跳到主要內容

臺灣博碩士論文加值系統

(44.201.99.222) 您好!臺灣時間:2022/12/10 11:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:夏國倫
研究生(外文):Kuo-Lun Hsia
論文名稱:CO2雷射加工壓克力之微流道最佳化參數與分析
論文名稱(外文):Optimization and Analysis of CO2 Laser Machining Microchannel on PMMA
指導教授:鄧琴書
指導教授(外文):Chyn-Shu Deng
口試委員:張達元鄭正德
口試委員(外文):Dar-Yuan ChangJang-Der Jeng
口試日期:2014-07-22
學位類別:碩士
校院名稱:國立聯合大學
系所名稱:機械工程學系碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:105
中文關鍵詞:二氧化碳雷射田口方法微流道超音波
外文關鍵詞:Carbon dioxide laserTaguchi methodsMicrochannelUltrasound
相關次數:
  • 被引用被引用:2
  • 點閱點閱:445
  • 評分評分:
  • 下載下載:30
  • 收藏至我的研究室書目清單書目收藏:0
隨著近年來生物醫療技術蓬勃發展,微流體生物晶片已廣於醫療檢測所使用,像是新藥物的開發或是健康診斷、疾病檢測等。在醫療的觀點上,為了避免重複使用而導致二次感染,有必要開發便宜、可拋棄及短時間內大量生產的檢測裝置。本研究採用田口方法來進行二氧化碳雷射切削壓克力微流道之最佳參數探討,以降低其實驗成本與減少參數找尋時間。實驗控制因子包含:雷射功率、加工速度、焦距以及輔助氣體,每個控制因子各有三個水準,並利用模糊田口法來進行多重品質特性之最佳參數設計。研究結果顯示:最佳參數組合為雷射功率20.8W、加工速度2mm/sec、焦距67mm、輔助氣體為無輔助氣體,控制因子對於品質特性之影響力順序為雷射功率>輔助氣體>焦距>加工速度。此外,本研究利用超音波振動子配合雷射加工來進行壓克力微流道之加工品質探討;研究結果顯示:有加入超音波振動子可提升壓克力微流道結構之加工品質與提升雷射加工之切削量。未來可用來可降低雷射功率消耗、提升加工速度,以達到快速生產之目的。
In recent years, bio-medical technology has been vigorous development. Microfluidic biochips have been widely used in medical testing, such as the development of new drugs, health diagnosis and disease detection. But in the medical point of view, in order to avoid repeated use resulting in secondary infection, there is a need to develop cheap, disposable detection and mass production in a short time. In this study, using the Taguchi method to investigate optimize the parameters of carbon dioxide laser cutting microchannel on PMMA to reduce experimental costs and find parameters time . The control factors include: (A) laser power, (B) Processing speed, (C) focal distance, and (D) shield gas. Each control factors has three levels and use the fuzzy Taguchi method to find optimize the parameters of multiple quality characteristics. The results demonstrate the optimal combination of process parameters is (A1B1C3D1). The control factors affect the processing quality in order are A, D, C and B. Besides, in this study use of ultrasonic vibrator for laser processing of PMMA microfluidic processing quality investigate. The results demonstrate add ultrasonic vibrator can upgrade processing quality of PMMA microchannel structure and improve the laser processing of cutting output. In the future can be reduced laser power consumption or enhance the processing speed in order to achieve the advantages of accelerated production and reduce depletion of the laser tube.
