料以應用於燃料電池。
  本研究分成二個部份。第一部份以導電高分子聚吡咯與維生素B12混合附載於多孔活性碳XC-72R上,經由不同溫度熱燒結後,所得到的觸媒應用在質子交換膜燃料電池的陰極端以做氧氣還原反應。這些觸媒在過氯酸水溶液中測試,當觸媒燒結溫度在700oC時,觸媒具有最好的氧氣還原反應能力,其電子轉移數可達3.98。質子交換膜燃料電池使用此觸媒在陰極端,其輸出最大功率可達300 mW/cm2。
  第二部份為混合石墨烯氧化物與維生素B12,經由各種溫度之
燒結得到各種觸媒。經由XPS分析,發現燒結溫度900oC時,quaternary-N以及pyridine-N鍵結形式總含量較其他燒結溫度處理觸媒多,此觸媒在氧氣飽和氫氧化鉀水溶液中,其電子轉移數可達3.90。鹼性陰離子交換膜燃料電池使用此觸媒,輸出最大功率可達65 mW/cm2 。
 Recently due to energy crisis the development of alternative energy becomes an important issue. Fuel cell is an eco-friendly energy source. It uses hydrogen and oxygen as fuel and oxidant, respectivity, which the by product is water without pollutants. However, the fuel cell uses high cost of platinum as catalyst, making it high cost.Therefore, the goal of this study is to investigate the development of high-performance but low-cost non-precious metals catalysts.
  The first part is to use the mixture of polypyrrole and vitamin B12 that are supported on carbon black (XC-72). After the mixture was pyroylzed by various temperatures, the pyrolyzed catalysts wae then applied in the cathode of a proton exchange membrane fuel cell (PEMFC) for oxygen reduction reaction (ORR). These catalysts show the highest
ORR activity at the pyrolysis temperature of 700oC in 0.1M HClO4
and the electron-transfer number is 3.98. The PEMFC using the catalyst
pyrolyzed at 700oC in the cathode side shows a maximum power density of 300 mW cm-2.
  The second part is to use the mixture of graphene oxide and vitamin B12,which was pyrolyzed by various temperatures.According to the XPS
analysis, the catalyse pyrolyzed at 900oC shows the most content of
quaternary-N and pyridine-N bonding structure. The ORR activity is carried out in O2-saturated 0.1M KOH, the electron transfer number
approached 3.90. The catalyst is applied in the cathode side of the anion alkaline exchange membrane fuel cell (AAEMFC) ,which shows the
maximum power density of 65 mW cm-2.
中文摘要 i
Abstract ii
誌謝 iii
圖目錄 ix
表目錄 xiii
第一章 緒論 ............................................. 1
1-1前言................................................. 1
1-2燃料電池簡介 4
1-3燃料電池種類及電化學反應式........................... 6
1-3-1低溫型燃料電池 7
1-3-2中溫型燃料電池 8
1-3-3高溫型燃料電池 8
1-3-4直接甲醇燃料電池.................................. 9
1-3-5再生式燃料電池 9
1-3-6磷酸燃料電池 9
1-4質子交換膜燃料電池結構介紹...................................................................11
1-4-1電池元件介紹...............................................13
1-4-2探討如何提升電池性能.....................................15
1-4-3燃料電池組設計................. ...........................16
1-5質子交換膜燃料電池極化現象.......................... 17
1-6鹼性陰離子交換膜燃料電池介紹 19
1-6-1鹼性陰離子交換膜燃料電池膜介紹 21
1-7研究動機 21
第二章 文獻探討 23
2-1電化學氧化還原反應 23
2-1-1氧化還原反應 23
2-1-2氧氣還原反應 23
2-1-3氧氣還原反應機制 25
2-1-4環氮過渡金屬錯合物在氧氣還原反應之制 ............ 29
2-2環氮過渡金屬錯合物之相關文獻探討 31
2-3導電高分子聚砒硌文獻探討 36
2-4觸媒在鹼性溶液氧氣還原反應之機制..........................38
2-5石墨烯氧化物文獻探討.........................................39
2-6鹼性陰離子交換膜文獻探討 41
第三章 實驗藥品及研究方法 44
3-1實驗藥品及儀器設備 44
3-1-1實驗藥品 44
3-1-2實驗設備 44
3-2實驗方法 45
3-2-1陰極觸媒製備 45
3-2-2觸媒工作電極製備 46
3-2-3燃料電池陰極觸媒製備 47
3-3實驗方法 48
3-3-1陰極觸媒製備 48
3-3-2觸媒工作電極製備 49
3-3-3 燃料電池陰極觸媒製備 50
3-4材料分析 50
3-4-1電化學測試法 50
3-4-2旋轉盤環電極測試(Rotating Ring Disk Electrode, RRDE) 51
3-4-3 XRD繞射分析儀 53
3-4-4拉曼光譜分析儀(Raman Spectrum) 54
3-4-5化學分析影像能譜儀(ESCA) 55
3-4-6燃料電池測試系統 56
第四章 結果與討論 57
4-1 B12-PPY/XC72R觸媒材料 57
4-1-1 B12-PPY/XC72R之X光繞射分析 58
4-1-2 B12-PPY/XC72R之拉曼光譜分析 60
4-1-3 B12-PPY/XC72R 之化學分析影像能譜 62
4-1-4 B12-PPY/XC72R 之氧氣還原反應活性比較...............65
4-1-5 B12-PPY/XC72R 之質子交換膜單電池測試 .68
4-2 B12/rGO觸媒材料 70
4-2-1 B12/rGO 之拉曼光譜分析 70
4-2-2 B12/rGO 之化學分析影像能譜 73
4-2-3 B12/rGO 之氧氣還原反應活性比較 76
4-2-4 B12/rGO 之鹼性陰離子交換膜單電池測試 79
第五章 結論 81
第六章 未來展望 83
參考文獻 84
[1] 李.司洪濤, G. L. HUFFMAN, 節約能源與污染預防之燃料電池技術介紹.
