跳到主要內容

臺灣博碩士論文加值系統

(44.221.73.157) 您好!臺灣時間:2024/06/20 20:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡嘉仁
研究生(外文):Jia-Ren Tsai
論文名稱:電動力技術整治電鍍工廠污染土壤之三維模場研究
論文名稱(外文):A three-dimentional pilot plant study for remediation of electroplate contaminated soil by electrokinetic process
指導教授:袁菁袁菁引用關係
指導教授(外文):Yuan Ching
學位類別:碩士
校院名稱:國立高雄大學
系所名稱:土木與環境工程學系碩士班
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:102
語文別:中文
論文頁數:368
中文關鍵詞:電動力技術、聚丙烯、三維模場、重金屬、鍵結型態分析、電滲透流、經濟分析
外文關鍵詞:electrokinetic、Polypropylene、three-dimentional、h
相關次數:
  • 被引用被引用:4
  • 點閱點閱:323
  • 評分評分:
  • 下載下載:47
  • 收藏至我的研究室書目清單書目收藏:0
紙本專利開放日105.12.30
紙本專利開放日105.12.30
第一章前言 1
1.1研究緣起 1
1.2 研究目的 3
1.3 研究內容 3
第二章文獻回顧 5
2.1電鍍工廠污染特性 5
2.2 重金屬特性 7
2.2.1基本物化特性 7
2.2.2重金屬管制標準 9
2.2.3重金屬與土壤介質之結合型態 11
2.3 重金屬污染土壤之整治技術 13
2.4 電動力法復育技術原理與機制 18
2.5 電動力技術影響因子 21
2.5.1操作流質 21
2.5.2電極材料 22
2.5.3電壓及電流強度 24
2.5.4土壤組成 25
2.6 電動力技術用於處理重金屬污染土壤之研究 25
2.6.1實驗尺度 26
2.6.2實場尺度 38
2.6.2.1Haages Hogeschool, The HAGUE, Holland 38
2.6.2.2Verhulstplein, The HAGUE, Halland 39
2.6.2.3Verhulstplein, The HAGUE, Halland 41
2.6.2.4電動力實場整治文獻彙整 41
2.6.2.5小結 54
2.7 土壤污染整治成本分析 55
第三章研究方法 60
3.1 研究架構 60
3.2 實驗材料及設備 60
3.2.1土壤樣品來源及前處理 60
3.2.2分析儀器及實驗設備 60
3.2.3試藥及材料 62
3.3 土壤基本性質分析 63
3.3.1土壤pH值分析試驗 63
3.3.2土壤有機質含量 63
3.3.3陽離子交換容量(CEC) 64
3.4 土壤殘留濃度分析試驗 65
3.5 序列萃取試驗 65
3.6 第一代及第二代三維現地模場系統設計因子 66
3.6.1三維模場系統安裝規劃 67
3.6.2電動力試驗進行期 69
3.6.3電動力試驗後期 70
3.7 三維模場系統實驗規劃 72
3.7.1監測項目 73
3.8 實驗之品保品管(QA/QC) 73
第四章結果與討論 75
4.1 土壤基本物化性質 75
4.2 三維模場系統設計 75
4.2.1設計因子規劃 75
4.2.1.1實驗前期 76
4.2.1.2實驗進行期 77
4.2.1.3實驗後期 79
4.2.1.4小結 79
4.2.2第一代三維模場 80
4.2.2.1第一代模場主體架構 80
4.2.2.2第一代模場隔板設計 81
4.2.2.3模場陰、陽極槽及土壤反應槽 81
4.2.3第二代三維模場 82
4.2.3.1第二代模場主體架構之改良 83
4.2.3.2第二代模場隔板設計 84
4.2.3.3第二代模場陰、陽極及土壤反應槽尺寸改良 85
4.2.3.4電極尺寸設計 85
4.3 三維模場系統組裝 87
4.3.1槽體組裝 88
4.3.2監控設施 89
4.4 電動力三維模場實驗 91
4.4.1第一代三維模場系統-不鏽鋼電極棒 92
4.4.1.1槽液及土壤pH值分析 92
4.4.1.2電滲透流係數(Ke)與電流密度之變化 98
4.4.1.3陰/陽極槽液電導度分析 100
4.4.1.4槽液及土壤溫度 102
4.4.1.5第一代模場重金屬去除率分析(不鏽鋼電極棒) 106
4.4.2第二代三維模場系統-鈦板電極 174
4.4.2.1槽液及土壤pH值分析 175
4.4.2.2電滲透流係數(Ke)與電流密度之變化 178
4.4.2.3陰/陽極槽液電導度分析 182
4.4.2.4槽液及土壤溫度 184
4.4.2.5第二代模場重金屬去除率分析(鈦板電極) 188
4.4.3土壤之重金屬鍵結型態分析 260
4.4.3.1第一代模場處理後土壤之種金屬鍵結型態分析 260
4.4.3.2第二代模場處理後土壤之種金屬鍵結型態分析 268
4.4.3.3小結 275
4.4.4處理機制分析 277
4.4.4.1第一代模場系統處理機制分析 277
4.4.4.2第二代模場系統處理機制分析 283
4.4.4.3小結 287
4.4.5經濟效益評估 289
4.4.5.1小結 294
第五章結論與建議 297
5.1 結論 297
5.2 建議 302
參考文獻 303
附錄A實驗檢量線 312
附錄B電動力數據 316



圖目錄
圖 2.1土壤電動力復育技術示意圖 19
圖 2.2電泳作用示意圖(劉等,1998) 22
圖 2.3電動力系統設計圖(Rubio et al., 2011) 34
圖 2.4荷蘭海牙校園整治場址電動力裝置設立圖(BioSoil BV提供) 39
圖 2.5荷蘭海牙住宅區整治場址電動力裝置設立圖(BioSoil BV提供) 40
圖 2.6荷蘭海牙住宅區電動力裝置(a)住家門口;(b)人行道;(c)電極孔(BioSoil BV提供) 40
圖 2.7荷蘭海牙加油站整治場址電動力裝置設立圖(BioSoil BV提供) 41