致謝 I
摘要 II
Abstract III
目錄 IV
表目錄 VII
圖目錄 IX
第一章 緒論 1
1.1前言 1
1.2 研究動機與目的 4
1.3 文獻回顧 5
第二章 雷射與超音波加工機制 12
2.1雷射加工機制 12
2.1.1雷射簡介 12
2.1.2雷射光熱加工 13
2.1.3雷射光化學加工 16
2.1.4 CO2雷射 18
2.2超音波加工機制 20
2.2.1超音波特性 20
2.2.2超音波發生法 26
2.2.3超音波加工 31
第三章 研究方法與設備介紹 34
3.1田口方法 34
3.1.1田口方法之簡介 34
3.1.2田口實驗直交表與參數選擇 39
3.1.3訊號雜訊比與品質特性 40
3.1.4變異數分析 42
3.1.5最佳參數確認 44
3.1.6模糊田口法 46
3.2實驗設備 52
3.2.1雷射加工機 52
3.2.2 超音波振動子與訊號輸入器 54
3.2.3 超音波振動子與雷射裝置設計 56
3.2.4 CCD量測顯微鏡 57
3.2.5 光學顯微鏡 57
3.2.6 奈米壓印機 58
第四章 結果與討論 60
4.1實驗結果 60
4.2 控制因子對微流道之表面切削寬度影響 74
4.3控制因子對微流道之切削深度影響 74
4.3 模糊田口法之最佳控制因子組合對微流道之影響 75
4.4 超音波輔助對微流道之影響 80
4.5 微流道晶片之簡易測試 83
第五章 結論與建議 86
5.1結論 86
5.2未來與展望 87
參考文獻 88


[1]陳亮澤,“水輔助雷射不鏽鋼304表面微結構之研究”,國立中正大學機械工程研究所碩士論文,2006年。
[2]孫慶豪,“雷射加工脆性材料熱分佈之研究”,國立彰化師範大學機電工程研究所碩士論文”,2007年。
[3]Pham, D.T., Dimov, S.S., and Petkov, P.V., “Laser milling of ceramic components”, International Journal of Machine Tools & Manufacture , 47, pp. 618–626, 2007.
[4]Dubey, A. K., and Yadava, V., “Laser beam machining—A review”, International Journal of Machine Tools & Manufacture, 48, pp. 609-628, 2008.
[5]Davim, J. P., Barricas, N., Conceicao, M., and Oliveira, C., “Some experimental studies on CO2 laser cutting quality of polymeric materials”, Journal of materials processing Technology , 198, pp. 99-104, 2008.
[6]Cheng, J. Y., Wei, C. W., Hsu, K. H., and Young, T. H., “Direct-write laser micromachining and universal surface modification of PMMA for device development”, Sensors and Actuators B , 99, pp. 186–196, 2004.
[7]黃冠仁,“CO2雷射加工高分子及玻璃材料的缺陷改善探討”,國立成功大學機械工程研究所碩士論文,2006年。
[8]Sun, Y., Satyanarayan, M.V.D., Nguyen, N. T., and Kwok, Y. C., “Continuous flow polymerase chain reaction using a hybrid PMMA-PC microchip with improved heat tolerance”, Sensors and Actuators B , 130, pp. 836–841, 2008.
[9]Mitsuishi, M., Sugita, N., Kono, I., and Wang, D., “Analysis of laser micromachining in silica glass with an absorbent slurry”, CIRP Annals - Manufacturing Technology , 57, pp. 217–222, 2008.
[10]Li, J. M., Liu, C., and Zhu, L. Y., “The formation and elimination of polymer bulges in CO2 laser microfabrication”, Journal of Materials Processing Technology, 209, pp. 4814-4821, 2009.
[11]Huang, Y., Liu, S., Yang, W., and Yu, C., “Surface roughness analysis and improvement of PMMA-based microfluidic chipchambers by CO2 laser cutting”, Applied Surface Science, 256, pp. 1675-1678, 2010.
[12]Romoli, L., Tantussi, G., and Dini, G., “Experimental approach to the laser machining of PMMA substrates for the fabrication of microfluidic devices”, Optics and Lasers in Engineering, 49, pp. 419–427, 2011.
[13]Qi, H., Chen, T., Yao, L., and Zuo, T., “Micromachining of microchannel on the polycarbonate substrate with CO2 laser direct-writing ablation”, Optics and Lasers in Engineering, 49, pp. 419–427, 2011.
[14]Raffaella, S., Arseniy, K., Shane, M. E., Roman, K., Giulio, C., Roberto, O., Boris, N. C., Marinella, L., and Stefano, T., “Femtosecond laser ablation of polymeric substrates for the fabrication of microfluidic channels”, Applied Surface Science, 257, pp. 6243–6250, 2011.
[15]Daniel, T., Thanongsak, T., Joaquim, C., and Tugrul, Ö., “Nanosecond pulsed laser micromachining of PMMA-based microfluidic channels”, Journal of Manufacturing Processes , 14, pp. 435-442, 2012.
[16]Darvishi, S., Cubaud, T., and Longtin, J. P., “Ultrafast laser machining of tapered microchannels in glass and PDMS”, Optics and Lasers in Engineering , 50, pp. 210-214, 2012.
