跳到主要內容

臺灣博碩士論文加值系統

(100.28.227.63) 您好!臺灣時間:2024/06/22 00:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳沛云
研究生(外文):Pei-Yun Chen
論文名稱:添加促進劑對鎳觸媒於氨裂解產氫性能最適化之研究
論文名稱(外文):Effect of promoter on nickel catalyst of hydrogen production from ammonia decomposition:An optimization study
指導教授:郭文旭莊慶芳
指導教授(外文):Wen-Shiuh KuoChin-Fang Juang
口試委員:陳炎洲簡瑞與
口試委員(外文):Yen-Cho ChenRei-Yu Chein
口試日期:2013-07-23
學位類別:碩士
校院名稱:國立聯合大學
系所名稱:環境與安全衛生工程學系碩士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:116
中文關鍵詞:NH3 裂解反應Ni 觸媒產 H2 反應填充管反應器反應曲面法Ba 促進劑
外文關鍵詞:ammonia decompositionnickel catalysthydrogen productionpacked-bed reactorresponse surface methodologybarium promoters
相關次數:
  • 被引用被引用:0
  • 點閱點閱:611
  • 評分評分:
  • 下載下載:56
  • 收藏至我的研究室書目清單書目收藏:0
微型燃料電池主要分為直接甲醇燃料電池和質子交換膜燃料電池兩種。其中質子交換膜燃料電池因電力密度高,亟需克服的問題為氫氣(H2)供應來源。使用能量密度高便於攜帶之氫載體作為現場反應產氫來源,可克服 H2 攜帶技術的限制,故本研究以氨氣(NH3)做為氫載體。

由於 NH3 裂解產 H2 之觸媒成本昂貴,且反應溫度通常偏高,約 800 K 以上,因此本研究探討添加促進劑,以有助於提高觸媒催化性能,在較低之反應溫度下提升 NH3 裂解產 H2 之轉化率。

結果顯示鋇(Ba)做為促進劑添加於觸媒鎳(Ni)之莫耳比例增加時,NH3 轉化率與 H2 產生量會隨之增加。當促進劑添加莫耳比為 0.10 (Ba/Ni) 時,NH3 轉化率與 H2 產生量達最高值。尚未添加促進劑 Ba 的觸媒 Ni,當 GHSV(Gas Hourly Space Velocity)為 12,000 mL/gcat h,反應溫度 723 K 時,NH3 轉化率約 40%;若添加促進劑,當 Ba/Ni 莫耳比為 0.10 時,NH3 轉化率將近 70%,因此將觸媒添加一定莫耳比之促進劑,可降低反應溫度,亦有較佳之產 H2 效率。

於 NH3 裂解產 H2 實驗中,設定三個影響反應之因子(反應溫度、促進劑與觸媒莫耳比及 NH3 入口流量)做為實驗設計及統計分析之變因,以 Box-Behnken 實驗設計及變異數分析(ANOVA)進行實驗數據分析,結果顯示在本研究實驗數據範圍內,反應溫度對 NH3 轉化率影響最大,NH3 入口流量影響次之,促進劑與觸媒莫耳比影響最小。

本研究設定 NH3 轉化率達 80% 以上時,Ni 觸媒於 NH3 裂解產 H2 反應中,可得三組最適操作條件:1. 溫度為 738 K ; Ba/Ni 莫耳比為 0.10; NH3 入口流量為 3 mL/min,2. 溫度為 758 K ; Ba/Ni 莫耳比為 0.10 ; NH3 入口流量為 6 mL/min,3.溫度為 783 K ; Ba/Ni 莫耳比為 0.10 ; NH3 入口流量為 9 mL/min。

本研究結果顯示,於 NH3 裂解反應器中使用 Ni/(SiO2•Al2O3) 觸媒,並添加適當莫耳比之 Ba 做為促進劑,再以適當 NH3 入口流量通入,可以降低反應溫度(800 K 以下)操作,亦可使得產 H2 效率提升。



The effect of the molar ratio of promoter-barium (Ba)/catalyst-nickel (Ni), the flow rate of NH3 and the temperature of reaction on the decomposition efficiency of ammonia in terms of the production efficiency of hydrogen was investigated in this study.

The results showed that the decomposition efficiency of NH3 and hydrogen formation would increase with increasing the molar ratio of Ba/Ni. The decomposition of NH3 would reach the highest efficiency, at the condition of a Ni/(SiO2•Al2O3) molar ratio of 0.10. Ba is not added nickel catalyst promoter, gas hourly space velocity (GHSV) of 12,000 mL / gcat h, the reaction temperature is 723 K, the decomposition efficiency of NH3 was about 40 percent, when adding Ba / Ni molar ratio to 0.10, which decomposition efficiency of NH3 of was nearly 70 percent, indicating the effective promoting effect of Ba/Ni catalyst on the decomposition of NH3.

