跳到主要內容

臺灣博碩士論文加值系統

(44.192.92.49) 您好!臺灣時間:2023/06/10 13:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張瑀翔
研究生(外文):Chang,Yu-Hsiang
論文名稱:圖案化智能高分子刷製備繞射光柵感應器於矽晶圓表面
論文名稱(外文):Fabrication of the Light-induced Polymer/Gold Composite Brushes on Silicon Wafer as Diffractive Grating Sensor
指導教授:陳建光陳建光引用關係
口試委員:陳建光
口試日期:2014-07-23
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:材料科學與工程系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:170
中文關鍵詞:智慧型高分子原子轉移自由基聚合法高分子光柵光柵EDC/NHS微影製程
外文關鍵詞:Smart polymersatom transfer radical polymerizationpolymer gratinggratingEDC / NHSlithography
相關次數:
  • 被引用被引用:0
  • 點閱點閱:174
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗使用原子轉移自由基聚合法(Atom transfer radical polymerization, ATRP)於圖案化矽晶圓表面進行表面起始聚合(Surface-initiated polymerization)製備出聚(氮-異丙基丙烯醯胺-嵌段-[PMMA聚甲基丙烯酸])(PNIPAAM-b-PMAA)高分子刷再藉由PMAA之carboxylic acid進行EDC/NHS反應改質末端為硫醇後使得奈米金粒子固定於高分子刷末端製備出具有光感應光柵。
結果顯示可在線/間距比率為1:1.5的圖案化光阻晶圓表面長出線寬為1、1.5、2、3 um的一維光柵,而在空氣中高度依序為469.20、542.89、553.16、422.84 nm的結構。由於高分子刷一端固定於表面,另一端可隨環境的改變而呈現不同樣貌,將一維光柵置於25°C水(< LCST)中,發現高度依序變為756.92、1033.05、1189.12、1084.28 nm,而置於50°C水中,高度依序變為640.24、684.37、841.723、790.56 nm,可知高分子受不同環境溫度時影響會有500nm高度上的差異,並在肉眼觀察顏色上有明顯的差異, 1 um的一維光柵在冷水中則呈綠現色,而於熱水中變為藍色,接者利用橢圓測厚儀分析其繞射光譜,證實了光柵之顏色變化,可應用於環境檢測器。進一步為模仿人工功能,在500 nm洞陣列(二維光柵)上接枝高分子刷,利用雷射掃描共軛焦分光光譜顯微鏡(SCMS)即時雷射加熱分析高分子伸展與收縮所造成的孔洞變化,證明光感應型高分子伸展是可產生與虹膜相似的變化,並具有良好回復性,具備製造人工虹膜之潛力。
In this study, we grafted Poly(N-isopropylacrylamide) block Poly(methacrylic acid) (PNIPAAM-b-PMAA) brushes from the initiator-modified surface of patterned silicon wafer by atom transfer radical polymerization (ATRP) to fabricate the Sequentially, we immobilized gold nanoparticles (AuNPs) on the PMAA side chain to generate light-induced polymer grating.
One-dimensional grating of the polymer brushes on the silicon wafer with the different widths are 1 , 1.5 , 2 , 3 ?慆 and thickness is 469.20,542.89,553.16,422.84 nm. Polymer brush is Stimuli-responsive; that is,they dehydrate and collapse when Environment is change .When the temperature is, Thicknesses were changed to 756.92, 1033.05, 1189.12, 1084.28 nm at 25°C (<LCST) due to the thermoresponsive behavior of PNIPAAm. the thicknesses were switched to 640.24 , 684.37 , 841.72 ,790.56 nm at 50 ?aC. Because of significant thickness change, the color changed from green to blue for 1um width grating when the temperature increased from 25 to 50 ?aC. Ellipsometer is exploited to analyze diffractive grating to confirm the results of color change.In addition, we also grafted polymer brush on 500nm ordered hole array to mimic behavior of human iris. The results exhibit the holes could be closed under a laser illumination according to the observation of Spectral confocal and multiphoton system (SCMS).. The close and open behavior of hole array could be reversibly for several cycles. The light-induced polymer grating possessing good recoverability posses high potential to apply in VOC sensor or artificial human iris.
