跳到主要內容

臺灣博碩士論文加值系統

(44.222.189.51) 您好!臺灣時間:2024/05/20 14:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳文向
研究生(外文):Tran Van Huong
論文名稱:利用溶液製程與轉貼技術探討電洞注入層和發光層最佳化結構之有機發光二極體
論文名稱(外文):Structure Optimization of Hole Injection and Emitting Layer Using Solution-Based Processing and Stamping for Organic Light Emitting Diodes
指導教授:謝傑任
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:機械與機電工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:116
中文關鍵詞:溶液製程轉貼技術有機發光二極體實驗計畫法反應曲面法
外文關鍵詞:solution-processstamping-methodOLEDsdesign of experimentsresponse surface methodology
相關次數:
  • 被引用被引用:0
  • 點閱點閱:513
  • 評分評分:
  • 下載下載:58
  • 收藏至我的研究室書目清單書目收藏:1
本研究是利用溶液製程和轉貼技術製作小分子有機發光二極體,其結構為ITO/PEDOT: PSS/26DCzPPy: FIrpic/TPBi/LiF/Al。而電洞注入層材料為PETDOT:PSS利用旋轉塗佈的方式旋塗於ITO上,藍色發光層為26DCzPPy摻雜FIrpic並加入於氯苯溶劑中,其26DCzPPy材料特性高三重態能階能有效拘限激子於發光層內。本研究另一重點為利用轉貼技術達到全溶液製程方式製作有機發光二極體,先將電子傳輸層材料TPBi旋塗於PDMS基板上,再利用轉貼方式壓印在發光層上。TPBi材料特性有阻擋電洞電流,能有效達到高能量轉換,陰極則為LiF/Al於真空蒸鍍製作。而TPBi轉貼方式是將旋塗於PDMS基板上的膜壓印於發光層,其加壓重量為0.5 kg/cm2同時加熱120 0C時間為100秒。藍色元件在最佳條件下效率達3.5 cd/A,色座標為(0.16, 0.30)在電流密度為20 mA/cm2。另一研究是利用實驗設計的曲面反應法來預測其藍色元件最佳化的參數,由上面所提到的轉貼技術,由於在實驗設計法的狀態下TPBi轉貼技術為不能控制因子,所以將TPBi利用熱蒸鍍的方式製作降低其不穩定的情形,厚度固定為30 nm。將PEDOT:PSS與26DCzPPy:FIrpic的轉速定義為重要的輸入因子而輸出因子定義電壓與電流效率,由程式Design Expert Software verifying V8.0.6.設計出13組初始參數。其最佳化參數利用變異數分析法預測最佳化,在利用實驗驗證。其元件最佳結果在電流密度為20 mA/cm2下,效率達8.75 cd/A,操作電壓為6.1 V。

In this thesis, a blue small- molecular organic light- emitting diodes (SM- OLEDs) based on a solution-process and stamping transfer method were first investigated. The structure of OLEDs device is described as follows: ITO/PEDOT: PSS/26DCzPPy: FIrpic/TPBi/LiF/Al. Therein, PEDOT: PSS as a hole injection layer is formed onto ITO-glass via spin-coating; emitting layer consists of host material 26DCzPPy with high triplet energy and blue dopant FIrpic are mixed and dissolved in chlorobenzene to form onto PEDOT: PSS layer by spin-coating. A specialized fabrication process-stamping method is utilized to transfer the TPBi film that plays an important role as electron transporting layer and also a hole blocking layer, from PDMS surface onto the 26DCzPPy: FIrpic. LiF/Al is thermally evaporated as a cathode electrode. The external pressure applied during for stamping TPBi was kept at 0.5 kg/cm2 and the heating temperature was carried out at 1200C for 100 seconds. A blue small- molecular organic light emitting diodes with CIE (0.16, 0.30) and the highest 3.5 cd/A of current efficiency at current density 20 mA/cm2 was obtained with entire solution-based process with stamping.
Design of experiment (DOE) with response surface methodology (RSM) was applied to optimize the current efficiency of OLED devices. In this case, TPBi was fabricated via vacuum-deposition with thickness of 30 nm. The thickness of the hole injection layer (PEDOT: PSS) and the emitting layer (26DCzPPy: FIrpic) are chosen as two main input factors of processes. 13 OLED devices with different parameters were conducted following by an initial setting of Design Expert Software version V8.0.6. The optimum process parameters are forecasted by verifying the factors of output quality characteristics via analysis of variance (ANOVA). Finally, an impressive result 8.75 cd/A of current efficiency at 20 mA/ cm2, and a low 6.1 volt of driving voltage at 100 cd/m2 of luminance was reached by DOE with RSM.