圖 2.8電極模組示意圖(Lee et al., 2011) 46
圖 2.9場址電極排列示意圖(a)Test I;(b)Test II (Lee et al., 2011) 47
圖 2.10英國電動力實場整治照片(a)現地施工照片;(b)電極擺設示意圖(Agnew et al., 2011) 48
圖 2.11韓國某涉及場實場整治照片;(a)整地中;(b)土壤過篩;(c)電動力處理廠;(d)電極擺放位置規則 (Lee et al., 2012) 49
圖 2.12韓國某射擊場電動力技術處理後之污染物濃度空間分佈圖(a)Pb;(b)Cu (Lee et al., 2012) 49
圖 2.13電極系統示意圖(Kim et al., 2012) 51
圖 2.14電極配置示意圖(Kim et al., 2012) 51
圖 2.15砷、鉛及銅金屬分別於頂層(0-50 cm)、中間層(50-100 cm)及底層(100-150 cm)濃度變化圖(Kim et al., 2012) 53
圖 2.16電極擺設方式 53
圖 3.1研究架構圖 61
圖 3.2三維現地模場初步構想圖 (a)第一代模場;(b)第二代模場 68
圖 3.3第一代三維現地模場採樣示意圖(a)土壤採樣;(b)土壤溫度與電流量測 71
圖 3.4第二代三維現地模場採樣示意圖(a)土壤採樣;(b)土壤溫度與電流量測 71
圖 4.1土壤夯實工具 77
圖 4.2操作流質補充及酸鹼中和系統 78
圖 4.3螺旋式採樣棒 79
圖 4.4第一代三維模場(a)完整架構圖;(b)土體槽側面圖 80
圖 4.5第一代三維模場隔板(a)內部隔板;(b)外部隔板 81
圖 4.6第一代三維模場槽體俯視圖 82
圖 4.7第二代三維模場(a)完整架構圖;(b)土體槽側面圖 84
圖 4.8第二代模場隔板(a)內部插槽式隔板;(b)外部隔板 84
圖 4.9第二代三維模場槽體俯視圖 85
圖 4.10電極擺放示意圖(a)第一代模場;(b)第二代模場 87
圖 4.11三維現地模場實體照片(a)第一代模場正視圖;(b)第一代模場俯視圖;(c)第二代模場俯視圖;(d)第二代模場側視圖 88
圖 4.12三維現地模場實體照片(a)第一代模場可調式反應槽;(b)第一代模場正面強化玻璃面;(c)第二代固定式反應槽;(d)第二代模場正面 89
圖 4.13監控設備 (a) 顯示面板;(b) pH監測器;(c)導電度監測器;(d) ORP監測器 (e)整流器(型號 GD-201-5A);(f)操作流質補充泵浦(型號CPT65);(g)土壤溫度計;(h)桌上型三用電表(型號 UT804) 91
圖 4.14第一代三維模場槽液pH值分佈圖(a)Test1;(b)Test 2;(c)Test 3;(d)Test 4 94
圖 4.15第一代三維模場土壤pH值分佈圖(a)Test1;(b)Test 2;(c)Test 3;(d)Test 4 96
圖 4.15第一代三維模場土壤pH值分佈圖(a)Test1;(b)Test 2;(c)Test 3;(d)Test 4 (續) 97
圖 4.16第一代三維模場電流密度變化情形 99
圖 4.17第一代三維模場槽液電導度變化(a)Test 1;(b)Test 2;(c)Test 3;(d)Test 4 101
圖 4.18腐蝕之不銹鋼棒電極(Test 3陽極) 102
圖 4.19第一代三維模場槽液溫度變化情形(a)Test 1;(b)Test 2;(c)Test 3;(d)Test 4 103
圖 4.20第一代三維模場土壤溫度變化情形(a)Test1;(b)Test 2;(c)Test 3;(d)Test 4 105
圖 4.21第一代三維模場Zn金屬殘留濃度分佈圖(0.2 V/cm, 3.768 m2 electrode area 0.05 M Lactic acid) (a)10 day;(b)20 day 109
圖 4.22第一代三維模場Zn金屬殘留濃度分佈圖(0.35 V/cm, 3.768 m2 electrode area 0.05 M Lactic acid) (a)10 day;(b)20 day 111
圖 4.23第一代三維模場Zn金屬殘留濃度分佈圖(0.35 V/cm, 5.652 m2 electrode area, 0.05 M Lactic acid) (a)10 day;(b)20 day 114
圖 4.24第一代三維模場Zn金屬殘留濃度分佈圖(0.35 V/cm, 3.768 m2 electrode area, 0.5 M Lactic acid) (a)10 day;(b)20 day 116
圖 4.25第一代三維模場Cu金屬殘留濃度分佈圖(0.2 V/cm, 3.768 m2 electrode area, 0.05 M Lactic acid) (a)10 day;(b) 20 day 120
圖 4.26第一代三維模場Cu金屬殘留濃度分佈圖(0.35 V/cm, 3.768 m2 electrode area, 0.05 M Lactic acid) (a)10 day;(b) 20 day 123
圖 4.27第一代三維模場Cu金屬殘留濃度分佈圖(0.35 V/cm, 5.652 m2 electrode area, 0.05 M Lactic acid) (a)10 day;(b) 20 day 125
圖 4.28第一代三維模場Cu金屬殘留濃度分佈圖(0.35 V/cm, 3.768 m2 electrode area, 0.5 M Lactic acid) (a)10 day;(b) 20 day 128
圖 4.29第一代三維模場Pb金屬殘留濃度分佈圖(0.2 V/cm, 3.768 m2 electrode area, 0.05 M Lactic acid) (a)10 day;(b) 20 day 131
圖 4.30第一代三維模場Pb金屬殘留濃度分佈圖(0.35 V/cm, 3.768 m2 electrode area, 0.05 M Lactic acid) (a)10 day;(b) 20 day 133
