(3.237.97.64) 您好!臺灣時間:2021/03/04 12:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃暄閔
研究生(外文):HUANG,SYUAN-MIN
論文名稱:以奈米雙金屬改質之各式陶瓷應用在熱界面材料
論文名稱(外文):Application of various ceramics with coated bimetal nanoparticles in thermal interface materials
指導教授:黃心亮
指導教授(外文):Hsin-Liang Huang
口試委員:曾如玲黃鈺軫
口試委員(外文):Ru-Ling TsengYuh-Jeen Huang
口試日期:2014-07-30
學位類別:碩士
校院名稱:國立聯合大學
系所名稱:環境與安全衛生工程學系碩士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:144
中文關鍵詞:奈米雙金屬陶瓷熱傳導係數
外文關鍵詞:bimetal nanoparticleceramicthermal conductivity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:136
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
利用具不同特性(密度、熱傳導率、熱膨脹係數及孔隙率)之普通、堇青石、氧化鋁及碳化矽陶瓷作為導熱膠膜之填料,且以無電鍍法將奈米金屬銅和銀塗佈在各式陶瓷表面上,以增加填料之熱傳導率。XRD光譜圖顯示,使用無電鍍法塗佈在陶瓷上的奈米銅和銀之粒徑大小分別為17-22和23-28 nm,即使具有孔洞之普通及碳化矽陶瓷亦可以利用無電鍍法在表面塗佈奈米金屬顆粒。由FE-SEM發現奈米顆粒塗佈在各式陶瓷時會產生團聚和堆疊現象,然而,銅和銀粒子皆塗佈至陶瓷上。熱傳導係數提升之另一影響因素為陶瓷之熱膨脹係數及熱傳導係數,由於熱能傳輸大部分於顆粒表面,所以氧化鋁陶瓷在323和343 K的熱膨脹可增加熱傳導途徑。在303-343 K下,添加塗佈10%銅和3.4%銀的氧化鋁陶瓷至導熱黏膠之熱傳導係數為0.419-0.458 W/mK,而導熱黏膠膜之熱傳導係數僅有0.200 W/mK。在銅和銀雙金屬塗佈在普通陶瓷表面,最佳濃度為10%銅和3.4%銀,且雙金屬層厚度為~30 nm。
Ordinary, cordierite, alumina, and silicon carbide ceramics different from density, thermal conductivity, thermal expansion, and pore are utilized to be fillers for the thermal pad. Copper (Cu) and silver (Ag) nanoparticles can be coated on the surface of various ceramics with electroless to promote the thermal conductivity. By X-ray diffraction (XRD), grain sizes of Cu and Ag nanoparticles coated on various ceramics are 17-22 and 23-28 nm, respectively. Even porous ordinary and silicon carbide ceramics can also be coated metal nanoparticles on the surface. We found that aggregation of nanoparticles stack up on the surface of various ceramics by field-emission scanning electron microscope (FE-SEM). However, coated Cu and Ag disperse well on ceramics. The effect of temperature on thermal conductivity is depended on thermal conductivity and thermal expansion of ceramic. Due to heat transport on surfaces of particles, expansion of alumina ceramic can increase pathways at 323 and 343 K. The thermal conductivity of alumina ceramic coated 10% of Cu and 3.4% of Ag in the thermal pad are 0.419-0.458 W/mK at 303-343 K. Note that the thermal conductivity of thermal pad is only 0.200 W/mK. Optimal of coated metal concentrations are 10% of Cu and 3.4% of Ag on ordinary ceramic. Moreover, the thickness of bimetal layer is ~30 nm.