摘要 I
Abstract III
致謝 V
目錄 VIII
圖目錄 XIII
表目錄 XX
1. 緒論 1
1.1. 研究背景 1
1.2. 研究目的 2
2. 理論與文獻回顧 3
2.1. 高分子刷簡介 3
2.2. 自組裝單分子層 6
2.3. 原子轉移自由基聚合法 8
2.4. 液態除氣法 12
2.5. 智能型高分子 13
2.6. 微影製成[26] 18
2.7. 晶圓蝕刻 25
2.8. 金奈米粒子光熱效應 29
2.9. 光柵效應 31
3. 儀器簡介 34
3.1. 原子力顯微鏡(AFM) 34
3.2. 掃描式電子顯微鏡(SEM) 38
3.3. X光光電能譜儀 (XPS) 40
3.4. 共軛焦顯微鏡 (CLSM) 42
4. 實驗流程與方法 45
4.1. 實驗流程圖 45
4.2. 實驗藥品 46
4.3. 實驗儀器 49
4.4. 實驗步驟 52
4.4.1. 矽晶片表面起始高分子刷製作 52
4.4.2. 微影製程製備聚圖案化光阻層 55
4.4.3. 蝕刻製成製作圖案化矽晶圓 58
4.4.4. 矽晶片表面起始聚合圖案化高分子刷 59
4.4.5. 孔洞型矽晶圓表面起始聚合高分子刷 63
4.4.6. EDC/NHS修飾高分子 67
4.4.7. 奈米金粒子製作 68
5. 結果與討論 69
5.1. 矽晶圓表面高分子刷分析 69
5.1.1. FTIR光譜 69
5.1.2. ESCA化學能譜分析 71
5.1.3. 接觸角親疏水測定 78
5.2. 高分子刷表面分析 80
5.2.1. 矽晶圓表面分析 80
5.2.2. APTES自組裝層表面分析 81
5.2.3. ATRP起始劑層表面分析 82
5.2.4. PNIPAAM-b-PMAA高分子刷層 82
5.3. 圖案化高分子刷表面分析 84
5.3.1. 微影製程光阻圖案 84
5.3.2. 圖案化APTES自組裝層 87
5.3.3. 圖案化ATRP起始劑層 88
5.3.4. 圖案化PNIPAAM高分子刷 89
5.3.5. 共聚物PNIPAAM-b-PMAA 96
5.4. 奈米高分子孔洞列陣表面分析 98
5.4.1. 孔洞型矽晶圓表面分析 98
5.4.2. 奈米高分子孔洞列陣 100
5.4.3. 奈米共聚高分子孔洞列陣 103
5.5. 高分子溫度敏感性 104
5.5.1. 高分子溫感形貌測試 104
5.5.2. 高分子回復性測試 108
5.6. 奈米金高分子微結構 111
5.6.1. 奈米金粒子ESCA化學能譜分析 111
5.6.2. 奈米金粒子TEM檢測 115
5.6.3. 金奈米粒子接枝SEM型態測定 116
5.6.4. 圖案化金奈米粒子SEM型態測定 118
5.7. 高分子刷螢光檢測 119
5.7.1. PNIPAAM螢光測試 119
5.7.2. 奈米金熱效應 120
5.7.3. SCMS螢光顯示測定 121
5.8. 光學性質 129
5.8.1. 各圖案化光柵繞射光測定 129
6. 結論 136
參考文獻 137
[1]N. Bunjes, S. Paul, J. Habicht, O. Prucker, J. Ruhe, and W. Knoll, "On the swelling behavior of linear end-grafted polystyrene in methanol/toluene mixtures," Colloid and Polymer Science, vol. 282, pp. 939-945, 2004.
[2]P. de Gennes, "Conformations of polymers attached to an interface," Macromolecules, vol. 13, pp. 1069-1075, 1980.
