跳到主要內容

臺灣博碩士論文加值系統

(34.204.176.71) 您好!臺灣時間:2024/11/10 19:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張永吉
研究生(外文):Yong-Ji Jhang
論文名稱:稻桿固態衍生燃料以水蒸氣和鹼性活化法製備活性碳探討染料、酚類及二氧化碳之吸附模式
論文名稱(外文):Study of the Adsorption Model of Dyes, Phenols and Carbon Dioxide by Using Activated Carbon from Straw Refuse Derived Fuel with Steam and Alkaline Activation
指導教授:曾如玲曾如玲引用關係
指導教授(外文):Ru-Ling Tseng
口試委員:吳耿東劉炳嵐吳豐智
口試委員(外文):Keng-Tung WuBing-Lan LiuFeng-Chin Wu
口試日期:2014-07-17
學位類別:碩士
校院名稱:國立聯合大學
系所名稱:環境與安全衛生工程學系碩士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:124
中文關鍵詞:稻桿固態衍生燃料活性碳等溫平衡吸附吸附動力學二氧化碳吸附
外文關鍵詞:straw refuse derived fuelactivated carbonsadsorption isothermsadsorption kineticsCO2
相關次數:
  • 被引用被引用:0
  • 點閱點閱:533
  • 評分評分:
  • 下載下載:23
  • 收藏至我的研究室書目清單書目收藏:0
本研究以稻桿固態衍生燃料為原料,利用水蒸汽、NaOH、KOH活化法及鹼後處理,四種方法製備系列活性碳共6支。水蒸汽活化法在900°C活化2小時(RS RDF9002);鹼活化法780°C活化1小時,NaOH/char值為2.5、3.5 (N2.5、N3.5)和KOH/char值為2、3 (K2、K3);另外鹼後處理,將RS RDF9002,經鹼後處理獲得RS RDF9002B。本文活性碳經BET表面積分析儀、熱重分析儀、FT-IR和元素分析,瞭解不同系列活性碳之物理和化學特性。吸附使用擬一次式和擬二次式動力學模式探討,瞭解不同系列活性碳對染料、酚類的吸附動力學之行為,其中吸附染料以擬二次式、吸附酚類以擬一次解析較佳;染料及酚類之等溫平衡吸附以Langmuir和Freundlich等溫平衡式解析,皆以Langmuir解析較佳。K3於273K一大氣壓下,二氧化碳吸附量達3.70 mol/kg,具有最佳的CO2捕獲能力;對於酚類具最大吸附量為3.463 mol/kg。 N3.5對於染料類具最大吸附量為3.517 mol/kg。
This study used straw refuse derived fuel as raw material. Utilizing steam-activation, NaOH-activated, KOH-activated and base-treated prepared four kind different series activated carbons. Activated carbon prepared from straw refuse derived fuel with steam-activation at 900°C for 2h(RS RDF9002), and Activated carbon prepared from Straw Refuse Derived Fuel by NaOH and KOH-activation with NaOH and KOH/char material ratio 2.5、3.5 (N2.5、N3.5) and 2、3 (K2、K3) at 780°C for 1h. The preparation of activated carbon from RS RDF9002 using a base-leaching process(RS RDF9002B). Activated carbons analysis include BET specific surface area observation as well as the chemical