|
References
[1]S. Sarkar, A.D. Jana, S.K. Samanta, G. Mostafa, Facile synthesis of silver nano particles with highly efficient anti-microbial property, Polyhedron. 26 (2007) 4419–4426. [2]E. Marambio-Jones, Catalina Hoek, A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment, J. Nanoparticle Res. 12 (2010) 21. [3]K. Yoshida, M. Tanagawa, M. Atsuta, Characterization and inhibitory effect of antibacterial dental resin composites incorporating silver-supported materials., J. Biomed. Mater. Res. 47 (1999) 516–522. [4]S. Tarimala, N. Kothari, N. Abidi, E. Hequet, J. Fralick, L.L. Dai, New approach to antibacterial treatment of cotton fabric with silver nanoparticle–doped silica using sol–gel process, J. Appl. Polym. Sci. 101 (2006) 2938–2943. [5]J.R. Morones, J.L. Elechiguerra, A. Camacho, K. Holt, J.B. Kouri, J.T. Ramirez, et al., The bactericidal effect of silver nanoparticles., Nanotechnology. 16 (2005) 2346–2353. [6]L.L. Silver, Challenges of antibacterial discovery., Clin. Microbiol. Rev. 24 (2011) 71–109. [7]S.C. Dev, C.S. Sivaramakrishnan, An indigenous alloy technology for a silver brazing, Mater. Des. 17 (1996) 75–78. [8]T. Chung, J. Kim, J. Bang, B. Rhee, D. Nam, Microstructures of brazing zone between titanium alloy and stainless steel using various filler metals, Trans. Nonferrous Met. Soc. China. 22 (2012) s639–s644. [9]R. Eluri, B.K. Paul, Silver nanoparticle-assisted diffusion brazing of 3003 Al alloy for microchannel applications, Mater. Des. 36 (2012) 13–23. [10]K.S. Siow, Mechanical properties of nano-silver joints as die attach materials, J. Alloys Compd. 514 (2012) 6–19. [11]J. Shen, W. Shan, Y. Zhang, J. Du, H. Xu, K. Fan, et al., Gas-phase selective oxidation of alcohols: In situ electrolytic nano-silver/zeolite film/copper grid catalyst, J. Catal. 237 (2006) 94–101. [12]Z.Y. Li, H. Maeda, K. Kusakabe, S. Morooka, H. Anzai, S. Akiyama, Preparation of palladium-silver alloy membranes for hydrogen separation by the spray pyrolysis method, J. Memb. Sci. 78 (1993) 247–254. [13]M.H. Rashid, T.K. Mandal, Synthesis and Catalytic Application of Nanostructured Silver Dendrites., J. Phys. Chem. C. 111 (2007) 16750–16760. [14]W. Lu, F. Liao, Y. Luo, G. Chang, X. Sun, Hydrothermal synthesis of well-stable silver nanoparticles and their application for enzymeless hydrogen peroxide detection, Electrochim. Acta. 56 (2011) 2295–2298. [15]X. Qin, Z. Miao, Y. Fang, D. Zhang, J. Ma, L. Zhang, et al., Preparation of dendritic nanostructures of silver and their characterization for electroreduction., Langmuir. 28 (2012) 5218–26. [16]L. Mo, A.H. Wan, X. Zheng, C.T. Yeh, Selective production of hydrogen from partial oxidation of methanol over supported silver catalysts prepared by method of redox coprecipitation, Catal. Today. 148 (2010) 124–129. [17]Z. Liu, Y. Su, K. Varahramyan, Inkjet-printed silver conductors using silver nitrate ink and their electrical contacts with conducting polymers, Thin Solid Films. 478 (2005) 275–279. [18]B.