At last, a Box-Behnken design of surface response methodology (RSM) was adopted to investigate the effect of three major process factors including the reaction temperature, molar ratio of promoter and catalyst and, NH3 inflow rate, on the decomposition efficiency of ammonia reaction. With the assistance of ANOVA analysis, it was found that the factor of reaction temperature has the most significant effect on the decomposition efficiency while molar ratio of promoter and catalyst showed the least effect. Optimal reaction conditions based on RSM were established as under reaction temperature, molar ratio of promoter and catalyst, and NH3 inflow rate were T= 738 K; Ba/Ni= 0.10; NH3= 3 mL/min、T= 758 K; Ba/Ni= 0.10; NH3= 6 mL/min and T= 783 K; Ba/Ni= 0.10; NH3= 9 mL/min, respectively, which could reach the target value of decomposition efficiency 80%。

On the basis of the results obtained in this study, it was revealed that the decomposition efficiency of ammonia in terms of the production efficiency of hydrogen would be promoted by adding an appropriate molar ratio of Ni/(SiO2•Al2O3) in reactor, even at a lower reaction temperature and a higher flow rate of NH3.

摘要 I
Abstract III
目錄 V
圖目錄 IX
表目錄 XI
第一章 前言 1
1.1 研究背景 1
1.2 研究目的 6
第二章 文獻回顧 8
2.1 質子交換膜燃料電池之氫載體 8
2.1.1 含碳元素之氫載體 8
2.1.2 以 NH3 做為氫載體 8
2.1.3 NH3 物化特性 11
2.1.4 NH3 裂解機制 13
2.2 NH3 裂解催化程序暨觸媒組成 16
2.2.1 活性金屬 18
2.2.2 載體 19
2.2.3 促進劑 20
2.2.4 促進機制 22
2.3 Ni 觸媒 26
2.3.1 Ni 活性金屬 26
2.3.2 負載 Ni 金屬之載體 26
2.3.3 負載 Ni 金屬之促進劑 27
2.4 Fe 觸媒 29
2.4.1 Fe 活性金屬 29
2.4.2 負載 Fe 金屬之載體 29
2.4.3 負載 Fe 金屬之促進劑 30
2.5 Ni 觸媒催化反應及其對 NH3 裂解轉化率之影響因子 31
2.5.1 促進劑/觸媒之莫耳比例 31
2.5.2 反應溫度 35
2.5.3 NH3 入口流量暨 GHSV 37
2.6 觸媒活性衰退 39
2.7 反應曲面法實驗設計之概念與應用 41
第三章 實驗材料與方法 46
3.1 探討 NH3 裂解產 H2 反應之影響因素 46
3.1.1 研究流程 47
3.1.2 反應溫度 48
3.1.3 添加促進劑(Ba)於觸媒(Ni)樣品 48
3.1.4 NH3 入口流量 48
3.1.5 試驗設計及統計分析 48
3.2 NH3 裂解產 H2 之反應系統設計 51
3.3 反應器之設計 52
3.4 GC-TCD分析 52
3.5 H2 標準氣體之檢量線 55
3.6 H2 產生量與 NH3 轉化率計算 56
3.7 促進劑添加於觸媒之樣品製備 57
3.7.1 促進劑及觸媒 57
3.7.2 促進劑添加於觸媒之流程 57
3.8 NH3 裂解反應程序 60
3.9觸媒鑑定分析 61
3.9.1 粒徑分析 61
3.9.2 比表面積分析 61
3.9.3 表面形態之觀察 62
3.9.4 元素分佈分析 62
第四章結果與討論 64
4.1 NH3 裂解反應探討 NH3 轉化率暨 H2 產生量之影響因子 64
4.1.1 觸媒填充量 64
4.1.2 觸媒暨促進劑之添加比例 66
4.1.3 反應溫度 71
4.1.4 NH3 入口流量 74
4.1.5觸媒填充量 77
4.2 觸媒鑑定分析 79
4.2.1 粒徑分析 79
4.2.2 比表面積分析 81
4.2.3 表面型態觀察 82
4.2.4 元素分佈暨含量分析 85
4.3 RSM 統計技術探討 NH3 裂解反應之最適操作條件 87
4.3.1 實驗設計因子及迴歸式 87
4.3.2 迴歸式與實驗數值之驗證 92
第五章 結論與建議 95
參考文獻 97
附錄 102

Appleby A.J., and Foulkes F.R. (1989). Fuel Cell Handbook.

Bradford M. C. J., Fanning P. E., and Vannice M. A. (1997). Kinetics of NH3 decomposition over well dispersed Ru, Journal of Catalysis 172, 479-484.