properties, namely, thermo gravimetric analysis (TGA), FT-IR and elemental analysis were measured. Three simplified models including the pseudo-first-order equation and pseudo-second-order equation were used to test the adsorption kinetics. The adsorption kinetics of dyes and phenols. Dyes were best fitted by pseudo- second -order equation. And phenols were best fitted by pseudo- first -order equation. Two simplified models including the Langmuirand and Freundlich isotherm equation were selected to follow the adsorption processes; the adsorption isotherm equation was in agreement with the Langmuirand equation. CO2 adsorption capacity of K3 activated carbon up to 3.70 mol/kg were achieved at 273K under 1 atm ; Phenol adsorption capacity of K3 activated carbon up to 3.463 mol/kg. And Dyes adsorption capacity of N3.5 activated carbon up to 3.517 mol/kg.
摘要 I
Abstract II
目錄 III
圖目錄 VI
表目錄 IX
符號說明 XI
第一章 前言 1
1.1 研究緣起與目的 1
1.2 研究內容 3
第二章 文獻回顧 6
2.1 活性碳 6
2.2 活性碳之原料 6
2.3 衍生燃料概況 8
2.4 活性碳種類 10
2.5 活性碳製備技術 12
2.6 活性碳孔隙結構 17
2.7 活性碳吸附 24
2.7.1 吸附動力學 24
2.7.2 吸附等溫平衡 26
2.8 CO2吸附 28
第三章 實驗方法與設備 32
3.1 實驗設備及藥品 32
3.2 活性碳製備 34
3.2.1 以NaOH活化法製備活性碳 34
3.2.2 以KOH活化法製備活性碳 35
3.2.3 以水蒸汽活化法及鹼後處理製備活性碳 35
3.3 活性碳之物理性質 37
3.3.1 BET比表面積分析及孔徑分佈 37
3.3.2 掃瞄式電子顯微鏡(Scanning Electron Microscope;SEM ) 37
3.4 活性碳之化學性質分析 38
3.4.1 元素分析 (Elemental analysis;EA) 38
3.4.2 熱重分析 (TGA, Thermogravimetric Analysis) 39
3.4.3 傅立葉轉換紅外線光譜儀 (FT-IR) 40
3.5 液相吸附實驗 41
3.5.1 吸附動力學 45
3.5.2 吸附等溫平衡 45
3.6 活性碳CO2吸附之應用 46
第四章 結果與討論 47
4.1 水蒸汽法及鹼後處理活性碳之物理與化學性質 47
4.1.1 孔隙特性 47
4.1.2 掃描式電子顯微鏡觀測 52
4.1.3 熱重分析 54
4.1.4 元素分析 57
4.1.5 傅立葉轉換紅外線光譜分析 58
4.2 NaOH、KOH系列活性碳之物理與化學性質 59
4.2.1 孔隙特性 59
4.2.2 掃描式電子顯微鏡觀測 67
4.2.3 元素分析 69
4.2.4 傅立葉轉換紅外線光譜分析 71
4.3 活性碳之液相吸附 72
4.3.1水蒸汽活化法及鹼後處理製備活性碳吸附動力學 72
4.3.2水蒸汽活化法及鹼後處理製備活性碳吸附等溫平衡 79
4.3.3 NaOH及KOH法製備活性碳吸附動力學 86
4.3.4 NaOH及KOH法製備活性碳吸附等溫平衡 94
4.4 CO2吸附 102
第五章 結論與建議 105
5.1 結論 105
5.2 建議 105
參考文獻 108

