跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.138) 您好!臺灣時間:2024/09/16 02:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:葉人豪
研究生(外文):Jen-hau Yeh
論文名稱:聚胺基酸輔助金奈米晶體合成及在奈米晶體記憶體的應用
論文名稱(外文):Study of polypeptide assisted synthesis of gold nanocrystal for nanocrystal memory
指導教授:呂正傑
指導教授(外文):Cheng-chieh Leu
學位類別:碩士
校院名稱:國立高雄大學
系所名稱:化學工程及材料工程學系碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:123
中文關鍵詞:金奈米粒子、綠色化學、聚賴胺酸、聚穀胺酸、奈米晶體記憶體
外文關鍵詞:gold nanoparticlesgreen chemistryPoly-L-Lysine (PLL)Poly-L-Glutamic acid (PLGA)nanocrystal memory
相關次數:
  • 被引用被引用:3
  • 點閱點閱:239
  • 評分評分:
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
  目前地球環境持續惡化且日益受到注視的情況之下,減少能源消耗以及綠色環保將是未來科技發展不容忽視的重要課題。
  本論文乃利用具生物親合性的聚賴胺酸(Poly-L-Lysine, PLL)與聚穀胺酸(Poly-L-Glutamic acid, PLGA)作為媒介材料,以逐層組裝技術(Layer by Layer, LbL)鍍製聚胺基酸多層薄膜於二氧化矽基板上,並利用此薄膜輔助合成金奈米粒子以及矽氧化物,最後使用溶膠凝膠法製備二氧化鉿控制氧化層並鍍製上鋁電極後,即完成奈米晶體記憶體元件。此製程的特點為水相全溶液製程,過程中不需使用到有機溶劑且製程相當簡便,相當符合近年來綠色化學的趨勢。我們主要探討了以下實驗參數:(1)聚胺基酸的還原能力,(2)聚胺基酸薄膜的鍍製特性,(3)還原金奈米粒子之影響條件,(4)金奈米粒子穩定性探討,與(5)奈米晶體記憶體特性探討。
  由實驗結果得知:(1)聚穀胺酸的還原能力較聚賴胺酸優,且分子量愈低所還原的金奈米粒子粒徑較小。若比較官能基的還原能力方面,帶有負電荷的(COO-)羧基應較氨基(NH3+)為強;(2) 高分子量聚胺基酸所鍍製的薄膜愈均整,且聚賴胺酸為頂層薄膜時,薄膜的粗糙度較低;且在不同的酸鹼值環境下鍍製的結果也有所不同;(3) 在酸鹼值約為6時以聚胺基酸薄膜所得到的奈米粒子條件最佳,平均粒徑為4.5nm,整體密度為1.72ⅹ1012cm-2;(4)利用聚胺基酸薄膜析出的矽氧化物能使金奈米粒子具備一定的熱穩定性;(5)在記憶元件特性探討中,奈米粒子密度較高展現出的特性愈佳。
Under the continued deterioration of the global environment and the increasingly getting more attention, reducing energy consumption and environmental protection will be an important issue in the future technological development.
In this work, we used biocompatible Poly-L-Lysine (PLL) or Poly-L-Glutamic acid (PLGA) as medium. The multilayers of PLL/PLGA were fabricated by applying Layer-by-Layer (LbL) assembly process on SiO2 substrate. The formation of gold nanoparticles and silica were both mediated by the polypeptide multilayers. After covering the nanoparticles by spin coating of sol-gel-synthesized HfO2 control oxide, Al electrode was deposited to construct a nanocrystal memory device. This study proposed a water-based all-solution process without the use of organic solvent. This process is quite simple and consistent with the recent trend of green chemistry. In this study, several issues are discussed as below: (1) the reducing ability of poly amino acid, (2) characterization of the multilayer film of poly amino acid, (3) reduction conditions of gold nanoparticles, (4) stability of gold nanoparticles, (5) memory properties of nanocrystal memory.
The experimental results showed : (1) Reducing ability of PLGA is stronger than that of PLL. And the reducing ability of carboxyl group is stronger than that of amino group by comparing the characterization of functional group in poly amino acid. The poly amino acid with a lower molecular weight induced the formation of gold particle with smaller particle size. (2) The poly amino acid with higher molecular weight assembled to a smoother film, but also depending on the solution pH value. (3) A superior reduction result of gold nanoparticles with average particle size about 4.5nm and total particle density of 1.72ⅹ1012cm-2 was obtained at solution pH value about 6. (4) The poly amino acid mediated silica can serve as protection layer, improving the thermal stability of gold nanoparticles. (5) The nanocrystal memorywith higher particle density showed better memory property.
