跳到主要內容

臺灣博碩士論文加值系統

(44.221.70.232) 您好!臺灣時間:2024/05/30 21:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:柯明輝
研究生(外文):Ming-Hui Ke
論文名稱:改良式相移干涉儀對玻璃折射率之均勻度的精密量測
論文名稱(外文):Glass Refractive Index Uniformity Measurement Using Modified Phase-Shift Interferometer
指導教授:張瑞賢張瑞賢引用關係
指導教授(外文):Ruey-Shyan Chang
口試委員:韓建遠陳坤煌
口試委員(外文):Chien-Yuan HanKun-Huang Chen
口試日期:2014-05-09
學位類別:碩士
校院名稱:國立聯合大學
系所名稱:光電工程學系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:124
中文關鍵詞:相移干涉均勻度
外文關鍵詞:phase-shift interferometerGlass refractive index uniformity
相關次數:
  • 被引用被引用:2
  • 點閱點閱:471
  • 評分評分:
  • 下載下載:42
  • 收藏至我的研究室書目清單書目收藏:0
在各類干涉儀中,其中以相移干涉術和外差干涉術是最為精密的量測技術。外差干涉術是將信號載在某一外差的固定頻率上,而巧妙地避開廣頻譜範圍的雜訊信號,從而大幅提升了信雜比並提高了量測精度。相移干涉術則採取多幅的干涉圖形,藉由多幅的干涉圖形以相減及相除的運算規則來還原其相位信號。在各幅干涉圖形相減的過程中,每張干涉圖形中的固定雜訊便會自動抵銷,而得出更高精密度的量測結果,因此它被廣泛使用至今。
然而在擷取多幅干涉圖形的方式上又分兩類:同步擷取和依序擷取。同步擷取的優點是避開了隨機雜訊,但是其系統則為昂貴且複雜。本論文採取了傳統的依序擷取的相移技術。
我們使用了修改的桑納克干涉儀並創意地設計出並聯的干涉儀系統。一干涉儀用來量測待測物,另一干涉儀則用來記錄隨機雜訊。還原後的兩組相位圖形,同樣經過相減的運算,我們得出類似同步相移技術的結果。從而驗證出我們設計的相移干涉系統是有效的且結構簡單價廉的。

In various of technology of interferomerty , two kinds of interferometer are the most accurate such as phase-shifting interferometry and heterodyne interferometry. The heterodyne interferometry gets the signal from the certain beating with fixed frequency and removes extended-band noise. So, the heterodyne interferomtry possess superior ratio of signal to noise. In phase-shifting interferomtry, we have to obtain many frames of interferogram by phase-shifting scheme for retrieve phase signal. The algorithm for phase retrieve adopts the method of subtraction of interferograms. In process of interferogram-subtraction, the fixed noise in interferograms can be cancelled and gets superior phase signal. So, phase-shifting interferometry is superior tool for phase measurement until now.
Nevertheless, two types for getting many interferograms by phase-shifting scheme:one is so called simultaneous phase-shifting, and another is called time-domain phase shifting. Simultaneous phase-shifting technology possesses merits of avoiding random noise but the whole system is complex and expensive.
We adopt the traditional time-domain phase-shifting interferometry, but we use the modified Sagnac parallel interferometers. One interferometer is for measuring the object and the other is used for monitoring the random noise. We can obtain two sets of phase diagram simultaneously. In similar process of subtraction, we can get accurate phase signal with cancelled random-noise. We proof that our scheme of the parallel interferometer is good result similar to simultaneous phase-shifting interferometry but the whole optical system is more simple and low-cost.