[3]B. Zhao and W. J. Brittain, "Polymer brushes: surface-immobilized macromolecules," Progress in Polymer Science, vol. 25, pp. 677-710, 2000.
[4]S. Milner, "Polymer brushes," Science, vol. 251, pp. 905-914, 1991.
[5]Y. T. M. Ejaz, T. Fukuda, "Controlled grafting of a well-defined polymer on porous glass filter by surface-initiated atom transfer radical polymerization," polymer, vol. 42, pp. 6811-6815, 2001.
[6]M. B. a. J. R. he, "Preparation and Characterization of a Polyelectrolyte Monolayer Covalently Attached to a Planar Solid Surface," Macromolecules, vol. 32, pp. 2309-2316, 1999.
[7]W. J. B. B. Zhao, "Polymer brushes surface-immobilized macromolecules," Prog. Polym. Sci, vol. 25, pp. 677-710, 2000.
[8]A. Kopf, J. Baschnagel, J. Wittmer, and K. Binder, "On the adsorption process in polymer brushes: a Monte Carlo study," Macromolecules, vol. 29, pp. 1433-1441, 1996.
[9]R. Zajac and A. Chakrabarti, "Irreversible polymer adsorption from semidilute and moderately dense solutions," Physical Review E, vol. 52, p. 6536, 1995.
[10]D. L. P. a. W. A. Z. W. C. Bigelow, "Film adsorbed from solotion in non-polar liquids," Journal of Colloid Science, vol. 1, pp. 513-538, 1946.
[11]R. G. Nuzzo and D. L. Allara, "Adsorption of bifunctional organic disulfides on gold surfaces," Journal of the American Chemical Society, vol. 105, pp. 4481-4483, 1983.
[12]P. E. Laibinis, G. M. Whitesides, D. L. Allara, Y. T. Tao, A. N. Parikh, and R. G. Nuzzo, "Comparison of the structures and wetting properties of self-assembled monolayers of n-alkanethiols on the coinage metal surfaces, copper, silver, and gold," Journal of the American Chemical Society, vol. 113, pp. 7152-7167, 1991.
[13]D. G. a. S. M. Husson, "Room Temperature Growth of Surface-Confined Poly(acrylamide) from Self-Assembled Monolayers Using Atom Transfer Radical Polymerization," Macromolecules, vol. 35, pp. 4218-4221, 2002.
[14]D. Gopireddy and S. M. Husson, "Room temperature growth of surface-confined poly (acrylamide) from self-assembled monolayers using atom transfer radical polymerization," Macromolecules, vol. 35, pp. 4218-4221, 2002.
[15]B. M. E. Delamarche, * H. Kang, and Ch. Gerber, "Thermal Stability of Self-Assembled Monolayers," Langmuir, vol. 10, pp. 4103-4108, 1994.
[16]J. A. H. a. J. P. Youngblood, "Optimization of Silica Silanization by 3-Aminopropyltriethoxysilane," Langmuir, vol. 22, pp. 11142-11147, 2006.
[17]S. Link and M. A. El-Sayed, "Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles," The Journal of Physical Chemistry B, vol. 103, pp. 4212-4217, 1999.
[18]J.-K. Chen, J.-H. Wang, C.-C. Cheng, J.-Y. Chang, and F.-C. Chang, "Polarity-indicative two-dimensional periodic relief gratings of tethered poly (methyl methacrylate) on silicon surfaces for visualization in volatile organic compound sensing," Applied Physics Letters, vol. 102, p. 151906, 2013.
[19]G. Masci, L. Giacomelli, and V. Crescenzi, "Atom Transfer Radical Polymerization ofN-Isopropylacrylamide," Macromolecular Rapid Communications, vol. 25, pp. 559-564, 2004.
[20]K. M. a. J. Xia, "Atom Transfer Radical Polymerization," Chem. Rev., vol. 101, pp. 2921-2990, 2001.
