(44.192.66.171) 您好!臺灣時間:2021/05/17 23:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:鄭博維
研究生(外文):Bo-Wei Zheng
論文名稱:以水熱合成LiF-LiFePO4鋰離子電池複合正極材料之組織解析與充放電特性研究
論文名稱(外文):Electrochemical and Microstructural Characteristics of Hydrothermally Synthesized LiF-coated LiFePO4 Composite Cathode Materials for Lithium Ion Batteries
指導教授:楊崇煒
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:材料科學與綠色能源工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:81
中文關鍵詞:水熱合成法LiFePO4正極材料
外文關鍵詞:Hydrothermal synthesizingLiFePO4Cathode material
相關次數:
  • 被引用被引用:0
  • 點閱點閱:249
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由於磷酸鋰鐵(LiFePO4)電池具有安全性高及充放電循環壽命長等優點,因此LiFePO4目前已被用於鋰離子二次電池作為正極材料。本研究乃利用水熱合成法製備LiFePO4正極材料粉末,並亦藉由水熱法合成過程中添加不同莫耳濃度之LiF,並控制在150oC、170oC以及改變合成溫度3小時、6小時等不同的水熱製程條件下,合成F-doped-LiFePO4複合正極材料粉末,藉由XRD繞射與TEM解析此複合粉末之相組成與形貌觀察,利用DTA檢測相穩定性,並亦藉由XPS分析LiF/LiFePO4複合粉末結晶結構之鍵結能與離子之化學位移;綜合以上之複合粉末分析結果,選擇其中最佳水熱合成條件,將其塗佈於鋁箔並組裝成電池以進行電性測試。實驗結果顯示LiFePO4及LiF/LiFePO4複合正極材料粉末皆可藉水熱法製程加以合成,粉末之相穩定與結晶性佳,電性測試結果顯示其充放電壓偏低,推測可能為導電石墨添加不足而使LiF/LiFePO4導電度較低之結果。

Since the LiFePO4 compound displays advantages with a high safety and high charge-discharging cycles, it has been widely used as cathode materials of the secondary lithium-ion battery. In the present study, hydrothermally synthesized LiFeO4 powders were used as the raw material, and the LiF-coated LiFeO4 composite cathode materials were also prepared by the hydrothermal synthesizing method at 150oC, 170oC, held for 3hr. and 6hr. to improve electrochemical properties of raw-LiFeO4 cathode powders under a high voltage. The phase composition, crystallinity and particle morphologies were examined by the x-ray diffraction and TEM analysis.
The phase stability was examined by the TGA analysis. The binding energy and chemical shift of crystalline LiF/LiFePO4 composite powders were analysized by the XPS. Concluded the above-mentioned results, the optimal powder conditions were selected to deposit on the Al-foil. Then the deposited Al-foils were assembled as a battery for the electrochemical tests.
Experimental results showed that the raw-LiFePO4 powders and LiF/LiFePO4 composite cathode powders were synthesized by the hydrothermal method. The LiF/LiFePO4 composite powders showed good thermal stability and good crystallinity. After the charge-discharge experiments, it was found that the LiF/LiFePO4 composite powders shows a lower capacity, which is resulted from a lower adding content of the conductive carbon black.


目錄
中文摘要……………………………………………i
英文摘要………………………………………………………ii
誌謝 ……………………………………………………iii
目錄 ……………………………………………………………iv
表目錄 ……………………………………………………vii
圖目錄 ………………………………………………………viii
方程式目錄………………………………………………………x
第一章 緒論…………………………………………………………1
1.1 引言………………………………………………………1
1.2 研究動機……………………………………………………2
第二章 文獻回顧……………………………………………………3
2.1 鋰離子電池……………………………………3
2.2 鋰離子電池正極材料………………………….6
2.2.1 嵌鋰的層狀氧化物……………………………………7
2.2.2 尖晶石結構LiMn2O4………………………………………10
2.2.3 LiFePO4……………………………………………………12
2.3 研究方向………………………………………21
第三章 實驗方法……………………………………………………31
3.1 正極材料LiFePO4製備……………………………………31
3.2 X-Ray繞射分析……………….……………………………32
3.3 粉末SEM微觀組織解析及EDS元素…………………32
3.4 光電子能譜儀分析(XPS)…………………………………33
3.5 熱重分析(TGA)……………………………………………33
3.6 穿透式電子顯微鏡(TEM)…………………………………34
3.7 電池的製備及組裝與充放電容量測試………………34
第四章 結果與討論………………………………………………….41
4.1 水熱法合成LiFePO4………………………………………41
4.2 水熱法合成X-Ray圖譜分析………………………………41
4.3 燒結溫度對時間合成LiFePO4影響……………………42
4.4 水熱法合成LiFePO4熱重量分析(TGA)…………………42
4.5 SEM-EDS分析LiFePO4形貌及成分分析…………………43
4.6 TEM-EDS影像分析………………………………………43
4.7 XPS元素分析……………………………………………44
4.8 LiFePO4及摻雜F充放電容量測試………………………45
第五章 結論…………………………………………………………69
參考文獻 ………………………………………………………70
擴展摘要 ………………………………………………………76
簡歷 ………………………………………………………………81