圖 4.31第一代三維模場Pb金屬殘留濃度分佈圖(0.35 V/cm, 5.652 m2 electrode area, 0.05 M Lactic acid) (a)10 day;(b) 20 day 136
圖 4.32第一代三維模場Pb金屬殘留濃度分佈圖(0.35 V/cm, 3.768 m2 electrode area, 0.5 M Lactic acid) (a)10 day;(b) 20 day 139
圖 4.33第一代三維模場Cr金屬殘留濃度分佈圖(0.2 V/cm, 3.768 m2 electrode area, 0.05 M Lactic acid) (a)10 day;(b) 20 day 142
圖 4.34第一代三維模場Cr金屬殘留濃度分佈圖(0.35 V/cm, 3.768 m2 electrode area, 0.05 M Lactic acid) (a)10 day;(b) 20 day 145
圖 4.35第一代三維模場Cr金屬殘留濃度分佈圖(0.35 V/cm, 5.652 m2 electrode area, 0.05 M Lactic acid) (a)10 day;(b) 20 day 148
圖 4.36第一代三維模場Cr金屬殘留濃度分佈圖(0.35 V/cm, 3.768 m2 electrode area, 0.5 M Lactic acid) (a)10 day;(b) 20 day 151
圖 4.37第一代三維模場Ni金屬殘留濃度分佈圖(0.2 V/cm, 3.768 m2 electrode area, 0.5 M Lactic acid) (a)10 day;(b) 20 day 155
圖 4.38第一代三維模場Ni金屬殘留濃度分佈圖(0.35 V/cm, 3.768 m2 electrode area, 0.05 M Lactic acid) (a)10 day;(b) 20 day 159
圖 4.39第一代三維模場Ni金屬殘留濃度分佈圖(0.35 V/cm, 5.652 m2 electrode area, 0.05 M Lactic acid) (a)10 day;(b) 20 day 162
圖 4.40第一代三維模場Ni金屬殘留濃度分佈圖(0.35 V/cm, 3.768 m2 electrode area, 0.5 M Lactic acid) (a)10 day;(b) 20 day 166
圖 4.41第一代三維模場處理效能彙整圖(a)Test1;(b)Test 2;(c)Test 3;(d)Test 4 169
圖 4.41第一代三維模場處理效能彙整圖(a)Test1;(b)Test 2;(c)Test 3;(d)Test 4 (續) 170
圖 4.42第¬二代三維模場槽液pH變化圖(a)Test 5;(b)Test 6;(c)Test 7;(d)Test 8 177
圖 4.43第二代三維模場土壤pH值分佈圖(a)Test 5;(b)Test 6;(c)Test 7;(d)Test 8 179
圖 4.43第二代三維模場土壤pH值分佈圖(a)Test 5;(b)Test 6;(c)Test 7;(d)Test 8 (續) 180
圖 4.44第二代三維模場電流密度變化情形(a)Test 5-7;(b)Test 8 182
圖 4.45第二代三維模場槽液電導度變化(a)Test 5;(b)Test 6;(c)Test 7;(d)Test 8 183
圖 4.46第二代三維模場槽液溫度變化情形(a)Test 5;(b)Test 6;(c)Test 7;(d)Test 8 185
圖 4.47第二代三維模場土壤溫度變化情形(a)Test 5;(b)Test 6;(c)Test 7;(d)Test 8 187
圖 4.48第二代三維模場Zn金屬殘留濃度分佈圖(0.2 V/cm, 3.768 m2 electrode area 0.05 M Lactic acid) (a)10 day;(b)20 day 191
圖 4.49第二代三維模場Zn金屬殘留濃度分佈圖(0.35 V/cm, 3.768 m2 electrode area 0.05 M Lactic acid) (a)10 day;(b)20 day 193
圖 4.50第二代三維模場Zn金屬殘留濃度分佈圖(0.35 V/cm, 3.768 m2 electrode area 0.5 M Lactic acid) (a)10 day;(b)20 day 196
圖 4.51第二代三維模場Zn金屬殘留濃度分佈圖(0.35 V/cm, 3.768 m2 electrode area 0.05 M Lactic acid) (a)20 day;(b)40 day 198
圖 4.52受腐蝕之鈦板電極(陽極, Test 4) 200
圖 4.53第二代三維模場Cu金屬殘留濃度分佈圖(0.2 V/cm, 3.768 m2 electrode area 0.05 M Lactic acid) (a)10 day;(b)20 day 202
圖 4.54第二代三維模場Cu金屬殘留濃度分佈圖(0.35 V/cm, 3.768 m2 electrode area 0.05 M Lactic acid) (a)10 day;(b)20 day 205
圖 4.55第二代三維模場Cu金屬殘留濃度分佈圖(0.35 V/cm, 3.768 m2 electrode area 0.5 M Lactic acid) (a)10 day;(b)20 day 208
圖 4.56第二代三維模場Cu金屬殘留濃度分佈圖(0.35 V/cm, 3.768 m2 electrode area 0.05 M Lactic acid) (a)20 day;(b)40 day 212
圖 4.57第二代三維模場Pb金屬殘留濃度分佈圖(0.2 V/cm, 3.768 m2 electrode area 0.05 M Lactic acid) (a)10 day;(b)20 day 215
圖 4.58第二代三維模場Pb金屬殘留濃度分佈圖(0.35 V/cm, 3.768 m2 electrode area 0.05 M Lactic acid) (a)10 day;(b)20 day 219