考試委員審定書............................................ I
誌謝.................................................... II
中文摘要................................................. III
ABSTRACT............................................... IV
目錄.................................................... V
圖目錄.................................................. XI
表目錄.................................................. XVII
第一章緒論............................................... 1
1.1前言................................................. 1
1.2文獻回顧.............................................. 1
1.3研究動機與目的......................................... 5
1.4論文架構.............................................. 6
第二章理論與工作原理....................................... 7
2.1光學干涉原理.......................................... 7
2.2共光路之干涉技術....................................... 9
2.2.1菲佐干涉儀(Fizeau Interferometer)................... 10
2.2.2剪切干涉儀(Shearing Interferometer)................. 12
2.2.3點繞射干涉儀(Point Diffraction Interferometer)...... 14
2.2.4桑克干涉儀(Sagnac Interferometer)................... 16
2.3相移干涉術簡介......................................... 17
2.3.1相位移干渉術理論..................................... 17
2.4相位還原演算法......................................... 19
2.4.1三步相移法.......................................... 19
2.4.2四步相移法.......................................... 20
2.4.3五步相移法.......................................... 20
2.4.4平均演算法.......................................... 21
2.4.5 Carré演算法....................................... 23
2.5相位展開............................................. 25
2.6相位還原............................................. 27
第三章共光程相移干涉術相位量測系統........................... 29
3.1引言..................................................29
3.2相移技術............................................. 29
3.3共光路干涉技術........................................ 34
3.4光學系統規劃.......................................... 35
3.5系統設備............................................. 36
3.5.1雷射光............................................. 36
3.5.2擴束器............................................. 36
3.5.3橫向位移分光鏡...................................... 38
3.5.3.1偏極化/非偏極化分光鏡............................... 39
3.5.4偏振片............................................. 41
3.5.5波片............................................... 43
3.5.6反射鏡............................................. 45
3.5.7普羅稜鏡........................................... 46
3.5.8 CCD相機........................................... 47
3.6系統架構............................................. 48
第四章實驗結果與分析...................................... 49
4.1實驗系統之量測分析..................................... 49
4.2基本環境(空氣)相位還原之分析............................ 50
4.2.1四張干涉條紋曲面圖................................... 50
4.2.2等步相移及相位重建................................... 52
4.2.3執行干擾的考量...................................... 54
4.3光學玻璃(平面鏡)相位重建之分析........................... 57
4.3.1平面鏡(疏的干涉條紋)相位之分析......................... 57
4.3.1.1四張干涉條紋曲面圖................................. 57
4.3.1.2等步相移及相位重建................................. 58
4.3.1.3執行干擾的考量.................................... 59
4.3.1.4量測的驗證....................................... 61
4.3.2平面鏡(密的干涉條紋)相位之分析......................... 62
4.3.2.1四張干涉條紋曲面圖................................. 62
4.3.2.2等步相移及相位重建................................. 63
4.3.2.3執行干擾的考量.................................... 64
4.3.2.4量測的驗證....................................... 66
4.4光學玻璃(凹面鏡)相位重建之分析........................... 67
4.4.1 50mm的凹面鏡相位之分析.............................. 67
4.4.1.1 (50mm的凹面鏡)四張干涉條紋曲面圖................... 67
4.4.1.2 (50mm的凹面鏡)等步相移及相位重建................... 68
4.4.1.3 (50mm的凹面鏡)執行干擾的考量...................... 69
4.4.1.4 (50mm的凹面鏡)量測的驗證.......................... 71
4.4.2 127mm的凹面鏡相位之分析............................. 72
4.4.2.1 (127mm的凹面鏡)四張干涉條紋曲面圖................... 72
4.4.2.2 (127mm的凹面鏡)等步相移及相位重建................... 73
4.4.2.3 (127mm的凹面鏡)執行干擾的考量...................... 74
