跳到主要內容

臺灣博碩士論文加值系統

(44.200.82.149) 您好!臺灣時間:2023/06/05 11:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許繼仁
研究生(外文):Chi-Jen Hsu
論文名稱:一個植基於基本面指標之創新的計算智能套利交易系統之研究
論文名稱(外文):A Study of Novel Fundamentals-based Arbitrage Trading Systems Using Computational Intelligence
指導教授:黃健峯
指導教授(外文):Chien-Feng Huang
學位類別:碩士
校院名稱:國立高雄大學
系所名稱:資訊工程學系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:72
中文關鍵詞:統計套利遺傳演算法機率整合體
外文關鍵詞:statistical arbitragegenetic algorithmsprobability collectives
相關次數:
  • 被引用被引用:1
  • 點閱點閱:247
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
紙本專利開放日108.08.29
紙本專利開放日108.08.29
中文摘要 I
英文摘要 II
致謝 III
目錄 IV
表目錄 VII
圖目錄 VIII
1. 導論 1
1.1 研究背景 1
1.2 研究目的 2
1.3 論文架構 3
2. 文獻探討 4
2.1 統計套利 4
2.2 基本面指標 4
2.3 人工智慧相關文獻 5
2.3.1 遺傳演算法 5
2.3.2 機率整合體 6
3. 研究方法 7
3.1 交易模型 7
3.2 選股模型 7
3.3 技術指標 9
3.3.1 布林通道 9
3.3.2 基本面指標 11
3.4 績效指標 11
3.4.1 年化報酬率 11
3.4.2 Maximum drawdown 12
3.4.3 Calmar ratio 12
3.4.4 Sharpe ratio 13
3.4.5 Information ratio 13
3.5 遺傳演算法 14
3.5.1 編碼方式 15
3.5.2 親代選擇方法 16
3.5.3 交配與突變 16
3.6 機率整合體 18
3.6.1 機率整合體理論架構 18
3.6.2 機率整合體演算法 21
4. 研究結果 23
4.1 資料來源與研究區間 23
4.2 實驗結果驗證方式 23
4.2.1 Temporal Validation 23
4.2.2 最佳化演算法參數設定 24
4.2.3 Benchmark 25
4.3 實驗結果比較 25
4.3.1 兩支股票統計套利 25
4.3.2 多支股票統計套利 37
4.3.3 加入相關係數選股模型 44
4.3.4 以基本面指標建立價差模型 49
5. 結論 59
參考文獻 60
[1] E. Acar, and S. James, “Maximum loss and maximum drawdown in financial markets,” in Proceedings of International Conference on Forecasting Financial Markets, May 1997
[2] F. Allen, and R. Karjalainen, “Using genetic algorithms to find technical trading rules,” Journal of Financial Economics, vol. 51, no. 2, 245-271, 1999
[3] S. R. Bieniawski, “Distributed optimization and flight control using collectives,” Ph.D. dissertation, Stanford Univ, 2005.
[4] C. H. Cheng, T. L. Chen, and L. Y. Wei, “A hybrid model based on rough sets theory and genetic algorithms for stock price forecasting,” Information Sciences, vol. 180, no. 9, 1610-1629, 2010.
[5] K. A. De Jong, W. M. Spears, and D. F. Gordon, Using genetic algorithms for concept learning, Springer US, 1994, pp. 5-32.
[6] C. L. Dunis, G. Giorgioni, J. Laws, and J. Rudy, “Statistical arbitrage and high-frequency data with an application to Eurostoxx 50 equities,” Liverpool Business School, 2010.
[7] R. J. Elliott, J. Van Der Hoek, & W. P. Malcolm, “Pairs trading,” Quantitative Finance, vol. 5, no. 3, 271-276, 2005.
[8] E. F. Fama, and K. R. French, “Common risk factors in the returns on stocks and bonds,” Journal of Financial Eonomics, vol. 33, no. 1, pp. 3-56, 1993.
[9] K. L. Fisher, Super Stocks. Homewood, Illinois: Dow Jones-Irwin, 1984.