目錄 I
表目錄 VI
圖目錄 VII
中文摘要 1
英文摘要 3
第一章 研究緒論 5
1.1前言 5
1.2研究動機 7
1.3論文架構 9
第二章 文獻回顧 13
2.1記憶體沿革 13
2.1.1揮發性記憶體 (Volatile memory, VRAM)[15-16] 14
2.1.2非揮發性記憶體 (Non-volatile memory, NVRAM)[17-18] 14
2.1.3記憶體性能之指標 15
2.2奈米晶體記憶體 16
2.3奈米粒子簡介 18
2.3.1奈米粒子的發展與歷史 19
2.3.2金奈米粒子的製備法 19
2.3.3奈米粒子的製備 20
2.3.3.1物理方法 20
2.3.3.2化學方法 21
2.3.3.3綠色化學法 22
2.4胺基酸簡介 23
2.4.1胺基酸的選擇 25
2.4.2聚賴胺酸(Poly-L-Lysine)簡介 25
2.4.3聚榖胺酸(Poly-L-Glutamic acid)簡介 26
2.5逐層組裝(Layer-by-Layer)原理 26
2.5.1逐層組裝技術的應用 27
2.5.2鍍製方法 29
2.5.2.1浸鍍法(Dip coating) 29
2.5.2.2旋鍍法(Spin coating) 29
2.6高分子輔助合成奈米粒子發展 30
第三章 實驗方法 44
3.1實驗藥品與材料 44
3.2實驗用晶片處理流程 45
3.2.1矽晶片表面清洗[68] 45
3.2.1.2二氧化矽氧化層的成長 47
3.2.2二氧化矽氧化層的清洗 47
3.2.3二氧化矽氧化層的處理 48
3.3聚胺基酸還原力之探討 48
3.4鍍製聚胺基酸薄膜 48
3.4.1聚胺基酸溶液的調配 48
3.4.2聚胺基酸單層薄膜的鍍製(monolayer) 49
3.4.3聚胺基酸多層薄膜的鍍製(multilayer) 49
3.5奈米粒子之製備 49
3.5.1氯金酸溶液配製與浸鍍 49
3.5.2保護氧化層的覆蓋 49
3.6去除聚胺基酸薄膜 50
3.6.1熱處理 50
3.6.2氧電漿處理 50
3.7奈米晶體記憶體元件之製備 50
3.7.1控制氧化層之鍍製 51
3.7.2電極的鍍製 51
3.8分析儀器 51
3.8.1紫外光-可見光吸收光譜儀(UV-vis Spectrometer) 51
3.8.2橢圓偏光儀(Ellipsometer) 52
3.8.3掃描式電子顯微鏡(Scanning Electron Microscopy, SEM) 53
3.8.4 X光繞射儀(X-ray diffraction, XRD) 53
3.8.5原子力顯微鏡(Atomic force microscope, AFM) 54
3.8.6電容-電壓量測(C-V量測) 54
3.8.7圓二色光譜儀(Circular Dichroism Spectropolarimeter, CD) 55
3.9試片代號 55
第四章 結果與討論 61
4.1水溶液中聚胺基酸還原力探討 61
4.1.1聚賴胺酸與聚穀胺酸還原能力測試 61
4.1.2聚賴胺酸於微酸性環境下還原能力 62
4.2聚胺基酸薄膜鍍製探討 63
4.2.1聚胺基酸薄膜於不同酸鹼環境下鍍製狀況 64
4.2.2聚胺基酸薄膜的組裝特性 65
4.3奈米粒子之製備 66
4.3.1聚胺基酸薄膜還原特性探討 66
4.3.1.1薄膜形貌對還原特性影響 67
4.4氯金酸溶液pH值對還原特性之影響 68
4.4.1氯金酸水溶液pH值之影響 68
4.5氯金酸濃度對還原特性之影響 69
4.6金奈米粒子之穩定性探討 70
4.7氧化層穩定奈米粒子特性探討 70
4.8奈米晶體記憶體特性探討 71
4.8.1記憶特性分析 71
4.8.2浸鍍氯金酸時間對記憶元件特性探討 72
4.8.2.1閘極電壓對ΔVFB之影響 73
第五章 結論 96
第六章 參考文獻 98
[1]蔡信行, 孫光中, “奈米科技導論-基本原理及應用”, 新文京開發出版股份有限公司. 85-98頁(2004).