4.4.2.4 (127mm的凹面鏡)量測的驗證......................... 76
4.5光學玻璃(凸面鏡)相位重建之分析.......................... 77
4.5.1 50mm的凸面鏡相位之分析............................. 77
4.5.2.1 (50mm的凸面鏡)四張干涉條紋曲面圖................... 77
4.5.1.2 (50mm的凸面鏡)等步相移及相位重建................... 78
4.5.1.3 (50mm的凸面鏡)執行干擾的考量...................... 79
4.5.1.4 (50mm的凸面鏡)量測的驗證......................... 81
4.5.2 107mm的凸面鏡相位之分析............................ 82
4.5.2.1 (107mm的凸面鏡)四張干涉條紋曲面圖.................. 82
4.5.2.2 (107mm的凸面鏡)等步相移及相位重建.................. 83
4.5.2.3 (107mm的凸面鏡)執行干擾的考量..................... 84
4.5.1.4 (107mm的凸面鏡)量測的驗證........................ 86
4.6載玻片相位還原之分析.................................. 87
4.6.1四張干涉條紋曲面圖.................................. 87
4.6.2等步相移及相位重建.................................. 88
4.6.3執行干擾的考量..................................... 89
4.7塑膠膜相位還原之分析.................................. 91
4.7.1四張干涉條紋曲面圖.................................. 91
4.7.2等步相移及相位重建.................................. 92
4.7.3執行干擾的考量..................................... 93
4.8一般玻璃相位還原之分析................................. 95
4.8.1四張干涉條紋曲面圖.................................. 95
4.8.2等步相移及相位重建.................................. 96
4.8.3執行干擾的考量..................................... 97
第五章結論與未來展望..................................... 99
5.1結論............................................... 99
5.2未來展望............................................ 100
參考文獻............................................... 102

[1]M. Born and E. Wolf, “Principles of Optical.”Pergamon Press, NewYork(1999)
[2]W. J. Smith, “Modern Optical Engineering.” McGraw Hill, NewYork(2000)
[3]V. A. Andreev and K. V. Indukaev, “The problem of subrayleighresolution in interference microscopy.”J.Russ.Laser Res.,24,220(2003)
[4]V. A. Andreev and K. V. Indukaev, “The problem of subrayleighresolution in interference microscopy.” SPIE, 5067,240(2003)
[5]V. A. Andreev, K. V. Indukaev, O. K. Ioselev, et al,. ”Phase modulationmicroscopy MIM-2.1 for measurements of surface microrelief.Resultsof Measurements.” J. Russ. Laser Res., 26,394(2005)
[6]邱吉豪,“相位干涉用於微奈米級之量測”,國立台灣科技大學機械工程技術研究所碩士學位論文,2007
[7]M. Totzeck, H. Jacobsen, H. J. Tiziani, “Usage of polarization forhigh-accuracy micro-metrology sensors .” SPIE, 3897 (1999)
[8]劉俊余,“相位移干涉術用於微奈米階級之線寬量測”,國立台灣科技大學機械工程技術研究所碩士學位論文,2008
[9]蔡博仲,“使用同步移相干涉術之全場折射率量測”,逢甲大學電機工程研究所碩士學位論文,2011
[10]D. K. Cheng, Field and Wave Electromagnetics, Second Edition, pp.321-335, Addison-Wesley Publishing Company, Massachusetts, 1989.
[11]E. Hecht, The Superposition of Waves, Chap. 7 in Optics, Fourth Edition,Addison-Wesley Publishing Company, Massachusetts, 2002.
[12]P. Szwaykowski, F. N. Bushroe and R. J. Castonguay, “Interferometric System with Reduced Vibration Sensitivity and Related Method, ”US Patent, No. 2006014341 A1, 2006.
[13]鄭翔允,“使用低同調光源之Savart’s剪切干涉儀”,國立台北科技大學光電工程研究所碩士學位論文,2006
[14]N. Brock, J. Hayes, B. Kimbrough, J. Millerd, M. North-Morris, M. Novak and J. C.Wyant, “Dynamic Interferometry,” Proceedings of SPIE, vol.5875, 2005.
[15]J. E. Millerd, S. J. Martinek, N. J. Brock, J . B. Hayes and J. C. Wyant, “Instantaneous Phase-shift, Point-diffraction Interferometer, ” Proceedings of SPIE, vol.5380, 2004, pp.422-429.
[16]R. M. Neal and J. C. Wyant, “Polarization Phase-shifting Point-diffraction Interferometer, ”Applied Optics, vol.45, 2006, pp.3463-3476.
[17]賈俊,基於Sagnac干涉儀光纖傳感器干擾測定位技術研究,北京交通大學通信與資訊系統研究所碩士學位論文,2008
[18]Burning, D. R. Herriott , J. E. Gallagher , D. P. Rosenfeld , A. D. White and D. J. Brangaccio ,”Digital Wavefront Measuring Interferometry for Testing Optical surfaces and Lenses,” Appl. Opt., Vol.13 , pp.2693, (1974)
[19]K. Creath ,”Temporal Phase Measurement Methods,” in interferogram Analysis ed. D. W. Robinson and G. T. Reid ,Institute of Physics Publishing , pp.94 , (1988)
[20]Butters, J. N. and Leendertz, J. A. ,”Holographic and Video Techniques Applied to Engineering Measurement,” Journal of Measurement and Control, Vol.4, pp.349-354 ,(1971) .