Chellappa A. S., Fischer C. M., and Thomson W. J. (2002). Ammonia decomposition kinetics over Ni-Pt/Al2O3 for PEM fuel cell applications, Applied Catalysis A: General 227, 231-240.

Choudhary T.V., Sivadinarayana C., and Goodman D.W. (2001). Catalytic ammonia decomposition: COx-free hydrogen production for fuel cell applications, Catalysis Letters 72, 3-4.

Duan X., Qian G., Fan C., Zhu Y., Zhoua X., Chen D., and Yuan W., (2012). First-principles calculations of ammonia decomposition on Ni(110) surface, Surface Science 606, 549-553.

Duan X., Zhou J., Qian G., Li P., Zhou X., and Chen D. (2010). Carbon nanofiber-supported Ru catalysts for hydrogen evolution by ammonia decomposition, Chinese Journal of Catalysis 31, 979-986.

Duan X.Z., Qian G., Zhou X.G., Sui Z.J., Chen D., and Yuan W.K. (2011). Tuning the size and shape of Fe nanoparticles on carbon nanofibers for catalytic ammonia decomposition, Applied Catalysis B: Environmental 101, 189-196.

Ertl G., Lee S.B., and Weiss M. (1982). Adsorption of nitrogen on potassium promoted Fe(111) and (100) surfaces, Surface Science 114, 527-545.

Ganley J.C., Thomas F.S., Seebauer E.G., and Masel R.I. (2004). A priori catalytic activity correlations: the difficult case of hydrogen production from ammonia, Catalysis Letters 96, 117-122.

Garcı´a-Garcı´a F. R., A. Guerrero-Ruiz I., and Rodrı´guez-Ramos I. (2009). Role of B5-Type sites in Ru catalysts used for the NH3 decomposition Reaction, Top Catal 52, 758-764.

Guraya M., Sprenger S., Rarog-Pilecka W., Szmigiel D., Kowalczyk Z., and Muhler M. (2004). The effect of promoters on the electronic structure of ruthenium catalysts supported on carbon, Applied Surface Science 238, 77-81.
Hansgen D. A., Thomanek L. M., Chen J. G., and Vlachos D.G. (2011). Experimental and theoretical studies of ammonia decomposition activity on Fe-Pt, Co-Pt, and Cu-Pt bimetallic surfaces, Chemical Physics 134, 184701.

Huang L., Chu W., Zhang T., Yin Y., and Tao X. (2009). Preparation of novel Ni-Ir/γ-Al2O3 catalyst via high-frequency cold plasma direct reduction process, Journal of Natural Gas Chemistry 18, 35-38.

Klerke A., Christensen C. H., Nrskov J. K., and Vegge T. (2008). Ammonia for hydrogen storage: challenges and opportunities, Journal of Materials Chemistry 18, 2304-2310.

Kowalczyk Z., Krukowski M., Raróg-Pilecka W., Szmigiel D., and Zielinski J. (2003). Carbon-based ruthenium catalyst for ammonia synthesis: role of the barium and caesium promoters and carbon support, Applied Catalysis A: General 248, 67-73.

Liu H., Wang H., Shen J., Sun Y., and Liu Z. (2008). Preparation, characterization and activities of the nano-sized Ni/SBA-15 catalyst for producing COx-free hydrogen from ammonia, Applied Catalysis A: General 337, 138-147.

Liu H., Wang H., Shen J., Sun Y., and Liu Z. (2008). Promotion effect of cerium and lanthanum oxides on Ni/SBA-15 catalyst for ammonia decomposition, Catalysis Today 131, 444-449.

Liu Y., Wang H., Li J., Lu Y., Wu H., Xue Q., and Chen L. (2007). Monolithic microfibrous nickel catalyst co-modified with ceria and alumina for miniature hydrogen production via ammonia decomposition, Applied Catalysis A: General 328, 77-82.

Li Y.X., Liu S.Q., Yao L.H., Ji W.J., and Au C.T. (2010). Core-shell structured iron nanoparticles for the generation of COx -free hydrogen via ammonia decomposition, Catalysis Communications 11, 368-372.

Li X. K., Ji W.J., Zhao J., Wang S.J.,and Au C.T. (2005). Ammonia decomposition over Ru and Ni catalysts supported on fumed SiO2, MCM-41, and SBA-15, Journal of Catalysis 236, 181-189.

Lorenzut B., Montini T., Bevilacqua M., and Fornasiero P. (2012). FeMo-based catalysts for H2 production by NH3 decomposition, Applied Catalysis B: Environmental 125, 409-417.

Mackenzie J.J., and Avery W.H. (1996). Ammonia fuel : the key to hydrogen -based transportation, Energy Conversion Engineering Conference, Proceedings of the 31st Intersociety 3, 1761-1766.