[2] 陳常鵬, in: 大紀元, 2006.
[3] J. Jin, X. Fu, Q. Liu, J. Zhang, A highly active and stable electrocatalyst for the oxygen reduction reaction based on a graphene-supported g-C3N4@cobalt oxide core-shell hybrid in alkaline solution. J. Mater. Chem. A, 1 (2013) 10538-10545.
[4] <https://en.wikipedia.org/wiki/Fuel_cell>
[5] 李春正, 美國燃料電池新進展, 工安環保第五期, 2001.
[6] 林有銘, 氫氣燃料電池技術, 化工技術, 1999.
[7] 翁芳柏, 燃料電池簡介, 工安環保第五期, 2001.
[8] M.S. Ahmed, S. Jeon, New functionalized graphene sheets for enhanced oxygen reduction as metal-free cathode electrocatalysts. J. Power Sources, 218 (2012) 168-173.
[9] 林建良, 質子交換膜燃料電池的水管理技術, 1998.
[10]薛康琳, 燃料電池內的電化學反應-觸媒與反應動力, 中國化學會, 2004.
[11] L. Carrette, K.A. Friedrich, U. Stimming, Fuel Cells – Fundamentals and Applications. Fuel Cells, 1 (2001) 5-39.
[12] R. Chen, H. Li, D. Chu, G. Wang, Unraveling Oxygen Reduction Reaction Mechanisms on Carbon-Supported Fe-Phthalocyanine and Co-Phthalocyanine Catalysts in Alkaline Solutions. The Journal of Physical Chemistry C, 113 (2009) 20689-20697.
[13] H.-J. Zhang, X. Yuan, L. Sun, X. Zeng, Q.-Z. Jiang, Z. Shao, Z.-F. Ma, Pyrolyzed CoN4-chelate as an electrocatalyst for oxygen reduction reaction in acid media. Int. J. Hydrogen Energy, 35 (2010) 2900-2903.
[14] K. Wiesener, N4-chelates as electrocatalyst for cathodic oxygen reduction. Electrochim. Acta, 31 (1986) 1073-1078.
[15] S.-T. Chang, H.-C. Hsu, H.-C. Huang, C.-H. Wang, H.-Y. Du, L.-C. Chen, J.-F. Lee, K.-H. Chen, Preparation of non-precious metal catalysts for PEMFC cathode from pyrolyzed vitamin B12. Int. J. Hydrogen Energy, 37 (2012) 13755-13762.
[16] B. Rajesh, Z. Piotr, A class of non-precious metal composite catalysts for fuel cells. Nature, 443 (2006) 63-66.
[17] L. Lai, J.R. Potts, D. Zhan, L. Wang, C.K. Poh, C. Tang, H. Gong, Z. Shen, J. Lin, R.S. Ruoff, Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction. Energy Environ. Sci., 5 (2012) 7936-7942.
[18] A.L. Bouwkamp-Wijnoltz, W. Visscher, J.A.R. van Veen, The selectivity of oxygen reduction by pyrolysed iron porphyrin supported on carbon. Electrochimica Acta, 43 (1998) 3141-3152.
[19] C. Mocchi, S. Trasatti, Composite electrocatalysts for molecular O2 reduction in electrochemical power sources. J. Mol. Catal. A: Chem., 204–205 (2003) 713-720.
[20] B. Wang, Recent development of non-platinum catalysts for oxygen reduction reaction. J. Power Sources, 152 (2005) 1-15.
[21] Z. Chen, D. Higgins, A. Yu, L. Zhang, J. Zhang, A review on non-precious metal electrocatalysts for PEM fuel cells. Energy Environ. Sci., 4 (2011) 3167-3192.