[1]D. Linden, Handbook of Batteries, 2nd edn., New York, Inc. New York, 1995.
[2]M. Wakihara, “Recent developments in lithium ion batteries”, Materials Science and Engineering, R33, (2001) 109-134.
[3]O. Kazunori, “Lithium-ion rechargeable batteries with LiCoO2 and carbon electrodes: the LiCoO2/C system”, Solid State Ionics, 69, (1994) 212-221.
[4]K. Sato, M. Noguch, and T. Demach, “Lithium-ion battery for electronic applications”, Science, 54, (1995) 155-162.
[5]H. J. Yue, X. K. Huang, D. P. Lv, and Y. Yang, “ Hydrothermal synthesis of LiMn2O4/C composite as a cathode for rechargeable lithium-ion battery with excellent rate capability”, Electrochimica Acta, 54, (2009) 5363-5367.
[6]W. A. Van, Schalkwijk, B. Scrosati, W. Van Schalkwijk.Plenum “Advances in Lithium-Ion Batteries” , Pub Corp, (2002) 138-139
[7]M. Broussely, F. Perton, P. Biensan, J. M. Bodet, J. Labat, A. Lecerf, and C. Delmas, “LixNiO2 a promising cathode for rechargeable lithium batteries”, J. Power Sources, 54, (1995) 109-114.
[8]H. Arai, S. Okada, Y. Sakurai, and J. Yamaki, “Reversibility of LiNiO2 cathode ”, Solid State Ionics, 95, (1997) 275-282.
[9]J. Schoonman, H. L. Tuner, and E. M. Kelder, “Defect chemical aspects of lithium-ion battery cathodes”, J. Power Sources, 81, (1999) 44-48.