圖 4.59第二代三維模場Pb金屬殘留濃度分佈圖(0.35 V/cm, 3.768 m2 electrode area 0.5 M Lactic acid) (a)10 day;(b)20 day 221
圖 4.60第二代三維模場Pb金屬殘留濃度分佈圖(0.35 V/cm, 3.768 m2 electrode area 0.05 M Lactic acid) (a)20 day;(b)40 day 225
圖 4.61第二代三維模場Cr金屬殘留濃度分佈圖(0.2 V/cm, 3.768 m2 electrode area 0.05 M Lactic acid) (a)10 day;(b)20 day 228
圖 4.62第二代三維模場Cr金屬殘留濃度分佈圖(0.35 V/cm, 3.768 m2 electrode area 0.05 M Lactic acid) (a)10 day;(b)20 day 231
圖 4.63第二代三維模場Cr金屬殘留濃度分佈圖(0.35 V/cm, 3.768 m2 electrode area 0.5 M Lactic acid) (a)10 day;(b)20 day 234
圖 4.64第二代三維模場Cr金屬殘留濃度分佈圖(0.35 V/cm, 3.768 m2 electrode area 0.05 M Lactic acid) (a)20 day;(b)40 day 238
圖 4.65第二代三維模場Ni金屬殘留濃度分佈圖(0.2 V/cm, 3.768 m2 electrode area 0.05 M Lactic acid) (a)10 day;(b)20 day 241
圖 4.66第二代三維模場Ni金屬殘留濃度分佈圖(0.35 V/cm, 3.768 m2 electrode area 0.05 M Lactic acid) (a)10 day;(b)20 day 245
圖 4.67第二代三維模場Ni金屬殘留濃度分佈圖(0.35 V/cm, 3.768 m2 electrode area 0.5 M Lactic acid) (a)10 day;(b)20 day 248
圖 4.68第二代三維模場Ni金屬殘留濃度分佈圖(0.35 V/cm, 3.768 m2 electrode area 0.05 M Lactic acid) (a)20 day;(b)40 day 251
圖 4.69第二代三維模場處理效能彙整圖(a)Test 5;(b)Test 6;(c)Test 7;(d)Test 8 255
圖 4.69第二代三維模場處理效能彙整圖(a)Test 5;(b)Test 6;(c)Test 7;(d)Test 8 (續) 256
圖 4.70第一代三維模場各金屬鍵結型態繪製圖(a)Test 1;(b)Test 2;(c)Test 3;(d)Test 4 262
圖 4.70第一代三維模場各金屬鍵結型態繪製圖(a)Test 1;(b)Test 2;(c)Test 3;(d)Test 4(續) 263
圖 4.71第二代三維模場各金屬鍵結型態繪製圖(a)Test 5;(b)Test 6;(c)Test 7;(d)Test 8 269
圖 4.71第二代三維模場各金屬鍵結型態繪製圖(a)Test 5;(b)Test 6;(c)Test 7;(d)Test 8 (續) 270
圖 4.72第一代三維模場系統各金屬之處理機制分析圖(a)Test 1;(b)Test 2;(c)Test 3;(d)Test 4 279
圖 4.73第二代三維模場系統各金屬之處理機制分析圖(a)Test 1;(b)Test 2;(c)Test 3;(d)Test 4 285
圖 4.74土壤整治技術處理成本彙整圖 295
附圖A-1 Zn之ICP檢量線 313
附圖A-2 Cu之ICP檢量線 313
附圖A-3 Pb之ICP檢量線 314
附圖A-4 Ni之ICP檢量線 314
附圖A-5 Cr之ICP檢量線 315


表目錄
表 2.1 常見電鍍金屬及其鍍浴種類(經濟部工業局,2005) 6
表 2.2八大重金屬土壤管制標準及監測基準(行政院環保署,2011) 10
表 2.3台灣地區土壤重金屬含量等級區分表(行政院環保署,2002) 10
表 2.4國內土壤整治實績(行政院環保署,2010) 14
表 2.5電動力復育技術處理重金屬文獻彙整-實驗尺度 27
表 2.5電動力復育技術處理重金屬文獻彙整-實驗尺度(續) 28
表 2.5電動力復育技術處理重金屬文獻彙整-實驗尺度(續) 29
表 2.5電動力復育技術處理重金屬文獻彙整-實驗尺度(續) 30
表 2.6電極種類及設計對於處理效能影響之文獻彙整-實場尺度 43
表 2.6電極種類及設計對於處理效能影響之文獻彙整-實場尺度(續) 44
表 2.6電極種類及設計對於處理效能影響之文獻彙整-實場尺度(續) 45
表 2.7各電極配置之實驗條件(Kim et al., 2012) 50
表 2.8土壤整治技術成本評估彙整表 (US EPA,2000) 56
表 2.8土壤整治技術成本評估彙整表 (US EPA,2000) (續) 57
表 3.1電動力實驗規劃 72
表 4.1三維模場測試土壤基本性質 76
表 4.2第一、二代三維模場設計差異彙整表 83
表 4.3不鏽鋼棒及鈦板電極基本資料表 87
表 4.4第一代三維模場實驗果結果彙整表 93
表 4.5第一代電動力三維模場電極重量比較表 101
表 4.6第一代模場 Zn金屬各層及總平均去除率彙整表 107
表 4.7第一代模場 Cu金屬各層及總平均去除率彙整表 118
表 4.8第一代模場 Pb金屬各層及總平均去除率彙整表 130
表 4.9第一代模場 Cr金屬各層及總平均去除率彙整表 141
表 4.10第一代模場 Ni金屬各層及總平均去除率彙整表 154
表 4.11各金屬於土壤中移動速率 156
表 4.12第二代三維模場實驗結果彙整表 176
表 4.13第二代模場Zn金屬各層及總平均去除率彙整表 189
表 4.14第二代模場Cu金屬各層及總平均去除率彙整表 201
表 4.15第二代模場Pb金屬各層及總平均去除率彙整表 214
表 4.16第二代模場Cr金屬各層及總平均去除率彙整表 227