[10] X. Fu, and A. Patra, “Machine learning in statistical arbitrage,” 2009.
[11] D. Fudenberg, and J. Tirole. Game Theory. Cambridge, MA: MIT Press, 1991.
[12] E. Gatev, W. N. Goetzmann, and K. G. Rouwenhorst, “Pairs trading: Performance of a relative-value arbitrage rule,” Review of Financial Studies, vol. 19, no. 3, pp. 797-827, 2006.
[13] J. E. Granville, A strategy of daily stock market timing for maximum profit. Prentice-Hall, 1960.
[14] D. E. Goldberg, and K. A. Deb, “comparative analysis of selection schemes used in genetic algorithms,” Foundation of Genetic Algorithms, pp. 69–93, 1991.
[15] T. H. Goodwin, “The information ratio,” Journal of Financial Analysts, pp. 34-43, 1998.
[16] J. H. Holland, Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial intelligence. U Michigan Press, 1975.
[17] C. F. Huang, S. Bieniawski, D. H. Wolpert, and C. E. Strauss, “A comparative study of probability collectives based multi-agent systems and genetic algorithms,” in Proceedings of 2005 conference on Genetic and evolutionary computation, 2005, pp. 751-752.
[18] C. F. Huang, and B. R. Chang. “A study of probability collectives multi-agent systems on optimization and robustness.” Transactions on computational collective intelligence IV. Springer Berlin Heidelberg, 2011. 141-159.
[19] C. F. Huang, T. N. Hsieh, B. R. Chang, and C. H. Chang, “A comparative study of stock scoring using regression and genetic-based linear models,” in Proceedings of 2011 IEEE International Conference on Granular Computing, 2011, pp. 268-273.
[20] C. F. Huang, T. N. Hsieh, B. R. Chang, and C. H. Chang, “A comparative study of regression and evolution-based stock selection models for investor sentiment,” Proc. of 2012 Third International Conference on Innovations in Bio-inspired Computing and Applications, 2012, pp. 73–78.
[21] C. F. Huang, M. Y. Tsai, T. N. Hsieh, and B. R. Chang, “A probability collective-based model for first-day returns using IPO fundamentals,” Proc. of 2012 Conference on Technologies and Applications of Artificial Intelligence, 2012, pp. 27–32.
[22] J. Nash, “Non-cooperative games,” The Annals of Mathematics, vol. 54, no. 2, pp. 286-295, 1951.
[23] A. F. Perold, & W. F. Sharpe, “Dynamic strategies for asset allocation,” Financial Analysts Journal, pp. 16-27, 1988.
[24] J. Rudy, “Four Essays in Statistical Arbitrage in Equity Markets,” Ph.D. dissertation, Liverpool John Moores University, Liverpool England, 2011.
[25] P. Saks, and D. Maringer, “Genetic programming in statistical arbitrage,” in Applications of Evolutionary Computing, Springer Berlin Heidelberg, pp. 73-82, 2008.
[26] W. F. Sharpe, “The sharpe ratio,” Journal of Portfolio Management, 1994.
[27] H. Subramanian, S. Ramamoorthy, P. Stone, and B. J. Kuipers, “Designing safe, profitable automated stock trading agents using evolutionary algorithms,” Proc. of the 8th annual conference on Genetic and evolutionary computation, 2006, pp. 1777-1784.
[28] N. S. Thomaidis, N. Kondakis, and G. D. Dounias, “An intelligent statistical arbitrage trading system,” in Advances in Artificial Intelligence, Springer Berlin Heidelberg, 2006, pp. 596-599.
[29] D. H. Wolpert, “Theory of collectives,” The Design and Analysis of Collectives, Springer, New York, 2003.
[30] D. H. Wolpert, “Information theory─the bridge connecting bounded rational game theory and statistical physics,” in Proceedings of Springer Berlin Heidelberg 2006 on Complex Engineered Systems, 2006, pp. 262-290.
[31] T. W. Young, “Calmar ratio: A smoother tool,” Futures, vol. 20, no. 1, 1991.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top