[2]張立德, 張勁燕, ”奈米材料”, 五南圖書出版社. 31頁(2002).
[3]胡淑芬, ”奈米科技發展之介紹”, 毫微米通訊第八卷第四期(2001).
[4]董慕愷,陳郁文,”奈米金觸媒”, 科學發展. 6 ,390, 46-49頁(2005).
[5]W. Cai, T. Gao, H. Hong, J. Sun, “Applications of gold nanoparticles in cancer nanotechnology”, Nanotechnology science and applications. 1, 17-32 (2008).
[6]嚴鴻仁, 徐善慧, “奈米金與銀的妙用”, 科學發展. 431期(2008).
[7]閔恩澤, 吳巍, “綠色化學與化工”, 五南圖書出版社. 7-9頁(2003).
[8]Allen, Shonnard, “綠色工程”, 全威圖書有線公司. 186-191頁(2005).
[9]M. Sarikaya, C. Tamerler, A. Y. Jen, K. Schulten, F. Baneyx, “Molecular biomimetics: nanotechnology through biology”, Nature materials. 2, 577-585(2003).
[10]J. Dufourcqa, S. Bodnar, G. Gay, D. Lafond, P. Mur, G. Molas, J. P. Nieto, L. Vandroux, L. Jodin, F. Gustavo, Th. Baron, ” High density platinum nanocrystals for non-volatile memory applications”, Applied physics. 92, 073102(2008).
[11]徐如人, 龐文琴, “無機合成與製備化學”, 五南圖書出版股份有限公司. 727-732頁(2004).
[12]林鴻明, 林中魁, “奈米科技應用研究與展望”, 工業材料179期. 84-91頁(2001).
[13]Y. Shi, K. Saito, H. Ishikuro, and T. Hiramoto, ‘‘Effects of Traps on Charge Storage Characteristics in Metal–Oxide–SemiconductorMemory Structures Based on Silicon Nanocrystals’’, Applied physics. 84, 2358-60 (1998).
[14]施敏, “浮閘記憶體從發明到數位電子時代”, 奈米通訊. 第19卷, 1(2012).
[15]B. Keeth‧R.D Jacob Baker, DRAM Circuit Design. (2001).
[16]B. Prince, Semiconductor Memories, John Willy & Son Ltd. (1991).
[17]葉智仁, “ONO薄膜之研究與記憶體應用”, 中原大學電子工程學系碩士學位論文. (2002).
[18]J. Yang, J. Kim, J. Lee, S. Min, H. Kim, K. L. Wang, J. Hong, “Electrostatic force microscopy measurements of charge trapping behavior of Au nanoparticles embedded in metal– insulator– semiconductor structure”, Ultramicroscopy. 108, 1215-1219(2008).
[19]F. Rana, K. Chan, H. Hanafi, W. Chan, D. Buchanan, “Electron Devices Meeting”. 521-524(1995).
[20]T. C. Changa, F. Y. Jian, S. C. Chen, Y. T. Tsai, “Developments in
nanocrystal memory”, Materialstoday. 14, 608-615(2011).
[21] M. Faraday, “Experimental Relations of Gold (and Other Metals) to Light”, Philosophical transactions. 147, 145-181(1857).
[22]J. Turkevich, P. C. Stevenson, J. Hillier, “Nucleation and Growth Process in the Synthesis of Colloidal Gold”, Discuss. Faraday Soc. 11, 55-75(1951).
[23]M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, R. Whyman, “Synthesis of Thiol-Derivatized Gold Nanoparticles in a Two-Phase Liquid-liquid System.”, Chem. Soc. Chem. Commun. 801-802 (1994).