-L. He, B. Dong, H.-L. Li, Preparation and electrochemical properties of Ag-modified TiO2 nanotube anode material for lithium–ion battery, Electrochem. Commun. 9 (2007) 425–430. [19]B.K. Park, D. Kim, S. Jeong, J. Moon, J.S. Kim, Direct writing of copper conductive patterns by ink-jet printing, Thin Solid Films. 515 (2007) 7706–7711. [20]J. Perelaer, P.J. Smith, D. Mager, D. Soltman, S.K. Volkman, V. Subramanian, et al., Printed electronics: the challenges involved in printing devices, interconnects, and contacts based on inorganic materials, J. Mater. Chem. 20 (2010) 8446. [21]X. Nie, H. Wang, J. Zou, Inkjet printing of silver citrate conductive ink on PET substrate, Appl. Surf. Sci. 261 (2012) 554–560. [22]R.W. Gurney, N.F. Mott, The Theory of the Photolysis of Silver Bromide and the Photographic Latent Image, Proc. R. Soc. A Math. Phys. Eng. Sci. 164 (1938) 151–167. [23]M. Cardona, Optical Properties of the Silver and Cuprous Halides, Phys. Rev. 129 (1963) 69–78. [24]K.L. Kelly, E. Coronado, L.L. Zhao, G.C. Schatz, The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment, J. Phys. Chem. B. 107 (2003) 668–677. [25]B. Wiley, Y. Sun, Y. Xia, Synthesis of silver nanostructures with controlled shapes and properties., Acc. Chem. Res. 40 (2007) 1067–76. [26]C. Wang, M. Luconi, A. Masi, L. Fernandez, Silver nanoparticles as optical sensors, in: D.P. Perez (Ed.), Silver Nanoparticles, Silver Nan, Intech, 2010: pp. 225–257. [27]L. Balan, J.-P. Malval, R. Schneider, D. Burget, Silver nanoparticles: New synthesis, characterization and photophysical properties, Mater. Chem. Phys. 104 (2007) 417–421. [28]J.S. Kang, J. Ryu, H.S. Kim, H.T. Hahn, Sintering of Inkjet-Printed Silver Nanoparticles at Room Temperature Using Intense Pulsed Light, J. Electron. Mater. 40 (2011) 2268–2277. [29]Z. Zhang, B. Zhao, L. Hu, PVP Protective Mechanism of Ultrafine Silver Powder Synthesized by Chemical Reduction Processes, J. Solid State Chem. 121 (1996) 105–110. [30]W.C. Bell, M.L. Myrick, Preparation and Characterization of Nanoscale Silver Colloids by Two Novel Synthetic Routes, J. Colloid Interface Sci. 242 (2001) 300–305. [31]K.K. Caswell, C.M. Bender, C.J. Murphy, S. Street, S. Carolina, V. Di, et al., Seedless , Surfactantless Wet Chemical Synthesis of Silver Nanowires, Nano Latters. 35 (2003) 667–669. [32]H. Wang, X. Qiao, J. Chen, S. Ding, Preparation of silver nanoparticles by chemical reduction method, Colloids Surfaces A Physicochem. Eng. Asp. 256 (2005) 111–115. [33]A.G. Asta sileikaite, Igoris Prosycev, Judita Puiso, Algimantas Juraitis, Analysis of Silver Nanoparticles Produced by Chemical Reduction of Silver Salt Solution, Mater. Sci. (Medziagotyra). Vol. 12 (2006) 287–291. [34]M. Guzman, J. Dille, S. Godet, Synthesis of silver nanoparticles by chemical reduction method and their antibacterial activity., Proc. World Acad. Sci. Eng. Technol. 45 (2009) 357–364. [35]K. Szczepanowicz, J. Stefanska, R.P. Socha, P. Warzynski, Preparation of silver nanoparticles via chemical reduction and their antimicrobial activity, Physicochem Probl Min. Process. 