Aharoni, C., Tompkins, F.C. (1970), Kinetics of adsorption and desorption and the Elovich equation, in: D.D. Eley, H. Pines, P.B. Weisz (Eds.). Advances in Catalysis and Related Subjects 21, 1-49.

Ahmad, A.L., Tan, L.S., Shukor, S.R.A. (2008), Dimethoate and atrazine retention from aqueous solution by nanofiltration membranes. Journal of Hazardous Materials 151, 71–77.

Ahmed, M.J., Theydan S.K. (2012), Adsorption of cephalexin onto activated carbons from Albizia lebbeck seed pods by icrowave-induced KOH and K2CO3 activations. Chemical Engineering Journal 211, 200-207.

Ahmed, M.J., Theydan S.K. (2013), Microporous activated carbon from Siris seed pods by microwave-induced KOH activation for metronidazole adsorption. Journal of Analytical and Applied Pyrolysis 99, 101-109.

Alter, H. (1996), The RECYCLING of Densified Refuse-Derived
Fuel. Waste Managenent and Resarch 14, 311–317

Arash, A.N., Wan, M.A.W.D., Farouq S.M. (2010), Using granular activated carbon prepared from oil palm shell by ZnCl2 and physical activation for methane adsorption. Journal of Analytical and Applied Pyrolysis 89, 197-203.

Aungpradit, T., Sutthivaiyakit, P., Martens, D., Sutthivaiyakit, S., Kettrup, A.A.F. (2007), Photocatalytic degradation of triazophos in aqueous titanium dioxide suspension: identification of intermediates and degradation pathways. Journal of Hazardous Materials 146, 204-213.

Barrett, E.P., Joyner, L.G., Halenda, P.P. (1951), The determination of pore volume and area distribution in porous substances I. Computation from nitrogen isotherms. Journal of the American Chemical Society 73, 373-380.

Basta, A.H., Fierro, V., El-Saied, H., Celzard, A. (2009), 2-Steps KOH activation of rice straw: An efficient method for preparing high-performance activated carbons. Bioresource Technology 100, 3941–3947.

Boehm, H.P. (2002), Surface oxides on carbon and their analysis: a critical assessment. Carbon 40, 145–149.

Brateka, W., Swiatkowski, A., Pakuac, M., Biniak, S., Bystrzejewski, M., Szmigielski, R. (2013), Characteristics of activated carbon prepared from waste PET by carbon dioxide activation. Journal of Analytical and Applied Pyrolysis 100, 192-198.

Brunauer, S., Emmett, P. H., Teller, E. (1938), Adsorption of Gases in Multimolecular Layers. Journal of the Chemical Society 60, 309-319.

Brunauer, S., Deming, L.S., Deming,W.E., Teller, E.(1940), On a theory
of the van der Waals adsorption of gases.Journal of American Chemistry Society. 62, 1723-1746

Chan, W.C.R., Kelbon, M., Krieger, B.B. (1985), Modeling and experimental verification of physical and chemical processes during pyrolysis of a large biomass particle. Fuel. 64 , 1505–1513.

Caputo, A.C. and Pelagagge, P.M. (2002), RDF Production Plants:
I Design and Costs. Applied Thermal Engineering 22, 423–437

Cazetta, A.L., Vargas, A.M.M., Nogami, E.M., Kunita, M.H., Guilherme, M.R., Martins, A.C., Silva, T.L., Moraes, J.G.G., Almeida, V.C. (2011), NaOH-activated carbon of high surface area produced from coconut shell: Kinetics and equilibrium studies from the methylene blue adsorption. Chemical Engineering Journal 174, 117- 125.
Ching, S.L., Yusoff, M.S., Aziz, H.A., Umar, M. (2011), Influence of impregnation ratio on coffee ground activated carbon as landfill leachate adsorbent for removal of total iron and orthophosphate. Desalination 279, 225-234.

De Boer, J.H., Lippens, B.C., Linsen, B.G., Broekhoff, J.C.P., van den Heuvel, A., Osiga, T.J. (1966), The t-curve of multimolecular N2-adsorption. Journal of Colloid and Interface Science 21, 405.

Deng, H., Li, G., Yanga, H., Tanga, J., Tanga, J. (2010), Preparation of activated carbons from cotton stalk by microwave assisted KOH and K2CO3 activation. Chemical Engineering Journal 163, 373-381.

Duckett, M.; Ruhemann, M. (1985), Cryogenic Gas Separation. Chemical Engineering Journal 420, 14-17.

Ehrburger, P.; Addoun, A.; Addoun, F.; Donnet, J. B. (1986), Carbonization of Coals in The Presence of Alkaline Hydroxodes and Carbonates: Formation of Activated Carbons. Fuel 65, 1447.

Erol, A., Numan, H. (2005), Adsorption kinetics and isotherms of pesticides onto activated carbon-cloth. Chemosphere 60, 1600–1607.