Marginean P., and Olariu A. (1997). Influence of metal oxides on the catalytic activity of nickel, Applied Catalysis A: General 165, 241-248.

Metkemeijer R.,and Achard P. (1994). Comparison of ammonia and methanol applied indirectly in a hydrogen fuel cell, Int. J. Hydrogen Energy19, 535-542.

Rarog-Pilecka W., Szmigiel D., Kowalczyk Z., Jodzis S., and Zielinski J. (2003). Ammonia decomposition over the carbon-based ruthenium catalyst promoted with barium or cesium, Journal of Catalysis 218, 465-469.

Simonsen S. B., Chakraborty D., Chorkendorff I., and Dahl S. (2012). Alloyed Ni-Fe nanoparticles as catalysts for NH3 decomposition, Applied Catalysis A: General 447-448, 22-31.

Sorensen R. Z., Nielsen L. J. E., Jensen S., Hansen O., Johannessen T., Quaade U., and Christensen C. H. (2005). Catalytic ammonia decomposition: Miniaturized production of COx-free hydrogen for fuel cells, Catalysis Communications 6, 229-232.

Stuart H. C. (1935). Method for the production of nitrogen and hydrogen by the thermal decomposition of ammonia, ICI LTD, United States.

Tsai W., and Weinberg W. H. (1987). Steady-state decomposition of ammonia on the Ru(001), Surface,J. Phys. Chem. 91, 5302-5307.

Wang S. J., Yin S. F., Li L., Xu B. Q., Ng C. F., and Au C. T. (2004). Investigation on modification of Ru/CNTs catalyst for the generation of COx-free hydrogen from ammonia, Applied Catalysis B: Environmental 52, 287-299.

Yao L.H., Shi T.B., Li Y.X., Zhao J., Ji W.J., and Au C.T. (2011). Core–shell structured nickel and ruthenium nanoparticles: very active and stable catalysts for the generation of COx-free hydrogen via ammonia decomposition, Catalysis Today 164, 112-118.

Yin S. F., Xu B. Q., Wang S. J., Ng C. F., and Au C. T. (2004). Magnesia-carbon nanotubes (MgO-CNTs) nanocomposite: novel support of Ru catalyst for the generation of COx-free hydrogen from ammonia, Catalysis Letters 96, 113-116.

Yin S. F., Xu B. Q., Zhou X. P., and Au C. T. (2004). A mini-review on ammonia decomposition catalysts for on-site generation of hydrogen for fuel cell applications, Applied Catalysis A: General 277, 1-9.

Yin S. F., Zhang Q. H., Xu B. Q., Zhu W. X, Ng C. F., b and Au C.T. (2004). Investigation on the catalysis of COx-free hydrogen generation from ammonia, Journal of Catalysis 224, 384-396.

Zamfirescu C., and Dincer I. (2009). Ammonia as a green fuel and hydrogen source for vehicular applications, Fuel Processing Technology 90, 729-737.

Zhang J., Xua H., Jin X., Ge Q., and Li W. (2005). Characterizations and activities of the nano-sized Ni/Al2O3 and Ni/La-Al2O3 catalysts for NH3 decomposition, Applied Catalysis A: General 290, 87-96.

Zheng W., Zhang J., Ge Q.G., Xu H. G., and Li W. Z. (2008). Effects of CeO2 addition on Ni/Al2O3 catalysts for the reaction of ammonia decomposition to hydrogen, Applied Catalysis B: Environmental 80, 98-105.

毛宗強 (2008),氫能 - 21 世紀的綠色能源,新文京。

曲新生、陳發林、呂錫民 (2007),產氫與儲氫技術,五南。

周明顯、吳靜怡、張開駿 (2012),空氣污染防治專責人員訓練教材— 毒性污染控制,行政院環境保護署環境保護人員訓練教材。

張明 (2002),氨分解機理探析,崑鋼科技 2。

李霽松、常繼善 (2003),改進氨分解工藝延長催化劑壽命,燃料與化工 34。

李成棟 (1992),催化重整,中國石化。

陳曉珍、崔波、石文平、羅明焰 (2001),催化劑的老化原因分析,工業催化 9。

陳彥伶 (2012),氨裂解產氫之填充床反應器性能研究,國立聯合大學環境與安全衛生工程研究所,碩士論文。

葉俊宏 (2010),銫鋇促進劑釕/碳觸媒於氨裂解產氫反應之研究,國立聯合大學化學工程研究所,碩士論文。

陽衛軍、陶能燁、劉豐良、李子陽、郭燦城 (2006),活性碳負載Fe、Ni催化氨分解的研究,湖南大學學報335。

王曉紅、黃宏、趙中興 (2008) ,燃料電池基礎,全華。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top