[21]T. Bhuvana, B. Kim, X. Yang, H. Shin, and E. Kim, "Reversible Full‐Color Generation with Patterned Yellow Electrochromic Polymers," Angewandte Chemie International Edition, vol. 52, pp. 1180-1184, 2013.
[22]Y. Lu, G. L. Liu, and L. P. Lee, "High-density silver nanoparticle film with temperature-controllable interparticle spacing for a tunable surface enhanced Raman scattering substrate," Nano letters, vol. 5, pp. 5-9, 2005.
[23]Y.-H. Ho, K.-H. Ting, K.-Y. Chen, S.-W. Liu, W.-C. Tian, and P.-K. Wei, "Omnidirectional antireflection polymer films nanoimprinted by density-graded nanoporous silicon and image improvement in display panel," Optics express, vol. 21, pp. 29827-29835, 2013.
[24]E. Costa, M. Coelho, L. M. Ilharco, A. Aguiar-Ricardo, and P. T. Hammond, "Tannic Acid Mediated Suppression of PNIPAAm Microgels Thermoresponsive Behavior," Macromolecules, vol. 44, pp. 612-621, 2011/02/08 2011.
[25]M. G. Santonicola, G. W. de Groot, M. Memesa, A. Meszynska, and G. J. Vancso, "Reversible pH-controlled switching of poly(methacrylic acid) grafts for functional biointerfaces," Langmuir, vol. 26, pp. 17513-9, Nov 16 2010.
[26]H. Xiao, "半導體製程技術導論, 羅正忠和張鼎張譯," ed: 二版, 臺灣培生教育出版, 臺北市, 民國九十三年, 2007.
[27]P. M. Morse, P. M. Morse, and P. M. Morse, Vibration and sound vol. 2: McGraw-Hill New York, 1948.
[28]Y. Joseph, I. Besnard, M. Rosenberger, B. Guse, H.-G. Nothofer, J. M. Wessels, et al., "Self-assembled gold nanoparticle/alkanedithiol films: preparation, electron microscopy, XPS-analysis, charge transport, and vapor-sensing properties," The Journal of Physical Chemistry B, vol. 107, pp. 7406-7413, 2003.
[29]Y. S. F. J. Xu, ‡ Z. P. Cheng,†,§ X. L. Zhu,§ and E. T. K. C. X. Zhu, *,† and K. G. Neoh†, "Controlled Micropatterning of a Si(100) Surface by Combined Nitroxide-Mediated and Atom Transfer Radical Polymerizations," Macromolecules, vol. 38, pp. 6524-6528, 2005.
[30]F. Zhou, L. Jiang, W. Liu, and Q. Xue, "Fabrication of Chemically Tethered Binary Polymer-Brush Pattern through Two-Step Surface-Initiated Atomic-Transfer Radical Polymerization," Macromolecular Rapid Communications, vol. 25, pp. 1979-1983, 2004.
[31]Rong Dong, ‡ Sitaraman Krishnan,‡ Barbara A. Baird,† Manfred Lindau,§ and Christopher K. Ober*, "Patterned Biofunctional Poly(acrylic acid) Brushes on Silicon
Surfaces," Biomaterials, vol. 8, pp. 3082-3092, 2007.
[32]M. Zhu, G. Baffou, N. Meyerbröker, and J. Polleux, "Micropatterning thermoplasmonic gold nanoarrays to manipulate cell adhesion," ACS nano, vol. 6, pp. 7227-7233, 2012.
[33]M. Faraday, "The Bakerian lecture: experimental relations of gold (and other metals) to light," Philosophical Transactions of the Royal Society of London, pp. 145-181, 1857.
[34]R. G. Acres, A. V. Ellis, J. Alvino, C. E. Lenahan, D. A. Khodakov, G. F. Metha, et al., "Molecular structure of 3-aminopropyltriethoxysilane layers formed on silanol-terminated silicon surfaces," The Journal of Physical Chemistry C, vol. 116, pp. 6289-6297, 2012.