Esfandiari, A., Kaghazchi, T., Soleimani, M. (2012), Preparation and evaluation of activated carbons obtained by physical activation of polyethyleneterephthalate (PET) wastes. Journal of the Taiwan Institute of Chemical Engineers 43, 631-637.

Figueroa, J.D., Fout, T., Plasynski, S., McIlvried, H., Srivastava, R.D. (2008), Advances in CO2 capture technology-The U.S. Department of Energy's Carbon Sequestration Program. International Journal of Greenhouse Gas Control 2, 9-20.

Foo, H.Y., Hameed, B.H. (2012), Coconut husk derived activated carbon via microwave induced activation: Effects of activation agents, preparation parameters and adsorption performance. Chemical Engineering Journal 184, 57-65.

Foo, K.Y., Hameed, B.H. (2011), Microwave-assisted preparation of oil palm fiber activated carbon for methylene blue adsorption. Chemical Engineering Journal 166, 792-795.

Foo, K.Y., Hameed, B.H. (2011), Preparation of oil palm (Elaeis) empty fruit bunch activated carbon by microwave-assisted KOH activation for the adsorption of methylene blue. Desalination 275, 302-305.

Foo, K.Y., Hameed, B.H. (2012), Dynamic adsorption behavior of methylene blue onto oil palm shell granular activated carbon prepared by microwave heating. Chemical Engineering Journal 203, 81-87.

Foo, K.Y., Hameed, B.H. (2012), Preparation, characterization and evaluation of adsorptive properties of orange peel based activated carbon via microwave induced K2CO3 activation. Bioresource Technology 104, 679-686.

Guo, J., Luo Y., Lua, A.C., Chi, R.A., Chen, Y.L., Bao, X.T., Xiang, S.X. (2007), Adsorption of hydrogen sulphide (H2S) by activated carbonsderived from oil-palm shell. Carbon 45, 330-336.

Hao, W., Bjorkman, E., Lilliestrale, M., Hedin, N. (2013), Activated carbons prepared from hydrothermally carbonized waste biomass used as adsorbents for CO2. Applied Energy112, 526-532.

Ho, Y.S., McKay, G. (1999), Pseudo-second order model for sorption processes. Process Biochem 34, 451-465.

Hsiao, H.Y., Huang, C.M., Hsu, M.Y., Chen, H. (2011), Preparation of high-surface-area PAN-based activated carbon by solution-blowing process for CO2 adsorption. Separation and Purification Technology 82, 19-27.

Hu, Z. and Srinivasan, M.P. (1999), Preparation of high-surface-area activated carbons from coconut shell. Microporous and Mesoporous Materials 27, l1-18

Joan L., Marc P.T. (2009), Influence of surface heterogeneity on hydrogen adsorption on activated carbons. Colloids and Surfaces A: Physicochemical and Engineering Aspects 350, 63-72.

Jung, M.J., Jeonga, E., Kim, S., Lee, S.I., Yoo, J.S., Lee, Y.S. (2011), Fluorination effect of activated carbon electrodes on the electrochemical performance of electric double layer capacitors. Journal of Fluorine Chemistry 132, 1127–1133.

Jung, M.J., Jeonga, E., Lima, J.W., Lee, S.I., Lee, Y.S. (2011), Physico-chemical surface modification of activated carbon by oxyfluorination and its electrochemical characterization. Colloids and Surfaces A 389, 274- 280.

Kaouah, F., Boumaza, S., Berrama, T., Trari, M., Bendjama, Z. (2013), Preparation and characterization of activated carbon from wild olive cores (oleaster) by H3PO4 for the removal of Basic Red 46. Journal of Cleaner Production 54, 296-306.

Kawano, T., Kubota, M., Onyango, M.S., Watanabe, F., Matsuda, H. (2008), Preparation of activated carbon from petroleum coke by KOH chemical activation for adsorption heat pump. Applied Thermal Engineering 28, 865-871.