[21]P. Hariharan , B. F. Oreb , and T. Eijux ,”Digital phase-shift interferometry :a simple error-compensating phase calculation algorithm,” Appl. Opt., Vol.26, pp.2504, (1987).
[22]J. Schwider, R. Burow, K. E. Elssner, J. Grzanna, R. Spolaczyk and K. Merkel, DagitalWavefront Measuring Interferometry : Some Systematic Error Sources, Appl. Opt., 22, 3421, 1983.
[23]J. H. Bruning, D. R. Herriott, J. E. Gallagher, D. P. Rosenfeld, A. D.White and D. J. Brangaccio, DagitalWavefront Measuring Interferometerfor Testing Optical Surfaces, Lenses, Appl. Opt., 13, 2693, 1974.
[24]J. Schmit and K. Creath, Extender Averaging Technique for Derivation of Error-Compensating Algorithms in Phase-shifting Interferometry, Appl.
[25]J. Schmit and K. Creath, Window Function Influence on Phase Error in Phase-Shifting Algorithms, Appl. Opt., 35, 5642-5649, 1996.
[26]D. C. Ghiglia and M. D. Pritt, “Two-dimensional Phase Unwrapping:Theory, Algorithms and Softwave, ” Wiley, 1998, pp.380-387.
[27]G. E. Sommargren, “Up/down frequency shifter for optical heterodyne interferometry,” JOSA 65, 960-961, 1975.
[28]http://fp.optics.arizona.edu/
[29]Y. Watanabe, Y. Hayasaka, M. Sato, and N. Tanno, “Full-field optical coherence tomography by achromatic phase shifting with a rotating polarizer,” Appl. Opt. 44, 2005
[30]P. Hariharan, and P. E. Ciddor, “An achromatic phase-shifter operatingon the geometric phase,” Opt. Commu. 110, 13-17, 1994.
[31]曾垂拱,余柏翰,“相位移干涉術用於微奈米階級之光柵量測”,國立台灣科技大學機械工程技術研究所碩士學位論文,2009
[32]http://www.unice.com.tw/
[33]http://www.edmundoptics.com/
[34]http://www.thorlabs.hk/index.cfm
[35]http://www.theimagingsource.com/

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 吳武典(1971)。從心理動力學的觀點談影響學生學習的因素。教育文摘,16(5),  
2. 何榮桂、顏永進(2001)。資訊科技融入健康與體育領域教學。教師天地,112, 71
3. 徐新逸、吳佩謹(2002)。資訊融入教學的現代意義與具體行為。教學科技與媒體,
4. 徐新逸(2003)。學校推動資訊融入教學的實施策略探究,教學科技與媒體,64,68
5. 張國恩(1999)。資訊融入各科教學之內涵與實施。資訊與教育,72,2-9。
6. 陳英豪、林正文、李坤崇(1989)。國小學生學習適應量表之編製報告。測驗年刊, 
7. 陳光憲(1999)。完美的國語文教育。國教新知,45(3/4), 11-15。
8. 陳文詠(2004)。科技與教學的邂逅淺談資訊融入教學。國教之友,6(1),2-56。
9. 溫明正(2000)。資訊科技融入各科教學之應用。教學科技與媒體,50,50-61。
10. 趙美聲 (1993)。影響教師使用媒體因素之初探。視聽教育雙月刊,35:1=205,34-48。
11. 劉世雄(2000)。國小教師運用資訊科技融入教學策略之探討。資訊與教育,78,60
12. 潘素卿(1999)。五專新生國文學習態度之研究。康寧學報,3,107-128。
13. 蔡東鐘(1994)。多媒體在技學教育上的應用。資訊與教育雜誌,42,32-38。
14. 籃慧蓮(2006)。電影教學在國小生命教育課程上的應用。視聽教育雙月刊, 48(1)。