[17]Fu, L. M., Wang, Y. N., and Liu, C. C., “An integrated microfluidic chip for formaldehyde analysis in Chinese herbs”, Chemical Engineering Journal , 244, pp. 422-428, 2014.
[18]Kang, B., Kim, G. W., Yang, M., Cho, S. H., and Park, J. K., “A study on the effect of ultrasonic vibration in nanosecond laser machining”, Optics and Lasers in Engineering , 47, pp. 594–598, 2009.
[19]李勁達,“超音波輔助 Nd-YAG 雷射微細加工黃銅之研究”,國立中正大學工學院機械工程研究所碩士論文,2010年。
[20]Park, J. K., Yoon, J. W., Kang, M. C., and Cho, S. H., “A study on the effect of ultrasonic vibration in nanosecond laser machining”, Transaction of Nonferrous Metals Society of China , 22, pp. 801-807, 2012.
[21]Park, J. K., Yoon, J. W., and Cho, S. H., “Vibration assisted femtosecond laser machining on metal”, Optics and Lasers in Engineering , 50, pp. 833-837, 2012.
[22]Chang, C. W., and Kuo, C. P., “Evaluation of surface roughness in laser-assisted machining of aluminum oxide ceramics with Taguchi method”, International Journal of Machine Tools & Manufacture , 47, pp. 141–147, 2007.
[23]Anawa, E.M., and Olabi, A. G., “Using Taguchi method to optimize welding pool of dissimilar laser-welded components”, Optics and Lasers in Engineering , 40, pp. 379–388, 2008.
[24]Sharma, A., Yadava, V., and Rao, R., “Optimization of kerf quality characteristics during Nd: YAG laser cutting of nickel based superalloy sheet for straight and curved cut profiles”, Optics and Lasers in Engineering , 48, pp. 915–925, 2010.
[25]Ni, X., Zhou, Z., Wen, X., and Li, L., “The use of Taguchi method to optimize the laser welding of sealing neuro-stimulator”, Optics and Lasers in Engineering , 49, pp. 297-304, 2011.
[26]Eltawahni, H.A., Olabi, A.G., and Benyounis, K.Y., “Investigating the CO2 laser cutting parameters of MDF wood composite material”, Optics and Lasers in Engineering , 43, pp. 648–659, 2011.
[27]Sun, J., Yang, Y., and Wang, D., “Taguchi based fuzzy logic optimization of multiple quality characteristics in laser cutting of Duralumin sheet”, Optics and Lasers in Engineering , 50, pp. 328–335, 2012.
[28]Yang, D., Li, X., He, D., Nie, Z., and Huang, H., “Optimization of weld bead geometry in laser welding with filler wire process using Taguchi’s approach”, Optics & Laser Technology, 44, pp. 2020–2025, 2012.
[29]張吉雄,“準分子雷射加工 3D 微結構之研發,"國立中正大學機械工程研究所碩士論文,2004年。
[30]Pham, D. T., Dimov, S. S., Petkov, P.V., and Petkov, S. P., “Laser milling”, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture , 216, pp. 657-667, 2012.
[31]呂助增,“雷射原理與應用”,滄海書局,2001年。
[32]鄭富堯,“超音波振動輔助加工玻璃材料之參數分析,"國立聯合大學機械工程研究所碩士論文,2013年。
[33]賴耿陽,“超音波工學理論及實務”,復漢出版社印行,2001年。
[34]李輝煌,“田口方法:品質設計的原理與實務”,高立圖書有限公司,2011年。
[35]胡志凱,“微電泳生物晶片檢測系統於免疫檢測之應用與研究",國立中正大學機械所碩士論文,2004。
[36]陳志敏,“旋轉碟片之兩相微流場可視化實驗研究:血液沉澱分離與混和標定”,行政院國家科學委員會專題研究計畫,2009年。
[37]Deng, C. S., and Chin, J. H., “Hole roundenss in deep-hole drilling as analysed by Taguchi methid”, The Intrernational Journal of Advanced Manufacturing Technology , 25, pp. 420-426, 2005.
[38]林文鋒,呂淮熏,“模糊田口法於側面銑削重切削製程切削參數最佳化設計之應用”, 技術學刊 , 第二十一卷 , 第二期。
[39]Ross, P. J., “Taguchi Techniques for Quality Engineering”, McGraw Hill Professional , 1996.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top