Kim, Y.J., Horie, Y., Ozaki, S., Matsuzawa, Y., Suezaki, H., Kim, C., Miyashita, N., Endo, M. (2004), Correlation between the pore and solvated ion size on capacitance uptake of PVDC-based carbons. Carbon 42, 1491-1500.

Kong, J., Yue, Q., Huang, L., Gao, Y., Sun, Y., Gao, B., Li, Q., Wang, Y. (2013), Preparation, characterization and evaluation of adsorptive properties of leather waste based activated carbon via physical and chemical activation. Chemical Engineering Journal 221, 62-71.

Lee, Y.J., Park, H.W., Park, S., Song, I.K. (2012), Electrochemical properties of Mn-doped activated carbon aerogel as electrode material for supercapacitor. Current Applied Physics 12, 233-237.

Li, G., Xiao, P., Webley, Paul A., Zhang, J., Singh, R. (2009), Competition of CO2/H2O in adsorption based CO2 capture. Energy Procedia 1, 1123-1130.

Li, W., Yanga, K., Penga, J., Zhanga, L., Guoa, S., Xiaa, H. (2008), Effects of carbonization temperatures on characteristics of porosity in coconut shell chars and activated carbons derived from carbonized coconut shell chars. Industrial Crops and Products 28, 190-198.

Lo, S.F., Wang, S.Y., Tsaib, M.J., Lin, L.D. (2011), Adsorption capacity and removal efficiency of heavy metal ions by Moso and Ma bamboo activated carbons. chemical engineering research and design 926

Lin, L., Zhai, S.R., Xiao, Z.Y., Song, Y., An, Q.D., Song, X.W. (2013), Dye adsorption of mesoporous activated carbons produced from NaOH-pretreated rice husks. Bioresource Technology 136, 437-443.

Liu, Y., Guo, Y., Gao, W., Wang, Z., Ma, Y., Wang, Z. (2012), Simultaneous preparation of silica and activated carbon from rice husk ash. Journal of Cleaner Production 32, 204-209.

Lu, C., Xu, S., Liu, C. (2010), The role of K2CO3 during the chemical activation of petroleum coke with KOH. Journal of Analytical and Applied Pyrolysis 87, 282–287.

Lua, A.C. and Guo, J. ( 2000), Activated carbon prepared from oil palm stone by one-step CO2 activation for gaseous pollutant removal. Carbon 38, 1089-1097.

Ma, X., Feng, Q. (2013), Adsorption properties of biomass-based activated carbon prepared with spent coffee grounds and pomelo skin by phosphoric acid activation. Applied Surface Science 268, 566- 570.

Mahalakshmi, M., Arabindoo, B., Palanichamy, M., Murugesan, V. (2007), Photocatalytic degradation of carbofuran using semiconductor oxides. Journal of Hazardous Materials. 143, 240-245.

Maldonado, M.I., Malato, S., Estrada, L.A.P., Gernjak, W., Oller, I., Domenech, X., Peral, J. (2006), Partial degradation of five pesticides and an industrial pollutant by ozonation in a pilot-plant scale reactor. Journal of Hazardous Materials. 38, 363-369.

Park, S.J. and Kim, K.D. (2001), Influence of activation temperature on
adsorption characteristics of activated carbon fiber composites. Carbon 39, 1741-1746

Pastor-Villegas, J. and Duran-Valle, C.J. (2002), Pore structure of activated carbons prepared by carbon dioxide and steam activation at different temperatures from extracted rockrose. Carbon 40, 397–402.

Plaza, M. G., Pevida, C., Pis, J.J., Rubiera, F. (2011), Evaluation of the cyclic capacity of low-cost carbon adsorbents for post-combustion CO2 capture. Energy Procedia 4, 1228-1234.

Perrin, A., Celzard, A., Albiniak, A., Kaczmarczyk, J., Mareche, J.F., Furdin, G. (2004), NaOH activation of anthracites: effect of temperature on pore textures and methane storage ability. Carbon 42,
2855-2866

Qian, Q., Machida, M., Tatsumoto, H. (2007), Preparation of activated carbons from cattle-manure compost by zinc chloride activation. Bioresource Technology 98, 353-360.