摘要 i
Abstract ii
謝誌 iii
目錄 iv
圖目錄 vii
表目錄 x
第一章、前言 1
1.1研究緣起 1
1.2研究目的 2
1.3研究內容 3
第二章、文獻回顧 5
2.1產業對於熱界面材料的需求 5
2.1.1 熱傳遞現象 8
2.1.2 接觸熱阻 10
2.1.3 熱界面材料的種類 14
2.1.4熱界面材料之成份及特性需求 20
2.2 廢棄陶瓷 23
2.2.1 陶瓷的特性及應用 23
2.3 塗佈技術 28
2.3.1 化學氣相沉積法 28
2.3.2 磁控濺鍍法 30
2.3.3 溶膠凝膠法 32
2.3.4 無電鍍技術 35
第三章 實驗材料、設備與方法 39
3.1 實驗樣品製備流程 39
3.1.2 無電鍍法塗佈銅在陶瓷表面 39
3.1.3無電鍍法塗佈銀及共同塗佈銅和銀在陶瓷表面 41
3.1.4 含揮發液之市售導熱黏膠的固體含量 45
3.1.5添加已塗佈金屬之陶瓷在導熱黏膠之製備 46
3.2 實驗藥品及設備 47
3.2.1 實驗藥品 47
3.2.2 實驗設備 48
3.3分析儀器 49
3.3.1 X光繞射儀 49
3.3.2 原子吸收光譜儀 50
3.3.3 感應偶合電漿質譜儀 50
3.3.4 比表面積分析儀 51
3.3.5 場效發射式掃描電子顯微鏡 52
3.3.6 X射線光電子能譜儀 53
3.3.7 熱傳導係數分析儀 53
第四章 結果與討論 55
4.1改質之廢棄普通和碳化矽陶瓷的熱傳導機制研究 55
4.2溫度對改質之廢棄氧化鋁和堇青石陶瓷的熱傳導影響 71
4.3添加塗佈不同濃度之銅銀陶瓷在導熱膠之熱傳導機制 89
4.4添加塗佈多種銅晶粒尺寸之普通陶瓷在導熱膠的熱傳導性影響 99
4.5塗佈銅和銀雙金屬之普通陶瓷以單或雙粒徑添加至導熱膠之熱傳導機制研究 108
第五章 結論與建議 117
5.1結論 117
5.2 建議 120
參考文獻 121
附錄 126

Cai, C., Yu X., Shen Z., Xing, Y. 2007. A comparison of two methods for metallizing fly-ash cenosphere particles: electroless plating and magnetron sputtering. Journal of Applied Physics. 40: 6026–6033.
Cao, X. G., Zhang, H. Y. 2012. Fabrication and performance of silver coated copper powder. Electronic Materials Letters. 8(4): 467-470.
Cha, J. H., Kim, K. S., Choi, S., Yeon, S. H., Lee, H., Lee, C. S., Shim, J. J. 2007. Size-controlled electrochemical synthesis of palladium nanoparticles using morpholinium ionic liquid. Korean Journal of Chemical Engineering. 24: 1089-1094.
Due, J., Robinson, A. J. 2013. Reliability of thermal interface materials: A review. Applied Thermal Engineering. 50: 455-463.
Gwinn, J. P., Webb, R. L. 2003. Performance and testing of thermal interface materials. Microelectronics Journal. 34: 215–222.
Hajime, Y., Kazuhito, H., Akira, F. 1998. Adhesion mechanism of electroless copper film formed on ceramic substrates using ZnO thin film as an intermediate layer. Journal of The Electrochemical Society. 145(5): 1430-1434.
Hamilton, J. F., Baetzold, R. C. 1979. Catalysis by small metal clusters. Science. 205: 1213-1220.
Hana, Z., Fina, A. 2011. Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review. Progress in Polymer Science. 36: 914-944.
Hu, Y. J., Zhang, H. Y., Cheng, X. L., Li, F., Chen, T. L. 2011. Electroless plating of silver on cenosphere particles and the investigation of its corrosion behavior in composite silicon rubber. Applied Surface Science. 257: 2813–2817.
Kingery, W. D., Bowen, H. K., Uhlmann, D. R. 2006. Introduction to ceramics. Published by Wiley-Interscience Inc.
Kobayashi, Y., Veronica, S. M., Luis, M. L. M. 2001. Deposition of silver nanoparticles on silica spheres by pretreatment steps in electroless plating. American Chemical Society. 13: 1630-1633.
Lepri, S., Livi, R., Politi, A. 2003. Thermal conduction in classical low dimensional lattices. Physics Reports. 377(1):1–80.
Lin, Y. M., Yen, S. C. 2001. Effects of additives and chelating agentson electroless copper plating. Applied Surface Science. 178: 116-126.