[10]K. Mizushima, P. C. Jones, P. J. Wiseman, and J. B. Goodenough, “Mater Decay estimates for the critical semilinear wave equation”, Research Bulletin, 15, (1999) 783-789.
[11]S. R. Thomas, P. G. Bruce, and J. B. Goodenough, “Lithium mobility in the layered oxide Li1−xCoO2”, Solid State Ionics, 17, (1999) 13-19.
[12]C. D. W. Jones, E. Rossen, and J. R. Dahn, “Structure and electrochemistry of LixCryCo1−yO2”, Solid State Ionics, 68, (1994) 65-69.
[13]R. Koksbang, J. Barker, H. Shi, and M. Y. Saidi, “Cathode materials for lithium rocking chair batteries”, Solid State Ionics, 84, (1996) 1-21.
[14]M. M. Thackeray, M. H. Rossouw, and R. J. Gummo, “Ramsdellite-MnO2 for lithium batteries: the ramsdellite to spinel transform ation “, Electrochem Acta, 38, (1993) 1259-1267.
[15]A. M. Kannan and F. Prado, “The supremum of Brownian local times on Holder curves”, Electrochem.Commun, (2001) 627-642.
[16]C. Delmas and I. Saadoune, “Electrochemical and physical properties of the LixNi1−yCoyO2 phases”, Solid State Ionics, 53, (1992) 370-375.
[17]E. Zhecheva and R. Stoyanova, “Stabilization of the layered crystal structure of LiNiO2 by Co-substitution”, Solid State Ionics, 66, (1993) 143-149.
[18]Z. Zhang, D. Fouchard, and J. R. Rea, “Differential scanning calorimetry material studies: implications for the safety of lithium-ion cells”, J. Power Sources,70, (1998) 16-20.
[19]Z. L. Liu, A. S. Yu, and J. Y. Lee, “Synthesis and characterization of LiNi1-x-yCoxMnyO2 as the cathode materials of secondary lithium batteries”, J. Power Sources, 81, (1999) 416-419.
[20]Z. H. Lu, D. D. MacNeil, and J. R. Dahn, “Layered cathode materials for lithium-ion batteries”, Electrochem Solid State Lett, 4, (2001) A191-A194.
[21]N. Yabuuchi and T. Ohzuku, “Novel lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for advanced lithium-ion batteries”, J. Power Sources, 119, (2003) 171-174.
[22]Y. Gao and J. R. Dahn, “The high temperature phase diagram of Li1+xMn2-xO4 and it’s implications ”, J. Electrochem. Soc, 143, (1996) 1783-1788.
[23]G. G. Amatucci, C. N. Schmutz, A. Blyr, C. Sigala, A. S. Gozdz, and D. Larcher, “Materials'' effects on the elevated and room temperature performance of C/LiMn2O4 Li-ion batteries” , J. Power Sources, 69, (1997) 11-25.
[24]P. Arora, B. N. Popov, and R. E. White, J. Electrochem. Soc., 145, (1998) 807-817.
[25]J. W. Lee, J. I. Kim, and S. H. Min, “Highly crystalline lithium–manganese spinel prepared by a hydrothermal process with co-solvent”, Journal of Power Sources, 196, (2011) 1488-1493.
[26]M. M. Thackeray, W. I. F. David, P. G. Bruce, and J. B. Goodenough, “In vitro capacitation of bovine spermatozoa: Role of intracellular calcium ”, Material Research Bulletin, 18, (1999) 461-472.
[27]W. Liu, K. Kowal, and G. C. Farrington, “Mechanism of the Electrochemical Insertion of Lithium into LiMn2O4 Spinels”, J. Electrochem. Soc., 145, (1998) .


[28]M. M. Thackeray, Y. S. Horn, A. J. Kahaian, K. D. Kepler, and E. Skinner, “Non-Homogeneius Structure Transitions in High Voltage (4V) Li/LixMn2O4 cell”, Electrochem. Solid State Lett., 1, (1998) 7-9.
[29]D. H. Jang, Y. J. Shin, and S. M. Oh, “Dissolution of Spinel Oxides and Capacily Losses in 4V Li/Li,Mn204 Cells”, Electrochem. Soc., 143, (1996) 2204-2211.
[30]Y. S. Lee, S. Sato, Y. K. Sun, K. Kobayakawa, and Y. Sato, “A new type of orthorhombic LiFeO2 with advanced battery performance and its structural change during cycling ”, J. Power Sources, 119, (2003) 285-289.
[31]A. Yamada, S. C. Chung, and K. Hinokuma, “Optimized LiFePO4 for lithium battery cathodes”, J. Electrochem. Soc. 148, (2001) A224-A229.
[32]A. K. Padhi, K. S. Nanjundaswamy, J. B. Goodenough, “Phospho‐olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries”, J. Electrochem. Soc., 144, (1997) 1188-1194.
[33]M. Thackeray, “Lithium-ion batteries An unexpected conductor”, Nature Mater, 1, (2002) 81-82.
[34]S. Y. Chung, J. T. Bloking, and Y. M. Chiang, “Electronically conductive phospho-olivines as lithium storage electrodes”, Nature Mater, 1, (2002) 123-128.
[35]A. D. Spong, and G. Vitins, “A solution-precursor synthesis of carbon-coated LiFePO4 for Li-Ion cells”, J. Electrochem. Soc., 152, (2005) A2376.