[24]J. Kuyama, “Nanometer-Sized Crystals Formed by The Mechanical Alloying in the Ag-Fe System.” Jpn J Appl Phys. 30, 864 (1991)
[25]V. YU. Dolmatov,”Detonation synthesis ultradispersed diamond:properties and applications”, Russia Chemical Reviews. 70(7), 607-626(2001)
[26]S. S. Chang, C. W. Shih, C. D. Chen, W. C. Lai, C. R. C. Wang, “The Shape Transition of Gold Nanorods”, Langmuir. 15, 701-709(1999).
[27]M. T. Reetz, W. Helbig, S. A. Quaiser, “Electrochemical Preparation of Nanostructured Bimetallic Clusters”, American Chemical Society. 7, 2227-2228(1995).
[28]K. V. P. M. Shafi, Y. Koltypin, A. Gedanken, R. Prozorov, J. Balogh, J. Lendvai, I. Felner, “Sonochemical Preparation of Nanosized Amorphous NiFe2O4 Particles”, American Chemical Society. 101, 6409-6414(1997).
[29]K. V. P. M. Shafi, A. Ulman, X. Yan, N. L. Yang, C. Estournes, H. White, M. Rafailovich, “Sonochemical Synthesis of Functionalized Amorphous Iron Oxide Nanoparticles”, Langmuir. 17, 5093-5097(2001).
[30]P. C. Lee, D. J. Melsel, “Adsorption and Surface-Enhanced Raman of Dyes on Silver and Gold Sols”, J. Phys. Chem. 86, 3391(1982).
[31]N. R. Jana, L. Gearheart, C. J. Murphy, “Seeding Growth for Size Control of 5-40 nm Diameter Gold Nanoparticles”, Langmuir. 17, 6782-6786(2001).
[32]M. J. A. Shiddiky, Y. B. Shim, “Trace Analysis of DNA: Preconcentration, Separation, and Electrochemical Detection in Microchip Electrophoresis Using Au Nanoparticles”, Anal. Chem. 79, 3724-3733(2007).
[33]H. J. HAH, S. M. KOO, S. H. LEE, “Preparation of Silver Nanoparticles through Alcohol Reduction with Organoalkoxysilanes”, Journal of Sol-Gel Science and Technology. 26, 467-471(2003).
[34]S. Iravani, “Green synthesis of metal nanoparticles using plants”, Green Chem., 13, 2638-2650(2011).
[35]D. Sharma, “A biologically friendly single step method for gold nanoparticle formation”, Colloids and Surfaces B: Biointerfaces. 85 330-337(2011).
[36]D. Sharma, “Single step, pH induced gold nanoparticle chain formation in lecithin/water system”, Colloids and Surfaces B: Biointerfaces. 107, 262-266(2013).
[37]J. Sarkar, S. K. Roy, A. Laskar, D. Chattopadhyay, K. Achary, “Bioreductionofchloroaurateionstogoldnanoparticlesbyculture filtrate of Pleurotus sapidus Quel”, Materials Letters. 92, 313-316(2013).
[38]J. Anuradha, T. Abbasi, S. A. Abbasi, “An eco-friendly method of synthesizing gold nanoparticles using an otherwise worthless weed pistia”, Journal of Advanced Research.
[39]S. Pandey, G. K. Goswami, K. K. Nanda, “Green synthesis of polysaccharide/gold nanoparticle nanocomposite:An efficient ammonia sensor”, Carbohydrate Polymers. 94, 229-234(2013).
[40]M. V. Sujitha, S. Kannan, “Green synthesis of gold nanoparticles using Citrus fruits (Citrus limon, Citrus reticulata and Citrus sinensis) aqueous extract and its characterization”, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 102, 15-23(2013).
[41]呂昭熠, “電漿化學氣相沉積poly-l-lysine薄膜之研究”, 中華大學 機械與航太工程研究所碩士論文. (2010).
[42]B. L. Frey, C. E. Jordan, S. Komguth, R. M. Com, “Control of the Specific Adsorption of Proteins onto Gold Surfaces with Poly( L-lysine) Monolayers”, Analytical Chemistry. 67, 4452-4457(1995).
[43]C. M. Pradier, V. Humblot, L. Stievano, C. Methivier, J. F. Lambert, “Salt Concentration and pH-Dependent Adsorption of Two Polypeptides on Planar and Divided Alumina Surfaces. In Situ IR Investigations”, Langmuir. 23, 2463-2471(2007).