表 4.17第二代模場Ni金屬各層及總平均去除率彙整表 240
表 4.18第一代模場系統實驗處理機制彙整表 278
表 4.19第二代模場系統實驗處理機制彙整表 284
表 4.20第一代模場經濟效益評估表 290
表 4.21第二代模場經濟效益評估表 291
表 4.22經濟效益評估表(監測儀器) 292
表 4.23經濟效益評估總表 293
附表B-1 Test 1 317
附表B-2 Test 2 321
附表B-3 Test 3 325
附表B-4 Test 4 329
附表B-5 Test 5 333
附表B-6 Test 6 336
附表B-7 Test 7 339
附表B-8 Test 8 342
Acar, Y. B. and Alshawabkeh, A. N. (1993) Principals of electrokinetic remediation. Environ. Sci. Technol., 27, 2638-2647.
Acar, Y. B. and Alshawabkeh, A. N. (1996) Electrokinetic Remediation. I: Pilot-Scale Tests with Lead-Spiked Kaolinite. J. Geotech. Engrg., 122(3), 173–185.
Agnew, K., Cundy, A. B., Hopkinson, L., Croudace, I. W., Warwick, P. E. and Purdie, P. (2011). Electrokintic remediation of plutonium-contaminated nuclear site wastes:Results from a pilot-scale on-site trial. J. Hazard. Mater., 186, 1405-1414.
Alshawabkeh, A., Bricka, R. and Gent, D. (2005) Pilot-scale electrokinetic cleanup of lead-contaminated soils. J. Geotech. Geoenviron. Eng., 131(3), 283-291.
Arwidsson, Z., Elgh-Dalgren, K., Kronhelm, T. V., Sjoberg, R., Allard, B. and Hees, P. V. (2010) Remediation of heavy metals contaminated soil washing residues with amino polycarboxylic acods. J. Hazard. Mater., 173, 697-704.
Buchireddy, P. R., Bricka, R. M. and Gent, D. B. (2009) Electrokinetic remediation of wood preservative contaminated soil containing copper, chromium, and arsenic. J. Hazard. Mater., 162, 490-497.
Chang, I. S. and Kim, B. H. (2007) Effect of sulfate reduction activity on biological treatment of hexavalent chromium [Cr(VI)] contaminated electroplating wastewater under sulfate-rich condition. Sci. Direct., 68, 218-226.
Cunningham, S. D. and Berti, W. R. (1993) Remediation of contaminated soils with greenplants : an overview, in vitro cell. Vitro Cell. Dev. Biol., 29, 207-212.
Dakhili, N., Razavizadeh, H., Salehi, M. T. and Seyedein, S. H. (2011) Recovery of zinc from the final slag of steel’s galvanizing process. Adv. Mater., 592, 264-265.
Dutra, A. J. B., Rocha, G. P. and Pombo, F. R. (2008) Copper recovery and cyanide oxidation by electrowinning from a spent copper-cyanide electroplating electrolyte. Sci. Direct., 152, 648-655.
Flores, R., Garcia, M. G., Peralta-Hernandez, J. M., Hernandez-Ramirez, A., Mendez, E. and Bustos, E. (2012) Electro-remediation in the presence of ferrous sulfate at an ex-situ alternative treatment for hydrocarbon polluted soil. Int. J. Electrochem. Sci., 7, 2230-2239.
Gent, D. B., Bricka, R. M., Alshawabken, A. N., Larson, S. L., Fabian, G. and Granade, S. (2004) Bench- and field-scale evaluation of chromium and cadmium extraction by electrokinetic. J. Hazard. Mater., 110, 53-62.