English Abstract……………………………………………………………………i
Chinese Abstract………………………………………………………………….iii
Acknowledgements………………………………………………………………...v
List of Tables……………………………………………………………………...ix
List of Figures……………………………………………………………………..xi
Chapter 1 Introductions ....................................................................................... 1
1.1 Introduction to organic light-emitting diodes (OLEDs) ............................... 1
1.2 Technological approaches to OLED devices fabrication ............................. 3
1.3 Prospect of OLEDs ..................................................................................... 5
1.4 A brief introduction on design of experiment (DOE) .................................. 8
Chapter 2 Literature Review ............................................................................. 10
2.1 OLED fundamentals ................................................................................. 10
2.1.1 Principle of operation of OLEDs ......................................................... 10
2.1.2 Forster and Dexter energy transfer ...................................................... 11
2.1.3 Measuring the performance of OLED device ...................................... 14
2.2 Device structures of OLEDs ...................................................................... 17
2.3 Literature review of solution-processing and stamping method ................. 19
2.3.1 Solution process fabrication OLEDs ................................................... 19
2.3.2 Stamping method-an special approach ................................................ 24
Chapter 3 Experimental Process ....................................................................... 29
3.1 Materials ................................................................................................... 29
3.2 OLED device structure .............................................................................. 32
3.3 Equipment Systems ................................................................................... 33
3.3.1 Hot plate ............................................................................................. 33
vii
3.3.2 Glove-Box .......................................................................................... 34
3.3.3 Spin-coating machine .......................................................................... 35
3.3.4 Evaporative systems............................................................................ 36
3.3.5 OLEDs measurement system .............................................................. 39
3.4 Experiment process fabricated OLEDs device in details ........................... 40
3.4.1 Preparing PDMS stamps ..................................................................... 40
3.4.2 Preparing ITO-glass pattern and intermix materials ............................ 42
3.4.3 Hole injection layer PEDOT: PSS formed via spin-coating................. 42
3.4.4 Emitting layer 26DCzPPy:FIrpic was formed onto PEPOT:PSS by spin-coating ..................................................................................................... 42
3.4.5 Stamping transfer TPBi ....................................................................... 43
3.4.6 Vacuum deposition LiF/ Al ................................................................. 45
3.4.7 OLED measurement............................................................................ 46
3.4.8 The whole story Fabrication SM-OLED device based-on solution process and stamping method. ......................................................................... 46
3.4.9 The whole story Fabrication SM-OLED device based-on solution process and vacuum evaporated ...................................................................... 48
Chapter 4 Results and discussion ...................................................................... 49
4.1 Structure optimization of hole injection layer and emitting layer based on solution processing and stamping ....................................................................... 49
4.1.1 Temporarily modify the PDMS surface by UV-Ozone ........................ 49
4.1.2 Optimization of hole injection layer thickness by adjusting spin- coating speed................................................................................................... 51
4.1.3 Optimization of emitting layer thickness by adjusting spin- coating speed…………………………………………………………………………..56
4.2 Structure optimization of OLED device using design of experiment based on response surface method ................................................................................ 61
4.2.1 A brief introduction on response surface method and design expert software version V8.0.6 .................................................................................. 61
viii
4.2.2 Statistical knowledge .......................................................................... 63
4.2.3 Setting up parameters of experiments.................................................. 69
4.2.4 Experiment results of 13 OLED devices follow up initial setting of design expert software ..................................................................................... 70
4.2.4 Analysis of variance results by design expert software .......................... 83
4.2.6 Experiment validation ....................................................................... 101
Chapter 5 Conclusions...................................................................................... 105
References……………………………………………………………………….107
Extended Abstract………………………………………………………………113
Curriculum Vitae……………………………………………………………….116

[1] A. Bernanose, "Electroluminescence of organic compounds," British Journal of Applied Physics, pp. S54-S56,(1955).

[2] M. Pope, P. Magnante, and H. P. Kallmann, "Electroluminescence in organic
crystals," Journal of Chemical Physics, vol. 38, pp. 2042-2043 (1963).

[3] P. S. Vincett, W. A. Barlow, R. A. Hann, and G. G. Roberts, "Electrical conduction and low voltage blue electroluminescence in vacuum-deposited organic films," Thin Solid Films, vol. 94, pp. 171-183 (1982).