[22] D.A. Scherson, S.L. Gupta, C. Fierro, E.B. Yeager, M.E. Kordesch, J. Eldridge, R.W. Hoffman, J. Blue, Cobalt tetramethoxyphenyl porphyrin—emission Mossbauer spectroscopy and O2 reduction electrochemical studies. Electrochim. Acta, 28 (1983) 1205-1209.
[23] M. Tsionsky, O. Lev, Investigation of the Kinetics and Mechanism of Co‐Porphyrin Catalyzed Oxygen Reduction by Hydrophobic Carbon‐Ceramic Electrodes. Journal of The Electrochemical Society, 142 (1995) 2132-2138.
[24] S. Pei, H.-M. Cheng, The reduction of graphene oxide. Carbon, 50 (2012) 3210-3228.
[25] K.S. Taraszka, E. Chen, T. Metzger, M.R. Chance, Identification of structural markers for vitamin B12 and other corrinoid derivatives in solution using FTIR spectroscopy. Biochemistry, 30 (1991) 1222-1227.
[26] S. Pylypenko, S. Mukherjee, T.S. Olson, P. Atanassov, Non-platinum oxygen reduction electrocatalysts based on pyrolyzed transition metal macrocycles. Electrochimica Acta, 53 (2008) 7875-7883.
[27] L. Wu, Y. Nabae, S. Moriya, K. Matsubayashi, N.M. Islam, S. Kuroki, M.-a. Kakimoto, J.-i. Ozaki, S. Miyata, Retracted article: Pt-free cathode catalysts prepared via multi-step pyrolysis of Fe phthalocyanine and phenolic resin for fuel cells. Chem. Commun., 46 (2010) 6377-6379.
[28] F.L. Bard AJ, Electrochemical methods: fundamentals and applications, Wiley, New York, 1980.
[29] N.M. Marković, P.N. Ross Jr, Surface science studies of model fuel cell electrocatalysts. Surf. Sci. Rep., 45 (2002) 117-229.
[30] V.P. Zhdanov, B. Kasemo, Kinetics of electrochemical O2 reduction on Pt. Electrochem. Commun., 8 (2006) 1132-1136.
[31] J.K. Norskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J.R. Kitchin, T. Bligaard, H. Jonsson, Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode. J. Phys. Chem. B, 108 (2004) 17886-17892.
[32] C. BE, Comprehensive Treatise of Electrochemistry, New York: Kluwer Academic Pub, 1983.
[33] S.-T. Chang, C.-H. Wang, H.-Y. Du, H.-C. Hsu, C.-M. Kang, C.-C. Chen, J.C.S. Wu, S.-C. Yen, W.-F. Huang, L.-C. Chen, M.C. Lin, K.-H. Chen, Vitalizing fuel cells with vitamins: pyrolyzed vitamin B12 as a non-precious catalyst for enhanced oxygen reduction reaction of polymer electrolyte fuel cells. Energy Environ. Sci., 5 (2012) 5305-5314.
[34] R. Jasinski, A New Fuel Cell Cathode Catalyst. Nature, 201 (1964) 1212-1213.
[35] Y. Ma, H. Zhang, H. Zhong, T. Xu, H. Jin, Y. Tang, Z. Xu, Cobalt based non-precious electrocatalysts for oxygen reduction reaction in proton exchange membrane fuel cells. Electrochim. Acta, 55 (2010) 7945-7950.
[36] D. Nguyen-Thanh, A.I. Frenkel, J. Wang, S. O’Brien, D.L. Akins, Cobalt–polypyrrole–carbon black (Co–PPY–CB) electrocatalysts for the oxygen reduction reaction (ORR) in fuel cells: Composition and kinetic activity. Appl. Catal., B, 105 (2011) 50-60.
[37] H.-J. Zhang, H.-C. Kong, X. Yuan, Q.-Z. Jiang, J. Yang, Z.-F. Ma, Influence of metal precursors on the catalytic activity and structure of non-precious metal electrocatalysts for oxygen reduction reaction. Int. J. Hydrogen Energy, 37 (2012) 13219-13226.
[38] H.-C. Huang, I. Shown, S.-T. Chang, H.-C. Hsu, H.-Y. Du, M.-C. Kuo, K.-T. Wong, S.-F. Wang, C.-H. Wang, L.-C. Chen, K.-H. Chen, Pyrolyzed Cobalt Corrole as a Potential Non-Precious Catalyst for Fuel Cells. Adv. Funct. Mater., 22 (2012) 3500-3508.
[39] H.-J. Zhang, X. Yuan, L. Sun, J. Yang, Z.-F. Ma, Z. Shao, Synthesis and characterization of non-precious metal binary catalyst for oxygen reduction reaction in proton exchange membrane fuel cells. Electrochim. Acta, 77 (2012) 324-329.