Giannis, A., Gidarakos, E. and Skouta, A. (2007) Application of sodium dodecyl sulfate and humic acid as surfactants on electrokinetic remediation of cadmium-contaminated soil. Sci. Direct, 211, 249-260.
Giannis, A., Nikolaou, A., Pentari, D. and Gidarakos, E. (2009). Chelating agent-assisted electrokinetic removal of cadmium, lead and copper from contaminated soils. Environl. Pollut., 157, 3379-3386.
Grimsrud, T. K. and Andersen, A. (2010) Evidence of carcinogenicity in humans of water-soluble nickel salts. J. Occup. Med. Toxicol., 5:7, 2-6.
Hang, X., Wang, H., Zhou, J., Du, C. and Chen, X. (2009) Characteristics and accumulation of heavy metals in sediments originated from an electroplating plant. J. Hazard. Mater., 163, 922-930.
Howard, W., Chirs, R., Gonzales, Eeic, P., Morten, J., Paul, W. and Mielkem, J. (2007) Nonlinear association between soil lead and blood lead of children in metropolitan New Orleans, Louisiana: 2002-2005. Sci. Direct., 388, 43-53.
Hu, Y., Jiang, H. and Wang, D. (2003) Electrokinetic behavior and flotation of kaolinite in CTAB solution. Miner. Eng., 16, 1221-1223.
Huang, Y., Zhou, X., Liao, J., Liu, C., Lu, T. and Xing, W. (2008) Synthesis of Pd/C catalysts with designed lattice constants for the electro-oxidation of formic acid. Electrochem. Commum., 10, 1155-1157.
Huger, E. and Osucg, K. (2005) Making a noble metal of Pd. Europhysics letters, 71, 276-282.
Iturbe, R., Flores, C., Chavez, C., Ramirez, A. and Torres, L. F. (2004) In situ flushing of contaminated soils from a refinery : organic compounds and metal removals. Rem. J., 14, 141-152.
Jordao, C. P., Fialho, L. L., Neves, J. C. L., Cecon, P. R., Mendonca, E. S. and Fontes, R. L. F. (2007) Reduction of heavy metal contents in liquid effluents by vermicomposts and the use of the metal-enriched vermicomposts in lettuce cultivation. Sci. Direct., 98, 2800-2813.
Kanrab, K., Soestbergen, M. V., Huinink, H. P. and Pei, L. (2012) Inhibition of electrokinetic ion transport in porous materials due to potential drops induced by electrolysis. Electrochim. Acta, 78, 229-235.
Kheboian, C. and Bauer, C. F. (1987) Accuracy of selective extraction procedures for metal speciation in model aquatic sediments. Anal. Chem., 59, 1417-1423.
Kim, B. K., Park, G. Y., Jeon, E. K., Jung, J. M., Jung, H. B., Ko, S. H. and Beak, K. (2013) Field application of in situ electrokinetic remediation for As-, Cu-, and Pb-comtaminated paddy soil. Water Air Soil Pollut, 224, 1698.
Kim, D.H., Ryu, B.G., Park, S.W., Seo, C.I. and Baek, K. (2009). Electrokinetic remediation of Zn and Ni-comtaminated soil. J. Hazard. Mater., 165, 501-505.
Kim, J., Korshin, G. V. and Velichenko, A. B. (2005) Comparative study of electrochemical degradation and ozonation of nonylphenol. Water Res., 39, 2527-2534.
Kim, J. and Lee, K. (1999) Effect of electric field directions on surfactant enhanced electrokinetic remediation of diesel-contaminated sand column. J. Environ. Sci. Health, 34, 4.
Kim, W. S., Park, G. Y., Kim, D. H., Jung, H. B., Ko, S. H. and Beak, K. (2012) In situ field scale electrokinetic remediation of multi-metals contaminated paddy soil: Influence of electrode configuration. Electrochim. Acta, 86, 89-95.
Ko, I., Chang, Y. Y., Lee, C. H. Kim, K. W. (2005) Assessment of pilot-scale acid washing of soil contaminated with As, Zn and Ni using the BCR three-step sequential extraction. J. Hazard. Mater., 127, 1-13.
Lee, K.Y., Kim, H.A., Lee, W.C., Kim, S.O., Lee, J.U., Kown, Y.H. and Kim, K.W. (2012). Ex-situ field application of electrokinetic for remediation of shooting-range soil. Environ. Geochem. Health, 34, 151-159.
Lee, Y. J., Choi, J. H., Lee, H. G., Ha, T. H. and Bae, J. H. (2012) Effect of electrode materials on electrokinetic reduction of soil salinity. Sep. Sci. Technol., 47, 22-29.
Lee, Y.J., Choi, J.H., Lee, H.G., Ha, T.H. and Bae, J.H. (2011). Pilot-scale study on in situ electrokintic removal of nitrate from greenhouse soil. Sep. Purif. Technol., 79, 254-263.
Leuser, R. M., Velazquez, L. S. and Cohen, A. (1990) Remediation of PCB soil contamination by on-site incineration. J. Hazard. Mater., 25, 375-385.
Li, D., Xiong, Z., Nie, Y., Niu, Y. Y., Wang, L. and Liu, Y. Y. (2012) Near-anode phenomenon caused by the high anolyte concentration in the electrokinetic remediation of chromium(VI)-contaminated soil. J. Hazard. Mater., 30, 229-230.