[4] C. W. Tang and S. A. Vanslyke, "Organic electroluminescent diodes," Applied Physics Letters, vol. 51, pp. 913-915 (1987).

[5] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H.Friend, P. L. Burns, and A. B. Holmes, "Light-emitting-diodes based on conjugated polymers," Nature, vol. 347, pp. 539-541(1990).

[6] Yonghua Chena, Qi Wangb, Jiangshan Chena , Dongge Maa, Donghang Yana, Lixiang Wanga, "Organic semiconductor heterojunction as charge generation layer in tandem organic light-emitting diodes for high power efficiency," Organic Electronics 13 (2012)1121–1128.

[7] Heekyung Kim, Younghun Byun, Rupasree Ragini Das, Byoung-Ki Choi, and Pil-Soo Ahn, " Small molecule based and solution processed highly efficient red
electrophosphorescent organic light emitting devices," Applied Physics Letters 91, 093512 ( 2007).

[8] J. H. Jou, W. B. Wang, S. Z. Chen, J. J. Shyue, M. F. Hsu, C. W. Lin, S.M. Shen, C. J. Wang, C. P. Liu, C. T. Chen, M. F. Wu, and S. W. Liu, " High efficiency blue organic light-emitting diodes using a 3,5-di(9H-carbazol9-yl)tetraphenylsilane host via a solution-process," J. mater. Chem. 20, 8411 (2010).

[9] J. H. Jou, M. F. Hsu, W. B. Wang, C. L. Chin, Y. C. Chung, C. T. Chen, J. J.Shyue, S. M. Shen, M. H. Wu, W. C. Chang, C. P. Liu, S. Z. Chen, and H. Y. Chen, " Solution-Processable, High-Molecule-Based Trifluoromethyl-Iridium Complex for Extraordinarily High Efficiency Blue-Green OrganicLight-Emitting Diode Chem. Mater. 21, 2565 (2009).

[10] S. C. Chang, J. Liu, J. Bharathan, Y. Yang, J. Onohara, and J. Kido, "Multicolor organic light-emitting diodes processed by hybrid inkjet printing," Advanced Materials, vol. 11, pp. 734-737 (1999).

[11] K. Long, F. Pschenitzka, M. H. Lu, and J. C. Sturm, " Full-Color OLEDs Integrated by Dry Dye Printing," IEEE Trans. Electron Devices 53, 2250 (2006).

[12] Shin-Rong Tseng, Hsin-Fei Meng, Kuan-Chen Lee, and Sheng-Fu Horng, " Multilayer polymer light-emitting diodes by blade coating method," Applied Physics Letters 93, 153308 (2008).

[13] Amit Kumar and George M. Whitesides, "Features of gold having micrometer to centimeter dimensions can beformed through a combination of stamping with an elastomeric stamp andan alkanethiol ‘‘ink’’ followed by chemical etching," Appl. Phys. Lett. 63, 2002 (1993).


[14] Amit Kumar, Hans A. Biebuyck, and George M. Whitesides, "Patterning Self -Assembled Monolayers: Applications in Materials Science," Langmuir 1994, 10, 1498-1511.

[15] Noo Li Jeon, Krista Finnie, Kimberly Branshaw, and Ralph G. Nuzzo," Structure and Stability of Patterned Self-Assembled Films of Octadecyltrichlorosilane Formed by Contact Printing," Langmuir 1997, 13, 3382-3391.

[16] "Why Solution Processing May Still Matter in the OLED Industry," Nanomarkets, White Paper, Advanced Materials OLEDs March 29, 2013.

[17] Douglas C. Montgomery, "Design and Analysis of Experiments," 6th edition, Wiley (2005).

[18]http://chemwiki.ucdavis.edu/Theoretical_Chemistry/Fundamentals/Dexter_Energy_Transfer#endnote_1

[19] http://en.wikipedia.org/wiki/Lambertian_reflectance

[20] Ullrich Mitschke and Peter Bauerle, "The electroluminescence of organic materials," J. Mater. Chem., 2000, 10, 1471-1507
[21] http://en.wikipedia.org/wiki/CIE_1931_color_space
[22] Bernard Geffroy, Philippe le Roy2 and Christophe Prat, " Review Organic light-emitting diode (OLED) technology: materials, devices and display technologies," Polym Int 55:572–582 (2006).