[36]M. Takahashi, S. Tobishima, K. Taker, and Y. Sakurai, “Reaction behavior of LiFePO4 as a cathode material for rechargeable lithium batteries”, State Solid Ionics, 148, (2002) 283-289.
[37]P. P. Prosini, M. Lisi, D. Zane, and M. Pasquali, “Determination of the chemical diffusion coefficient of lithium in LiFePO4”, State Solid Ionics, 148, (2002) 45-51.
[38]A. S. Anderson and J. O. Thomas, “The source of first-cycle capacity loss in LiFePO4”, J. Power Sources, 97, (2002) 498-502.
[39]G. H. Li, H. Azuma, and M. Tohda, “Optimized LiMnyFe1-yPO4 as the cathode for lithium batteries”, J. Electrochem. Soc., 149, (2002) A743-A747.
[40]W. Fergus, “Recent developments in cathode materials for lithium ion batteries”, J. Power Sources, 195, (2010) 939-954.
[41]王志方,磷酸鋰鐵電池之產業概況, 台灣工業銀行,(2008).
[42]E. M. Jin, B. Jin, D. K. Jun, K. H. Park, H. B. Gu, and K. W. Kim, “A study on the electrochemical characteristics of LiFePO4 cathode for lithium polymer batteries by hydrothermal method ”, J. Power Sources, 178 , (2008) 801-806.
[43]J. Barker, M. Y. Saidi, J. L. Swoyer, “Electrochem. Lithium-iron phospho-olivines prepared by a novel carbothermal reduction method ”, Solid-State Lett., 6, (2003) A53.
[44]M. A. E. Sanchez, G. E. S. Brito, M. C. A. Fantini, G. F. Goya, and J. R. Matos,“Synthesis and characterization of LiFePO4prepared by sol-gel technique”, Solid State Ionics, 177, (2006) 497 .


[45]G. Arnold, J. Garche, R. Hemmer, S. Strőbele, C. Vogler, M. W. Mehrens, “Fine-particle lithium iron phosphate LiFePO4 synthesized by a new low-cost aqueous precipitation technique”, J. Power Sources, 119, (2003) 247.
[46]M. Higuchi, K. Katayama, Y. Azuma, M. Yukawa, and M. Suhar, “Synthesis of LiFePO4 cathode material by microwave processing ”, J. Power Sources, 119, (2003) 258-261.
[47]S. Yang, Y. Song, P. Y. Zavalij, and M. S. Whittingham,“Stability and electrochemical behavior of lithium iron phosphates”, Electrochem Comm, 4, (2002) 239-244.
[48]S. Yang, P. Y. Zavalij, and M. S. Whittingham, “Hydrothermal synthesis of lithium iron phosphate cathodes”, Electrochem. Comm, 3, (2001) 505-508.
[49]A. Yamada, Y. Kudo,and K. Y. Liu, “Reaction Mechanism of the Olivine-TypeLix ( Mn0.6Fe0.4 )PO4”,J. Electrochem. Soc., 148,
(2001)747-754
[50]Fei Lu, Yichun Zhou, Jun Liu, Yong Pan, “Enhancement of F-doping on the electrochemical behavior of the carbon-coated LiFePO4 nanoparticles prepared by hydrothermal route”, Electrochimica Acta,56, (2011) 8833- 8838


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 曾國書、 黃金龍、許秀華ISO22000在咖哩牛肉殺菌袋之應用。高雄餐旅學報,10(1),5。
2. 曾國書、 黃金龍、許秀華ISO22000在咖哩牛肉殺菌袋之應用。高雄餐旅學報,10(1),5。
3. 蔡玲瓏、吳佩純、王美雲、翁嘉孺(1996)。傳統市場與超級市場顧客通路選擇行為之分析-以內埔地區為例。遠東學報第二十三卷第一期。
4. 蔡玲瓏、吳佩純、王美雲、翁嘉孺(1996)。傳統市場與超級市場顧客通路選擇行為之分析-以內埔地區為例。遠東學報第二十三卷第一期。
5. 葉凱莉,喬友慶(2000),從管理機會方格看顧客滿意度-以百貨公司為例。企銀季刊,23(4),67-86。
6. 葉凱莉,喬友慶(2000),從管理機會方格看顧客滿意度-以百貨公司為例。企銀季刊,23(4),67-86。
7. 黃錦城(2012)水產品之品質與衛生安全,食品工業發展研究所,44,(4)新竹市。
8. 黃錦城(2012)水產品之品質與衛生安全,食品工業發展研究所,44,(4)新竹市。
9. 郭貞(1997)。地域差異、社會階層對臺灣地區民眾之外顯式消費、綠色消費傾向與送禮文化之影響。廣告學研究,9,1-20。
10. 郭貞(1997)。地域差異、社會階層對臺灣地區民眾之外顯式消費、綠色消費傾向與送禮文化之影響。廣告學研究,9,1-20。
11. 郭貞(1994)。臺灣地區民眾之消費動機與習性。廣告學研究,3,93-113。
12. 郭貞(1994)。臺灣地區民眾之消費動機與習性。廣告學研究,3,93-113。