Reddy, K.S.K., Shoaibi, A.A., Srinivasakannan, C. (2013), A comparison of microstructure and adsorption characteristics of activated carbons by CO2 and H3PO4 activation from date palm pits. New Carbon Materials 27, 344-351.

Salman, J.M., Hameed, B.H. (2010), Effect of preparation conditions of oil palm fronds activated carbon on adsorption of bentazon from aqueous solutions. Journal of Hazardous Materials 175, 133–137.

Salman, J.M., Njokua, V.O., Hameeda, B.H. (2011), Batch and fixed-bed adsorption of 2,4-dichlorophenoxyacetic acid onto oil palm frond activated carbon. Chemical Engineering Journal 174, 33- 40.

Saritha, P., Aparna, C., Himabindu, V., Anjaneyulu, Y. (2007), Comparison of various advanced oxidation processes for the degradation of 4-chloro-2 nitrophenol. Journal of Hazardous Materials. 149, 609-614.

Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquerol, J., (1985), Reporting physisorption deta for gas/solid systems with special reference to the determination of surface area and porosity. Pure and Applied Chemistry 57, 603.

Sing, K.S.W., Gregg, S.J. (1982), Adsorption, Surface Area and Porosity. Academic Press, New York

Sousa-Aguilar, E.F., Liebsch, A., Chaves, B.C., Costa, A.F., (1998), Influence of external surface area of small cryatallite zeolites on the micropore volume determination. Microporous and Mesoporous Materials 25, 185.

Sun, K., Jiang, J.C. (2010), Preparation and characterization of activated carbon from rubber-seed shell by physical activation with steam. Biomass and bioenergy 34, 539-544.

Suzuki, M. (1990), Adsorption Engineering, Kodansha, Elsevier, Tokyo.

Tang, Y.B., Liu, Q., Chen, F.Y. (2012), Preparation and characterization of activated carbon from waste Ramulus mori. Chemical Engineering Journal 203, 19-24.
Tomków, K., Siemieniewska, T., Czechowski, F., Jankowska, A. (1977), Formation of porous structures in activated Brown-Coal chars using O2, CO2 and H2O as activating agents. Fuel 56, 121-124

Tongpoothorn, W., Sriuttha, M., Homchan, P., Chanthai, S., Ruangviriyachai C. (2011), Preparation of activated carbon derived from Jatropha curcas fruit shell by simple thermo-chemical activation and characterization of their physico-chemical properties. chemical Engineering Research and Design 89, 335-340.

Tseng , R.L., Wu , F.C., Juang, R.S. (2003), Liquid-phase adsorption of dyes and phenols using pinewood-based activated carbons. Carbon 41, 487–495.

Tseng, R.L. (2006), Mesopore control of high surface area NaOH-activated carbon. Journal of Colloid and Interface Science 303, 494-502.

Tseng, R.L., Tseng, S.K. (2005), Pore structure and adsorption performance of the KOH-activated carbons prepared from corncob. Journal of Colloid and Interface Science 287, 428-437.

Weber, W.J., Morris, J.C. (1962), Advances in water pollution research: removal of biologically resistant pollutant from waste water by adsorption, In Proceedings of 1st International Conference on Water Pollution Symposium. Pergamon Press, Oxford 2, 231-266.

Wigmans, T. (1989), Industrial aspects of production and use of activated
carbons. Carbon 27, 13-22

Wu, F.C., Tseng R.L., Huang, S.C., Juang, R.S. (2009), Characteristics of pseudo-second-order kinetic model for liquid-phase adsorption: A Mini-review. Chemical Engineering Journal 151, 1-9.

Wu, F.C., Tseng, R.L. (2006), Preparation of highly porous carbon from fir wood by KOH etching and CO2 gasification for adsorption of dyes and phenols from water. Journal of Colloid and Interface Science 294, 21-30.