[40] R. Bashyam, P. Zelenay, A class of non-precious metal composite catalysts for fuel cells. Nature, 443 (2006) 63-66.
[41] X. Yuan, X. Zeng, H.-J. Zhang, Z.-F. Ma, C.-Y. Wang, Improved Performance of Proton Exchange Membrane Fuel Cells with p-Toluenesulfonic Acid-Doped Co-PPy/C as Cathode Electrocatalyst. J. Am. Chem. Soc, 132 (2010) 1754-1755.
[42] H.-D. Sha, X. Yuan, X.-X. Hu, H. Lin, W. Wen, Z.-F. Ma, Effects of Pyrrole Polymerizing Oxidant on the Properties of Pyrolysed Carbon-Supported Cobalt-Polypyrrole as Electrocatalysts for Oxygen Reduction Reaction. J. Electrochem. Soc., 160 (2013) F507-F513.
[43] N. Ramaswamy, S. Mukerjee, Fundamental Mechanistic Understanding of Electrocatalysis of Oxygen Reduction on Pt and Non-Pt Surfaces: Acid versus Alkaline Media. Adv. Phys. Chem., 2012 (2012) 17.
[44] Z. Lin, G.H. Waller, Y. Liu, M. Liu, C.-p. Wong, 3D Nitrogen-doped graphene prepared by pyrolysis of graphene oxide with polypyrrole for electrocatalysis of oxygen reduction reaction. Nano Energy, 2 (2013) 241-248.
[45] Marcelo Carmo a, Gustavo Doubek a,b,2, Ryan C. Sekol a, Marcelo Linardi b, Andre D. Taylor, J. Power Sources, 230 (2013) 169-175.
[46] S. Gu, W. Sheng, R. Cai, S.M. Alia, S. Song, K.O. Jensen, Y. Yan, An efficient Ag-ionomer interface for hydroxide exchange membrane fuel cells. Chem. Commun., 49 (2013) 131-133.
[47] http://en.wikipedia.org/wiki/X-ray_Diffraction
[48] 張立信, 表面化學分析技術.
[49] http://www.hic.ch.ntu.edu.tw/
[50] K. Gotoh, T. Kinumoto, E. Fujii, A. Yamamoto, H. Hashimoto, T. Ohkubo, A. Itadani, Y. Kuroda, H. Ishida, Exfoliated graphene sheets decorated with metal/metal oxide nanoparticles: Simple preparation from cation exchanged graphite oxide. Carbon, 49 (2011) 1118-1125.
[51] D.L. Leslie-Pelecky, M. Bonder, T. Martin, E.M. Kirkpatrick, X.Q. Zhang, S.H. Kim, R.D. Rieke, Chemical synthesis of nanostructured cobalt at elevated temperatures. IEEE Trans. Magn., 34 (1998) 1018-1020.
[52] X. Wang, H. Fu, A. Peng, T. Zhai, Y. Ma, F. Yuan, J. Yao, One-Pot Solution Synthesis of Cubic Cobalt Nanoskeletons. Adv. Mater., 21 (2009) 1636-1640.
[53] Z.-J. Lu, S.-J. Bao, Y.-T. Gou, C.-J. Cai, C.-C. Ji, M.-W. Xu, J. Song, R. Wang, Nitrogen-doped reduced-graphene oxide as an efficient metal-free electrocatalyst for oxygen reduction in fuel cells. RSC Adv., 3 (2013) 3990-3995.
[54] H.T. Chung, C.M. Johnston, K. Artyushkova, M. Ferrandon, D.J. Myers, P. Zelenay, Cyanamide-derived non-precious metal catalyst for oxygen reduction. Electrochem. Commun., 12 (2010) 1792-1795.
[55] H.-C. Huang, C.-H. Wang, I. Shown, S.-T. Chang, H.-C. Hsu, H.-Y. Du, L.-C. Chen, K.-H. Chen, High-performance pyrolyzed iron corrole as a potential non-precious metal catalyst for PEMFCs. J. Mater. Chem. A, 1 (2013) 14692-14699.
[56] C.-H. Wang, C.-T. Wang, H.-C. Huang, S.-T. Chang, F.-Y. Liao, High stability pyrolyzed vitamin B12 as a non-precious metal catalyst of oxygen reduction reaction in microbial fuel cells. RSC Adv., 3 (2013) 15375-15381.
[57] Z.-F. Ma, X.-Y. Xie, X.-X. Ma, D.-Y. Zhang, Q. Ren, N. Hes-Mohr, V.M. Schmidt, Electrochemical characteristics and performance of CoTMPP/BP oxygen reduction electrocatalysts for PEM fuel cell. Electrochem. Commun., 8 (2006) 389-394.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top