Lighty, J. S., Pershing, D. W., Cundy, V. A. Linz, D. G. (2008) Characterization of thermal desorption phenomena for the cleanup of contamination soil. Nucl. Chem. Waste Manage., 8, 225-237.
Ma Q. Y., Logan, T. J. and Traina, S. J. (1995) Lead immobilization from aqueous solutions and contaminated soils usioon phosphate rocks. Environ. Sci. Technol., 29, 1118-1126.
Mendez, E., Perez, M., Romero, O., Beltan, E. D., Castro, S., Corona, J. L., Cuevas, M. C. and Bustos, E. (2012) Effects of electrode material on the efficiency of hydrocarbon removal by an electrokinetic remediation process. Electrochim. Acta, 86, 148-156.
Mossop, K. F. and Davidson, C. M. (2003) Comparison of original and modified BCR sequential extraction procedures for the fractionation of copper, iron, lead, manganese and zinc in soils and sediments. Anal. Chim. Acta, 478, 111-118.
Mulligan, C. N., Yong, R. N. and Gibbs, B. F. (2001) Remediation technologies for metal-contaminated soils and groundwater; an evaluation. Eng. Geol., 60, 193-207.
Nelson, D. W. and Sommers, L. E. (1982) Total carbon, organic carbon, and organic matter, In : Page, A.L.; Miller, R. H.; Keeney, D. R.(ed.) Methods of soil analysis-chemical and microbiological properties. Part 2, 2ed. Madison : American Society o Agronomy Soil Science Society of America, cap. Vol. 29, 539-579.
Ouki, S. K. and Neufeld, R. D. (1997) Use of activated carbon for the recovery of chromium from industrial wastewaters. J. Chem. Technol. Biotechnol., 70, 3-8.
Pashley, R. M. and Pashley, L. R. (2005) Increased conductivity and enhanced electrolytic and electrochemical processes. PCT/AU2005/001953, United States.
Panayotova, T., Dimova-Todorova, M. and Dobrevsky, I. (2007) Purification and reuse of heavy metals containing wastewaters from electroplating plants. Sci. Direct, 206, 135-140.
Peng, G. and Tian, G. (2010) Using electrode electrolytes to enhance electrokinetic removal of heavy metals from electroplating sludge. Chem. Eng. J., 165, 388-304.
Perez, M., Mendez, E., Romero, O., Beltan, E. D., Castro, S., Corona, J. L., Cuevas, M. C. and Bustos, E. (2012) Effects of on the efficiency of hydrocarbon removal by an electrokinetic remediation process. Electrochim. Acta, 86, 148-156.
Perry, R. H. and Green, D. W. (2008) Perry’s chemical engineers’ handbook, McGraw-Hill, New York.
Powell, R. M., Blown, D. W., Fillham, R. W., Schultz, D., Divavce, T., Plus, R. W., Vogan, J. L., Powell, P. D. and Landis, R. (1998) Permeable reactive barrier technologies for contaminant remediation. USEPA, EPA-600-R-98-125.
Polcaro, A. M., Vacca, A., Mascia, M. and Palmas, S. (2007) Electrokinetic removal of 2,6-dichlorophenol and diuron from kaolinite and humic acid-clay system. J. Hazard. Mater., 148, 505-512.
Rauret, G., Lopez-Sanchez, J. F., Sahuquillo, A., Rubio, R., Davidson, C., Ure, A. and Quevauviller, P. (1998) Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials. J. Exp. Med., 1, 57-61.
Reddy, K. R., Darko-Kagya, K. and Al-Hamdan, A. (2011) Electrokinetic remediation of pentachlorophenol contaminated clay soil. Waer Air Soil Pollut, 221, 35-44.
Reddy, K. R., Parupudi, U. S., Devulapalli, S. N. and Xu, C. Y. (1997) Effect of soil composition on the removal of chromium by electrokinetics. J. Hazard. Mater., 55, 135-158.
Reddy, K. R., Chaoarro, C. and Saichek, R. E. (2003) Removal of mercury from clayey soils using electrokinetic. J. Environ. Sci. Health, A38, 307-338.
Reddy, K. R. and Parupudi, U. S. (2008) Removal of chromium, nickel and cadmium from clays by in-situ electrokinetic remediation. J. Soil Contam., 6, 391-407.
Rowbotham, A. L., Levy, L. and Shuker, L. K. (2010) Chromium in the environment: an evaluation of exposure of the UK general population and possible adverse health effects. J. Toxicol. Environ. Health, 3, 145-178.
Rubio, A. G., Rodriguez, J. M., Gomez, C., Garcia, F. andVereda, C. (2011) Electrokinetic remediation : the use of mercury speciation for feasibility studies applied to a contaminated soil from Almaden. Electrochim. Arta, 56, 9303-9310.
Ryu, B. G., Park, G. Y., Yang, J. W. and Baek, K. (2011) Electrolyte conditioning for electrokinetic remeditation of As, Cu, and Pb-contaminated soil. Sep. Purif. Technol., 79, 170-176.
Shao, H. B., Chu, L. Y., Ruan, C. J., Li, H. Guo, D. G. and Li, W. X. (2010) Understanding molecular mechanisms for improving phytoremediation of heavy metal-contaminated soils. Crit. Rev. Biotechnol., 30, 23-30.
Shapiro, A. P., Renaud, P. C., and Probstein, R. F., (1989) Preliminary studies on the removal of chemical species from saturated porous media by electroosmosis. Phys.-Cmem. II, 56, 785-802.