45 (2010) 85–98. [36]M. Husein, E. Rodil, J. Vera, Formation of Silver Chloride Nanoparticles in Microemulsions by Direct Precipitation with the Surfactant Counterion, Langmuir. 19 (2003) 8467–8474. [37]Y. Dai, T. Deng, S. Jia, L. Jin, F. Lu, Preparation and characterization of fine silver powder with colloidal emulsion aphrons, J. Memb. Sci. 281 (2006) 685–691. [38]N.H. Kim, J.-Y. Kim, K.J. Ihn, Preparation of silver nanoparticles having low melting temperature through a new synthetic process without solvent., J. Nanosci. Nanotechnol. 7 (2007) 3805–9. [39]R.G. Lopez, P.Y. Reyes, J.A. Espinoza, M.E. Trevino, H. Saade, Synthesis of silver nanoparticles by precipitation in bicontinuous microemulsions, J. Nanomater. 2010 (2010). [40]K.-S. Chou, Y.-C. Chang, L.-H. Chiu, Studies on the Continuous Precipitation of Silver Nanoparticles, Ind. Eng. Chem. Res. 51 (2012) 4905–4910. [41]M. Zhu, P. Chen, W. Ma, B. Lei, M. Liu, Template-free synthesis of cube-like Ag/AgCl nanostructures via a direct-precipitation protocol: highly efficient sunlight-driven plasmonic photocatalysts., ACS Appl. Mater. Interfaces. 4 (2012) 6386–92. [42]G. De, A. Licciulli, C. Massaro, L. Tapfer, M. Catalano, G. Battaglin, et al., Silver nanocrystals in silica by sol-gel processing, J. Non. Cryst. Solids. 194 (1996) 225–234. [43]P.W. Wu, B. Dunn, V. Doan, B.J. Schwartz, E. Yablonovitch, M. Yamane, Controlling the spontaneous precipitation of silver nanoparticles in sol-gel materials, J Sol-Gel Sci Techn. 19 (2000) 249–252. [44]W. Li, S. Seal, E. Megan, J. Ramsdell, K. Scammon, G. Lelong, et al., Physical and optical properties of sol-gel nano-silver doped silica film on glass substrate as a function of heat-treatment temperature, J. Appl. Phys. 93 (2003) 9553–9561. [45]M. Raffi, J.I. Akhter, M.M. Hasan, Effect of annealing temperature on Ag nano-composite synthesized by sol-gel, Mater. Chem. Phys. 99 (2006) 405–409. [46]B. Akkopru, C. Durucan, Preparation and microstructure of sol-gel derived silver-doped silica, J. Sol-Gel Sci. Technol. 43 (2007) 227–236. [47]V.I. Parvulescu, B. Cojocaru, V. Parvulescu, R. Richards, Z. Li, C. Cadigan, et al., Sol-gel-entrapped nano silver catalysts-correlation between active silver species and catalytic behavior, J. Catal. 272 (2010) 92–100. [48]R. Li, D.. Kim, K. Yu, H. Liang, C. Bai, S. Li, Study of fine silver powder from AgOH slurry by hydrothermal techniques, J. Mater. Process. Technol. 137 (2003) 55–59. [49]D. Yu, V.W.-W. Yam, Hydrothermal-induced assembly of colloidal silver spheres into various nanoparticles on the basis of HTAB-modified silver mirror reaction., J. Phys. Chem. B. 109 (2005) 5497–5503. [50]Z. Wang, J. Liu, X. Chen, J. Wan, Y. Qian, A simple hydrothermal route to large-scale synthesis of uniform silver nanowires., Chemistry. 