Wu, F.C., Tseng, R.L. (2008), High adsorption capacity NaOH-activated carbon for dye removal from aqueous solution. Journal of Hazardous Materials 152, 1256-1267.

Wu, F.C., Tseng, R.L., Hu, C.C., Wang, C.C. (2004), Physical and electrochemical characterization of activated carbons prepared from firwoods for supercapacitors. Journal of Power Sources 138, 351-359.

Wu, F.C., Tseng, R.L., Hu, C.C. (2005), Comparisons of properties and adsorption performance of KOH-activated and steam-activated carbons. Micropor. Mesopor. Mat. 80, 95.

Wu, F.C., Wu P.H., Tseng, R.L., Juang, R.S. (2010), Preparation of activated carbons from unburnt coal in bottom ash with KOH activation for liquid-phase adsorption. Environmental Management 91, 1097-1102.

Yang, T., Lua, A.C. (2003), Characteristics of activated carbons prepared from pistachio-nut shells by potassium hydroxide activation. Microporous and Mesoporous Materials 63, 113-124.

Zeng, C., Lina, Q., Fang, C., Xua, D., Ma, Z. (2013), Preparation and characterization of high surface area activatedcarbons from co-pyrolysis product of coal-tar pitch and rosin. Journal of Analytical and Applied Pyrolysis.

Zhang, J., Fu H., Lv X., Tang J., Xu X (2011), Removal of Cu(II) from aqueous solution using the rice husk carbons prepared by the physical activation process. Biomass and bioenergy 35, 464–472.

Zhang Z., Xu M., Wang H., Li Z. (2010), Enhancement of CO2 adsorption on high surface area activated carbon modified by N2, H2 and ammonia. Chemical Engineering Journal 160, 571-577.
Zhao, X., Lai, ., Lio, H., Gao, L. (2009), Preparation and characterization of activated carbon foam from phenolic resin. Journal of Environmental Sciences Supplement 21, 121-123.

Zhao, Z., Cui, Xi., Ma, J., Li, R. (2007), Adsorption of carbon dioxide on alkali-modified zeolite 13X adsorbents. International Journal of Greenhouse Gas Control 1, 355-359.

吳萬全(2001),活性碳,台灣礦業,第 53期,第 37-51頁。

林財得、謝清祿、謝欽城(2004),不同前處理對稻稈吸水性之影響及以稻稈與禽畜糞製作堆肥可行性探討,農業機械學刊刊,第13卷,第4期。

翁儷芯、李源弘、王松永(1998),碳化溫度對木陶瓷之碳化物收率
及部分物理性質之影響,林產工業,第 17期,第 155-170頁。

陳世雄、劉瑞美、李砥中、莫致豪、林炎逸(2004),椰殼製備活性碳對含酚廢水吸附之研究,嘉南藥理科技大學環境工程與科學系。

曾浩雄(2011),土木技師公會技師報,第760期。

黃聖傑(2008),RDF固態衍生廢料以化學活化法製備活性碳及其應用,國立聯合大學環境與安全衛生研究所碩士論文。

趙莉、孫紅文、何娜(2010),水稻桔稈主要組成的提取及其對的吸附芘作用,環境科學,第31卷第6期。

蔡文田、張慶源(1993)。活性碳及其在空氣污染防治之應用,環境工程會刊,第 3期,第 65-83頁。

歐陽嶠暉(2007),下水道工程學,長松文化。

劉毅弘、張文昇、楊昌中、鄭名山、曹芳海、黃昭銘、張慶源(2009),二氧化碳新型吸附劑探討,工業污染防治,第111期,第1-21頁。

謝建德(1998),活性碳孔隙結構與備製條件對液相吸附的影響,私立中原大學化學工程系研究所碩士論文。

鄭泓柏(2008),廢輪胎以水蒸氣活化法製備中孔型活性碳之探討,國立聯合大學環境與安全衛生研究所碩士論文。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top