[35]A. N. Zelikin, J. F. Quinn, and F. Caruso, "Disulfide cross-linked polymer capsules: en route to biodeconstructible systems," Biomacromolecules, vol. 7, pp. 27-30, 2006.
[36]Q. Wei, J. Ji, and J. Shen, "Synthesis of Near‐Infrared Responsive Gold Nanorod/PNIPAAm Core/Shell Nanohybrids via Surface Initiated ATRP for Smart Drug Delivery," Macromolecular Rapid Communications, vol. 29, pp. 645-650, 2008.
[37]E. S. Vasquez, I.-W. Chu, and K. B. Walters, "Janus Magnetic Nanoparticles with Bicompartmental Polymer Brush Prepared Using Electrostatic Adsorption to Facilitate Toposelective Surface-initiated ATRP," Langmuir, 2014.
[38]S. Schilp, N. Ballav, and M. Zharnikov, "Fabrication of a Full‐Coverage Polymer Nanobrush on an Electron‐Beam‐Activated Template," Angewandte Chemie International Edition, vol. 47, pp. 6786-6789, 2008.
[39]T. Peng and Y.-L. Cheng, "PNIPAAm and PMAA co-grafted porous PE membranes: living radical co-grafting mechanism and multi-stimuli responsive permeability," Polymer, vol. 42, pp. 2091-2100, 2001.
[40]J. A. Howarter and J. P. Youngblood, "Optimization of silica silanization by 3-aminopropyltriethoxysilane," Langmuir, vol. 22, pp. 11142-11147, 2006.
[41]T. AIDA, "living and immortal polymerization," Prog. Polym. Sci, vol. 19, pp. 469-528, 1994.
[42]W. K. Lee, M. Patra, P. Linse, and S. Zauscher, "Scaling behavior of nanopatterned polymer brushes," Small, vol. 3, pp. 63-66, 2007.
[43]B. Yameen, M. Ali, R. Neumann, W. Ensinger, W. Knoll, and O. Azzaroni, "Synthetic proton-gated ion channels via single solid-state nanochannels modified with responsive polymer brushes," Nano letters, vol. 9, pp. 2788-2793, 2009.
[44]E. Martines, K. Seunarine, H. Morgan, N. Gadegaard, C. D. Wilkinson, and M. O. Riehle, "Superhydrophobicity and superhydrophilicity of regular nanopatterns," Nano letters, vol. 5, pp. 2097-2103, 2005.
[45]A. Cassie and S. Baxter, "Wettability of porous surfaces," Transactions of the Faraday Society, vol. 40, pp. 546-551, 1944.
[46]B. Xin and J. Hao, "Reversibly switchable wettability," Chemical Society Reviews, vol. 39, pp. 769-782, 2010.
[47]M.-C. Daniel and D. Astruc, "Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology," Chemical reviews, vol. 104, pp. 293-346, 2004.
[48]M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, and R. Whyman, "Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid–liquid system," J. Chem. Soc., Chem. Commun., pp. 801-802, 1994.
[49]D. Philip, "Green synthesis of gold and silver nanoparticles using< i> Hibiscus rosa sinensis," Physica E: Low-dimensional Systems and Nanostructures, vol. 42, pp. 1417-1424, 2010.
[50]H. R. Nikabadi, N. Shahtahmasebi, M. R. Rokn-Abadi, M. B. Mohagheghi, and E. Goharshadi, "Gradual growth of gold nanoseeds on silica for SiO2@ gold homogeneous nano core/shell applications by the chemical reduction method," Physica Scripta, vol. 87, p. 025802, 2013.
[51]B. D. Chithrani, A. A. Ghazani, and W. C. Chan, "Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells," Nano letters, vol. 6, pp. 662-668, 2006.
[52]N. Hampe, T. Jonas, B. Wolters, N. Hersch, B. Hoffmann, and R. Merkel, "Defined 2-D microtissues on soft elastomeric silicone rubber using lift-off epoxy-membranes for biomechanical analyses," Soft matter, vol. 10, pp. 2431-2443, 2014.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top