11 (2004) 160–163. [51]J. Xu, J. Hu, C. Peng, H. Liu, Y. Hu, A simple approach to the synthesis of silver nanowires by hydrothermal process in the presence of gemini surfactant., J. Colloid Interface Sci. 298 (2006) 689–93. [52]W.C. Zhang, X.L. Wu, H.T. Chen, Y.J. Gao, J. Zhu, G.S. Huang, et al., Self-organized formation of silver nanowires, nanocubes and bipyramids via a solvothermal method, Acta Mater. 56 (2008) 2508–2513. [53]Z. Yang, H. Qian, H. Chen, J.N. Anker, One-pot hydrothermal synthesis of silver nanowires via citrate reduction., J. Colloid Interface Sci. 352 (2010) 285–91. [54]K.C. Pingali, D.A. Rockstraw, S. Deng, Silver Nanoparticles from Ultrasonic Spray Pyrolysis of Aqueous Silver Nitrate, Aerosol Sci. Technol. 39 (2005) 1010–1014. [55]H.-S. Kim, K.-H. Lee, S.-G. Kim, Growth of Monodisperse Silver Nanoparticles in Polymer Matrix by Spray Pyrolysis, Aerosol Sci. Technol. 40 (2006) 536–544. [56]I.L. Validžić, V. Jokanović, D.P. Uskoković, J.M. Nedeljković, Formation of silver iodide particles from thermodynamically stable clusters using ultrasonic spray pyrolysis, J. Eur. Ceram. Soc. 27 (2007) 927–929. [57]X. Shi, S. Wang, X. Duan, Q. Zhang, Synthesis of nano Ag powder by template and spray pyrolysis technology, Mater. Chem. Phys. 112 (2008) 1110–1113. [58]H.Y. Koo, J.H. Yi, J.H. Kim, Y.N. Ko, Y.J. Hong, Y.C. Kang, et al., Size-controlled silver-glass composite powders with nanometer size prepared by flame spray pyrolysis, Powder Technol. 207 (2011) 362–369. [59]S.-J. Shih, I.-C. Chien, Preparation and characterization of nanostructured silver particles by one-step spray pyrolysis, Powder Technol. 237 (2013) 436–441. [60]S. Glaus, G. Calzaferri, The band structures of the silver halides AgF, AgCl, and AgBr: A comparative study, Photochem. Photobiol. Sci. 2 (2003) 398. [61]D.A. Scott, Metallograpphy and Microstructre of Ancient and Historic metals, The Getty Conservation Institue, 1991. [62]W.D. Callister, D.G. Rethwisch, Fundamentals of Materials Science and Engineering An Integrated Approach, 4th ed., Jhon Wiley and Sons,Inc, 2012. [63]A. Institute of Physics, Thermal conductivty of silver, in: Am. Inst. Phys. Handb., McGraw-Hill Bokk Co.inc, New, 1957: p. 49. [64]B.W.C. Butterman, H.E. Hilliard, Silver: Open-File Report 2004-1251, Virgnia, 2005. [65]D. Chen, X. Qiao, X. Qiu, J. Chen, Synthesis and electrical properties of uniform silver nanoparticles for electronic applications, J. Mater. Sci. 44 (2009) 1076–1081. [66]H.M. Lee, M. Ge, B.R. Sahu, P. Tarakeshwar, K.S. Kim, Geometrical and Electronic Structures of Gold, Silver, and Gold−Silver Binary Clusters: Origins of Ductility of Gold and Gold−Silver Alloy Formation, J. Phys. Chem. B. 107 (2003) 9994–10005. [67]J.E. Morris, Nanopackaging, Springer US, Boston, MA, 2008. [68]Wikipedia, http://en.wikipedia.org/wiki/Ceramic_capacitor, Wikipedia. (2013). [69]N. De Bruyne, Silver bearings, in: A. Butts (Ed.), Slilver-Economics, Metall. Use, R. E. Krieger Pub., princeton, 1967: pp. 446–454. [70]L. Kvitek, A. Panacek, R. Prucek, J. Soukupova, M. Vanickova, M. Kolar, et al., Antibacterial