Meyer, H., Nichols, R. J., Schroer D., Stamp, L. 1994. The use of conducting polymers and colloids in the through hole plating of printed circuit boards. Electrochimica Acta. 39: 1325-1338.
Mita, K., Tomaru, K., Aoki Y., Fujiki, H. 2009 Heat dissipating member. United States Patent 7484556,.
Mishra, K. G., Paramguru, R. K. 1999. Kinetics and mechanism of electroless copper deposition at moderate-to-high copper ion and low-to-moderate formaldehyde concentrations. Metallurgical and Materials Transactions B. 30: 223-229.
Samuels, R. J., Mathis, N. E 2001. Orientation specific thermal properties of polyimide film. Journal of electronic packaging, transactions of the ASME. 123(2): 273-277
Shadab, S., Khalid, L., Edward, S. 2007. The effect of a CNT interface on the thermal resistance of contacting surfaces. Carbon. 45: 695–703.
Sharma, R., Agarwala, Agarwala, R. C. V. 2006. Development of copper coatings on ceramic powder by electroless technique. Applied Surface Science. 252: 8487-8493.
Shukla, S., Seal, S., Rahaman, Z., Scammon, K. 2002. Electroless copper coating of cenospheres using silver nitrate activator. Materials Letters. 57: 151-156.
Su, A., Liu, Y. C., Chen, C. Y. 2007. Thermal diffusion analysis for LED module. Heat transfer, Asian research. 36(8): 449-458.
Tam, T. M. 1985. Cyclic voltammogram of formaldehyde and its related species in electroless copper solution. Journal of the Electrochemical Society. 132: 806-810.
Wilson, S. W, Norris, A. W., Scott E. B, Costello, M. R. 1996. Thermally conductive adhesives for high thermally stressed assembly. In: National electronic packaging and production conference, proceedings of the technical program, Norwalk, CT, 2: 788–96.
Xu, J., Fisher, T. S. 2004. Enhanced thermal contact conductance using carbon nanotube arrays. In: ITherm 2004 proceedings: ninth intersociety conference on thermal and thermomechanical phenomena in electronic systems, Las Vegas, NV, 549–555.
Xu, X., Luo, X., Zhuang, H., Li, W., Zhang, Baolin. 2003. Electroless silver coating on fine copper powder and its effects on oxidation resistance. Materials Letters. 57: 3987- 3991.
Xu, Y., Luo, X., Chung, D. D. L. 2002. Lithium doped polyethylene-glycolbased thermal interface pastes for high thermal contact conductance. Journal of Electron Packaging. 124(3): 188-91.
Ye, X., Zhou, Y., Chen, J., Sun, Y., Wang, Z. 2008. Coating of ZnO nanorods with nanosized silver particles by electroless plating process. Materials Letters. 62: 666–669.
Zhou, W., Qi, S., Tu, C. 2007. Effect of the particle size of Al2O3 on the properties of filled heat-conductive silicone rubber, Journal of Applied Polymer Science. 104(2): 1312-1318.
行政院環境保護署 2014 94年度至101年度事業廢棄物種申報量,http://waste.epa.gov.tw/prog/IndexFrame.asp?Func=5。
何正義編譯 2009 熱力學。高立圖書有限公司。
林建中 2003 奈米科技基礎與實務。新文京開發出版股份有限公司。
林登峰,廖啟州,詹明勇 2004 多元性廢棄物資源化於透水性鋪面可行性之探討。 臺灣公路工程 30(8): 34-48。
林樹豪,黃暉淇 2004 廢陶瓷砂於水泥混凝土之應用。第六屆鋪面材料再生學術研討會論文集E1-1-E1-7。
金志浩、高積強、喬冠軍 2000 工程陶瓷材料。西安交通大學出版社。
姜庭隆 2001 半導體製程。滄海書局。
張立德,牟季美 2000 奈米材料和奈米結構。滄海書局。
張金生,張銀燕,王美婷,許鳳秀 2007 陶瓷材料顯微結構與性能。化學工業出版社。
國際電子商情 2014 2014年全球LED產值。
Stock-AI投資經濟指標 2014 國際貴金屬價格。
蔡弦志 2003 再生材料應用於道路鋪面工程之成本效益研究。國立中央大學土木工程學系碩士學位論文。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