Stafilov, T., Sajn, R., Pancevski, Z., Boev, B., Frontasyeva, M. V., and Strelkova, L. P. (2010) Heavy metal contamination of topsoils around a lead and zinc smelter the Republic of Macedonia. J. Hazard. Mater., 175, 896-914.
Sun, T. R., Ottosen, L. M., Jensen, P. E. and Kirkelune, G. M. (2013) Effect of pulse current on acidification and removal of Cu, Cd, and As during suspended electrodialytic soil remediation. Electrochimica Acta, 107, 187-193.
Suzuki, T., Moribe, M., Okabe, Y. and Niinae, M. (2013) A mechanistic study of arsenate removal from artificially contaminated clay soils electrokinetic remediation. J. Hazard. Mater., 15, 310-317.
Ure, A. M. (1996) Single extraction schemes for soil analysis and related applications. Sci. total Environ., 178, 3-10.
USEPA (2000) Abstracts of remediation case studies, EPA-542-R-00-006.
USEPA (1997) Best management practices (BMPs) for soil treatment technology : suggested operational guidelines to prevent crossmedia transfer of contaminants during clean-up activities, EPA OSWER, EPA-530-R-97-007.
USEPA (1995) Contaminants and remedial options at selected metal-contamintaed sites, EPA-540-R-95-512.
USEPA (1998) Permeable reactive barrier technologies for contaminant remediation, EPA-600-R-98-125.
USEPA (2003) Phytoremediation of groundwater at air force plant 4 carswell, texas, EPA-540-R-03-506.
Velasco, V., Williams, S. J. and Jr, A. H. W. (2012) Electrokinetic concentration and patterning of colloids with a scanning laser, Electrophoresis, 33, 1931-1937.
Virkutyte, J., Sillnpaa, M. and Latostenmaa, P. (2002) Electrokinetic soil remediation-critical overview. Sci. Total Environ., 289, 97-121.
Wan, C., Du, M., Lee, D.J., Yung, X., Ma, W. and Zheng, L. (2011). Electrokintic remediation of β-cyclodextrin dissolved petroleum hydrocarbon-contaminated soil using multiple electrodes. J. Taiwan Inst. Chem. Eng., 42, 972-975.
Wang, J., Feng, X., Anderson, W. N., Xing, Y. and Shang, L. (2012) Remediation of mercury contaminated sites – a review. J. Hazard. Mater., 221-222, 1-18.
Wang, J., Meng, F., Leng, L. and Wang, Y. (2013) Effect of pH control at the cathode for the electrokinetic remediation efficiency. Environ. Sci., 646-650.
Wong, M. H. and Bradshaw, A. D. (2006) A comparison of the toxicity of heavy metals, using root elongation of rye grass. New Phytologist, 91, 255-261.
Yuan, C. and Weng, C. H. (2000) Electrokineticremoval of heavy metals from industrial sludge with various processing fluids, Proceeding of IAQW Critical Technology to the World in 21th Century:Pollution Control and Reclamation in Process Industries Conference, Step 18-20, Beihing, P.R.C., 754-761.
Yuan, C. and Weng, C.H. (2006) Electrokinetic enhancement removal of heavy metals from industrial wastewater sludge. Chemosphere, 65, 88–96.
Yuan, C. and Chiang, T. S. (2007) The mechanisms of arsenic removal from soil by electrokinetic process coupled with iron permeable reaction barrier. Chemosphere, 67, 1533-1542.
Zhang, T., Zou, H., Ji, M., Li, X. and Tang, T. (2013) Enhanced electrokinetic remediation of lead-contaminated soil by complexing agents and approaching anodes. Environ. Sci. Pollution Res.
Zhou, D.M., Deng, C.F., Cang, L., Akram, N. and Alshawabkeh, A.N. (2005). Electrokinetic remediation of a Cu-Zn contaminated red soil by controlling the voltage and conditioning catholyte pH. Chemosphere, 61, 519-527.
Zhou, D.M., Cang, L., Akram, N. and Alshawabkeh. (2006). Pilot-scale electrokintic treatment of a Cu contaminated red soil. Chemosphere, 63, 964-971.
Zhou, D. M., Deng, C. F. and Cang, L. (2004) Electrokinetic remediation of a Cu contaminated red soil by conditioning catholyte pH with different enhancing chemical reagents. Chemosphere, 56, 265-273.
鄭孟嘉 (2000),以電化學方法處理受鎘、鉛污染土壤之研究,國立台灣大學化學工程學系研究所碩士論文,。
蔡在唐 (2003),以電動力法復育受油品汙染土壤,碩士論文,國立屏東科技大學環境工程與科學系。
楊培煥 (2002),鎳-氧化鋁複合電鍍行為對鍍層性質之影響,國立成功大學化學工程學研究所碩士論文。
劉永章、葛煥彰 (1998),電動力學的基本理論,化工,台灣化學工程學會,45卷,2期,77-83。
美國環保署(IRID http://www.epa.gov/IRIS/subst/0368.htm)
經濟部工業局 (2005),金屬表面處理業土壤及地下水污染預防與整治技術手冊。
經濟部工業局,重金屬土壤及地下水污染預防與整治技術手冊,民國95年12月。
行政院環境保護署土壤及地下水污染整治網 http://sgw.epa.gov.tw/public/Default.aspx
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top