activity and toxicity of silver – nanosilver versus ionic silver, J. Phys. Conf. Ser. 304 (2011) 012029. [71]J. Ortega, T.T. Kodas, Control of particle morphology during multicomponent metal oxide powder generation by spray pyrolysis, J.Aerosol Sci. 23 (1992) 253–256. [72]N.T.P. Phong, N.H. Minh, N.V.K. Thanh, D.M. Chien, Green synthesis of silver nanoparticles and silver colloidal solutions, J. Phys. Conf. Ser. 187 (2009) 012078. [73]R. Tummala, Ceramic and GlassCeramic Packaging in the 1990s, J. Am. Ceram. Soc. 74 (1991) 895–908. [74]A.R. Rodriguez, A.B. Wallace, US3004197 (A), 1961. [75]C.-W. Chiu, P.-D. Hong, J.-J. Lin, Clay-mediated synthesis of silver nanoparticles exhibiting low-temperature melting., Langmuir. 27 (2011) 11690–6. [76]K.-S. Moon, H. Dong, R. Maric, S. Pothukuchi, A. Hunt, Y. Li, et al., Thermal behavior of silver nanoparticles for low-temperature interconnect applications, J. Electron. Mater. 34 (2005) 168–175. [77]S.H. Yoon, J.H. Lee, P.C. Lee, J. Do Nam, H.-C. Jung, Y.S. Oh, et al., Sintering and consolidation of silver nanoparticles printed on polyimide substrate films, Macromol. Res. 17 (2009) 568–574. [78]M.J. Beier, B. Schimmoeller, T.W. Hansen, J.E.T. Andersen, S.E. Pratsinis, J.-D. Grunwaldt, Selective side-chain oxidation of alkyl aromatic compounds catalyzed by cerium modified silver catalysts, J. Mol. Catal. A Chem. 331 (2010) 40–49. [79]M. Muniz-Miranda, B. Pergolese, A. Bigotto, A. Giusti, Stable and efficient silver substrates for SERS spectroscopy, J. Colloid Interface Sci. 314 (2007) 540–544. [80]J.Z. Xu, Y. Zhang, G.X. Li, J.J. Zhu, An electrochemical biosensor constructed by nanosized silver particles doped sol-gel film, in: Mater. Sci. Eng. C, 2004: pp. 833–836. [81]B.S. Atiyeh, M. Costagliola, S.N. Hayek, S.A. Dibo, Effect of silver on burn wound infection control and healing: review of the literature., Burns. 33 (2007) 139–148. [82]H. Koga, T. Kitaoka, On-paper Synthesis of Silver Nanoparticles for Antibacterial Applications, in: Silver Nanoparticles, 2008: pp. 277–295. [83]J.L. Clement, P.S. Jarrett, Antibacterial silver., Met. Based. Drugs. 1 (1994) 467–482. [84]http://www.advancedmaterials.us/47MN-03-nano-silver price, (2014). [85]M.Y. Lin, H.M. Lindsay, D.A. Witz, R.C. Ball, R. Klein, P. Meakin, Universality in colloid aggregation, Lett. to Nat. 3 (198AD) 360–362. [86]C. Beenakker, J. Ross, Theory of Ostwald ripening for open systems, J. Chem. Phys. 94305 (1985) 0–4. [87]I.M. Lifshitz, V.V. Slyozov, The kinetics of precipitation from supersaturated solid solutions, J.Phys.Chem.solids. 19 (1961) 35–50. [88]P. Taylor, Ostwald ripening in emulsions, Adv. Colloid Interface Sci. 75 (1998) 107–163. [89]A. Dutta, A. Chengara, A.D. Nikolov, D.T. Wasan, K. Chen, B. Campbell, Destabilization of aerated food products: Effects of Ostwald ripening and gas diffusion, J. Food Eng. 62 (2004) 177–184. [90]M. Yoshimura, K. Byrappa, Hydrothermal processing of materials: Past, present and future, in: J. Mater. Sci., 2008: pp. 2085–2103. [91]G.L. Messing, S.