[44]D. T. Haynie, S. Balkundi, N. Palath, K. Chakravarthula, K. Dave, ” Polypeptide Multilayer Films:Role of Molecular Structure and Charge”, Langmuir. 20, 4540-4547(2004).
[45]C. Li, D. F. Yu, R. A. Newman, “Complete Regression of Well-established Tumors Using a Novel Water-soluble Poly(l-Glutamic Acid)-Paclitaxel Conjugate”, Cancer research. 58, 2404-2409(1998).
[46]C. M. Pradier, V. Humblot, L. Stievano, C. Methivier, J. F. Lambert, “Salt Concentration and pH-Dependent Adsorption of Two Polypeptides on Planar and Divided Alumina Surfaces. In Situ IR Investigations”, Langmuir. 23, 2463-2471(2007).
[47]M. Chittchang, H. H. Alur, A. K. Mitra, T. P. Johnston, “Poly(L-lysine) as a model drug macromolecule with which to investigate secondary structure and membrane transport, part I : physicochemical and stability studies”, Journal of Pharmacy and Pharmacology. 54, 315-323(2002).
[48]張鑑祥, 楊毓民, “分子層級的薄膜表面型態控制-逐層組裝技術”, 化工技術, 第12卷, 135-144(2004).
[49]M. X. Chen, B. K. Li, D. K. Yin, J. Liang, S. S. Li, D. Y. Peng, “Layer-by-layer assembly of chitosan stabilized multilayeredliposomes for paclitaxel delivery”, Carbohydrate Polymers. 111, 298-304(2014).
[50]H. Xu, Y. Yan, T. Wan, S. Li, “Degradation properties of the electrostatic assembly PDLLA/CS/CHS nerve conduit”, Biomed. Mater. 4, 045006(2009).
[51]F. C. Soumetz, L. Pastorino, C. Ruggiero, “Development of a piezoelectric immunosensor for matrix metalloproteinase-1 detection”, Engineering in Medicine and Biology Society. 2775-2778(2009).
[52]V. N.Bliznynuk, V. V. Tsukruk, “Composite Self-Assembled Filmsfrom Charged Latex Nanoparticles”, Polym. Prepr. Am. Chem. Soc. Polym. Chem. Div. 38, 1, 963(1997).
[53]M.Gao, B.Richter, S. Kirstein, H. Mohwald, “Electroluminescence Studies on Self-Assembled Films of PPV and CdSe Nanoparticles”, J. Phys. Chem. 102, 4096(1998).
[54]J. D. Mendelsohn, C. J. Barrett, V. V. Chan, A. J. Pal, A. M. Mayes, M. F. Rubner, “Fabrication of Microporous Thin Films from Polyelectrolyte Multilayers”, Langmuir. 16, 5017(2000).
[55]J. A. He, R. Mosurkal, L. A. Samuelson, L. Li, J. Kumar, “Dye-sensitized Solar Cell Fabricated by Electrostatic Layer-by-Layer Assembly of Amphoteric TiO2 Nanoparticles”, Langmuir. 19, 2169-2174(2003).
[56]G. Decher, “Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites”, American Association for the Advancement of Science. 277, 1232-1237(1997).
[57]J. Cho, K. Char, J. D. Hong, K. B. Lee, “Fabrication of Highly Ordered Multilayer Films Using a Spin Self-Assembly Method”, Adv. Mater. 13, 1076-1078(2001).
[58]T. C. Wang, M. F. Rubner, R. E. Cohen, “Polyelectrolyte Multilayer Nanoreactors for Preparing Silver Nanoparticle Composites: Controlling Metal Concentration and Nanoparticle Size”, Langmuir. 18, 3370-3375(2002).
[59]J. Dai, M. L. Bruening, “Catalytic Nanoparticles Formed by Reduction of Metal Ions in Multilayered Polyelectrolyte Films”, Nano letters. 2, 497-501(2002).
[60]H. Lee, Y. Lee, A. R. Statz, J. Rho, T. G. Park, P. B. Messersmith, “Substrate-Independent Layer-by-Layer Assembly by Using Mussel-Adhesive-Inspired Polymers”, Adv. Mater. 20, 1619-1623(2008).
[61]E. Kharlampieva, J. M. Slocik, T. Tsukruk, R. R. Naik, V. V. Tsukruk,” Polyaminoacid-Induced Growth of Metal Nanoparticles on Layer-by-Layer Templates”, Chem. Mater. 20, 5822-5831(2008).