[23] L. S. Liao, K. P. Klubek, and C. W. Tang, " High-efficiency tandem organic light-emitting diodes," Appl. Phys. Lett., Vol. 84, No. 2, 12 January 2004.

[24] Thomas D. Anthopoulos, Jonathan P. J. Markham, Ebinazar B. Namdas, and Ifor D. W. Samuel, "Highly efficient single-layer dendrimer light-emitting diodes with balanced charge transport," Appl. Phys. Lett., Vol. 82, No. 26, 30 June 2003.

[25] Xinwen Zhanga, Zhaoxin Wua, Bo Jiaoa , Dongdong Wanga , Dawei Wanga , Xun Houa , Wei Huang, " Solution-processed white organic light-emitting diodes with mixed-host structures," Journal of Luminescence 132 (2012) 697–701.

[26] Yoo Jin Doha , Jung Soo Parka , Woo Sik Jeona , Ramchandra Podeb , Jang Hyuk Kwona, "Soluble processed low-voltage and high efficiency blue phosphorescent organic light-emitting devices using small molecule host systems," Organic Electronics 13 (2012) 586–592.

[27] Kyoung Soo Yook, Jun Yeob Lee,"High efficiency in solution processed blue phosphorescent organic light-emitting diodes using an alcohol soluble emitting layer," Organic Electronics 10 (2009) 1610–1614.

[28] Jia-Da You , Shin-Rong Tseng , Hsin-Fei Meng, Feng-Wen Yen , I-Feng Lin , Sheng-Fu Horng, "All-solution-processed blue small molecular organic light emitting diodes with multilayer device structure," Organic Electronics 10 (2009) 1610–1614.

[29] Jen-Hsien Huang, Zhong-Yo Ho, Tsung-Hsien Kuo, Dhananjay Kekuda, Chih-Wei Chu, and Kuo-Chuan Ho, "Fabrication of multilayer organic solar cells through a stamping technique," J. Mater. Chem., 2009, 19, 4077–4080 | 4077.

[30] Lichun Chen, Patrick Degenaar, and Donal D. C. Bradley, " Polymer Transfer Printing: Application to Layer Coating, Pattern Definition, and Diode Dark Current Blocking," Adv. Mater. 2008, 20, 1679–1683.

[31] Chul Woong Joo, Soon Ok Jeon, Kyoung Soo Yook, Jun Yeob Lee, " Improved device performances in polymer light-emitting diodes using a stamp transfer printing process," Organic Electronics 10 (2009) 372–375.

[32] Kyoung Soo Yook, Chul Woong Joo, Soon Ok Jeon, Jun Yeob Lee,"Small molecule based mixed interlayer for color control of solution processed multilayer white polymer light-emitting diodes," Organic Electronics 11 (2010) 184–187.

[33] Keng-Hoong Yim, Zijian Zheng, Ziqi Liang, Richard H. Friend, Wilhelm T. S. Huck, and Ji-Seon Kim, "Efficient Conjugated-Polymer Optoelectronic Devices Fabricated by Thin-Film Transfer-Printing Technique," Adv. Funct. Mater. 2008, 18, 1012–1019.

[34] Sankaran Sivaramakrishnan, Mi Zhou, Aravind C. Kumar, Zhi-Li Chen, Rui-Qi Png et al."Solution-processed conjugated polymer organic p-i-n light-emitting diodes with high built-in potential by solution- and solid-state doping," Appl. Phys. Lett. 95, 213303 .2009.

[35] Kyung-Ho Kim, Sung-Yoon Huh, Soon-min Seo, and Hong H. Lee, "Solution based formation of multilayers of small molecules for organic light emitting diodes," Appl. Phys. Lett. 92, 093307 .2008.

[36] Chul Woong Joo, Kyoung Soo Yook, Soon Ok Jeon, Jun Yeob Lee, "Improved efficiency in solution processed green phosphorescent organic light-emitting diodes using a double layer emitting structure fabricated by a stamp transfer printing process," Organic Electronics 10 (2009) 978–981.

[37] Sun-Zen Chen, Shiang-Hau Peng, Tzu-Yu Ting, Po-Shien Wu, Chun-Hao Lin, Chin-Yeh Chang, Jing-Jong Shyue, and Jwo-Huei Jou,"Organic light-emitting diodes with direct contact-printed red, green, blue, and white light-emitting layers," Appl. Phys. Lett. 101, 153304 (2012).

[38] http://en.wikipedia.org/wiki/Indium_tin_oxide


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