-C. Zhang, G. V Jayanthi, Ceramic Powder Synthesis, J.Am.Ceram.Soc. 11 (1993) 2707–26. [92]S.J. Shih, Y.Y. Wu, Y.J. Chou, K.B. Borisenko, Nanoscale control of composition in cerium and zirconium mixed oxide nanoparticles, Mater. Chem. Phys. 135 (2012) 749–754. [93]T.C. Pluym, Q.H. Powell, A.S. Gurav, T.L. Ward, T.T. Kodas, L.M. Wang, et al., Solid silver particle production by spray pyrolysis, J.Aerosol Sci. 24 (1993) 383–392. [94]R. Zheng, X. Guo, H. Fu, One-step, template-free route to silver porous hollow spheres and their optical property, Appl. Surf. Sci. 257 (2011) 2367–2370. [95]D.S. Jung, H.Y. Koo, Y.C. Kang, Composite conducting powders with core–shell structure as the new concept of electrode material, Colloids Surfaces A Physicochem. Eng. Asp. 360 (2010) 69–73. [96]H. Liu, science and engineering droplets : Fundamental and applications, in: Sci. Eng. Droplet, Noyes Publication, New york, 1981: pp. 19–116. [97]W.T. Weng, Fundamentals of the atomization process, in: 1989: pp. 243–287. [98]J.N. Antonevich, Ultrasonic Atomization of Liquids, Trans. IRE Prof. Gr. Ultrason. Eng. 6 (1959). [99]Y.S. Chung, S. Bin Park, D.-W. Kang, Magnetically separable titania-coated nickel ferrite photocatalyst, Mater. Chem. Phys. 86 (2004) 375–381. [100]S. Stopic, B. Friedrich, M. Schroeder, T.E. Weirich, Synthesis of TiO2 core/RuO2 shell particles using multistep ultrasonic spray pyrolysis, Mater. Res. Bull. 48 (2013) 3633–3635. [101]A. Gurav, T. Kodas, T. Pluym, Y. Xiong, Aerosol Processing of Materials, Aerosol Sci. Technol. 19 (1993) 411–452. [102]K. Okuyama, Preparation of micro-controlled particles usingaerosol process, J. Aerosol Sci. 22 (1991) S7–S10. [103]S.-J. Shih, Y.-Y. Wu, C.-Y. Chen, C.-Y. Yu, Controlled Morphological Structure of Ceria Nanoparticles Prepared by Spray Pyrolysis, Procedia Eng. 36 (2012) 186–194. [104]A. Patterson, The Scherrer Formula for X-Ray Particle Size Determination, Phys. Rev. 56 (1939) 978–982. [105]A.J.C. Langford, J.I. and Wilson, Scherrer after Sixty Years: A Survey and Some New Results in the Determination of Crystallite Size, J. Appl. Cryst. 11 (1978) 102–113. [106]K. Pearson, Notes on the History of Correlation, Biometrika. 13 (2009) 25–45. [107]V. Logvinenko, O. Polunina, Y. Mikhailov, K. Mikhailov, B. Bokhonov, Study of thermal decomposition of silver acetate, J. Therm. Anal. Calorim. 90 (2007) 813–816. [108]M.D. Judd, B.A. Plunkett, M.I. Pope, The thermal decomposition of calcium, sodium, silver and copper(II) acetates, J. Therm. Anal. 6 (1974) 555–563. [109]S. Yuvaraj, L. Fan-Yuan, C. Tsong-Huei, Y. Chuin-Tih, Thermal Decomposition of Metal Nitrates in Air and Hydrogen Environments, J. Phys. Chem. B. 107 (2003) 1044–1047. [110]J. Masliyah, S. Bhattacharjee, Coagulation of Particles, Electrokinet. Colloid Transp. Phenom. (2005) 1–17. [111]S.K. Friedlander, Smoke, dust, and haze: fundamentals of aerosol dynamics, 1st editio, Oxford University Press, 2000.
|