[62]C. O. Baker, B. Shedd, R. J. Tseng, A. A. M. Morales, C. S. Ozkan, M. Ozkan, Y. Yang, R. B. Kaner, ” Size Control of Gold Nanoparticles Grown on Polyaniline Nanofibers for Bistable Memory Devices”, ACSnano. 5, 3469-3474(2011).
[63]S. Anandhakumar, A. M. Raichur, “Polyelectrolyte/silver nanocomposite multilayer films as multifunctional thin film platforms for remote activated protein and drug delivery”, Acta Biomaterialia. 9 8864-8874(2013).
[64]S. Yanagida, Y. Kosakaia, A. Yasumoria, “Preparation of gold nanoparticle dispersed TiO2-polymer compositefilm by a combined layer-by-layer and photocatalytic deposition method”, Colloids and Surfaces A: Physicochem. 456 55-61(2014).
[65]C. M. Pradier, V. Humblot, L. Stievano, C. Methivier, J. F. Lambert, “Salt Concentration and pH-Dependent Adsorption of Two Polypeptides on Planar and Divided Alumina Surfaces. In Situ IR Investigations”, Langmuir. 23, 2463-2471(2007).
[66]D. T. Haynie, S. Balkundi, N. Palath, K. Chakravarthula, K. Dave, “Polypeptide Multilayer Films:Role of Molecular Structure and Charge”, Langmuir. 20, 4540-4547(2004).
[67]D. Zhou, A. Bruckbauer, M. Batchelor, D. J. Kang, C. Abell, D. Klenerman, “Influence of the Foundation Layer on the Layer-by-Layer Assembly of Poly-L-lysine and Poly(styrenesulfonate) and Its Usage in the Fabrication of 3D Microscale Features”, Langmuir. 20, 9089-9094(2004).
[68]國立交通大學奈米中心, 濕式清洗蝕刻台操作講義, (2004).
[69]M. Jiang, I. Popa, P. Maroni, M. Borkovec, “Adsorption of poly(l-lysine) on silica probed by optical reflectometry”, Colloids and Surfaces A: Physicochem. 360, 20-25(2010).
[70]T. C. Wang, M. F. Rubner, R. E. Cohen, “Polyelectrolyte Multilayer Nanoreactors for Preparing Silver Nanoparticle Composites: Controlling Metal Concentration and Nanoparticle Size”, Langmuir. 18, 3370-3375(2002).
[71]S. K. Bhargava, J. M. Booth, S. Agrawal, P. Coloe, G. Kar, “Gold Nanoparticle Formation during Bromoaurate Reduction by Amino Acids”, Langmuir. 21, 5949-5956(2005).
[72]S. Wang, K. Qian, X. Z. Bi, W. Huang, ” Influence of Speciation of Aqueous HAuCl4 on the Synthesis, Structure, and Property of Au Colloids”, J. Phys. Chem. 113, 6505-6510(2009).
[73]X. Ji, X. Song, J. Li, Y. Bai, W. Yang, X. Peng, “Size Control of Gold Nanocrystals in Citrate Reduction: The Third Role of Citrate”, J. Am. Chem. Soc. 129, 13939-13948(2007).
[74]R. Meszaros, L. Thompson, M. Bos, P. d. Groot, ” Adsorption and Electrokinetic Properties of Polyethylenimine on Silica Surfaces”, Langmuir. 18, 6164-6169(2002).
[75]Z. L. Zhi, D. T. Haynie, “Direct Evidence of Controlled Structure Reorganization in a Nanoorganized Polypeptide Multilayer Thin Film”, Macromolecules. 37, 8668-8675(2004).
[76]S. V. Patwardhan, R. Maheshwari, N. Mukherjee, K. L. Kiick, S. J. Clarson, “Conformation and Assembly of Polypeptide Scaffolds in Templating the Synthesis of Silica: An Example of a Polylysine Macromolecular Switch”, Biomacromolecules. 7, 491-497(2006).
[77]K. M. Hawkins, S. S. S. Wang, D. M. Ford, D. F. Shantz, ” Poly-L-Lysine Templated Silicas: Using Polypeptide Secondary Structure to Control Oxide Pore Architectures”, J. Am. Chem. Soc. 126, 9112-9119(2004).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top