跳到主要內容

臺灣博碩士論文加值系統

(44.200.168.16) 您好!臺灣時間:2023/04/02 02:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張鈞翔
研究生(外文):Jyun-Siang Jhang
論文名稱:回收聚乳酸材料的開發研究
論文名稱(外文):Research Development of Recycling Polylactic acid materials
指導教授:姚薇華
指導教授(外文):Wei-Hua Yao
口試委員:陳瑞金姚薇華鄒智揮
口試委員(外文):Jui-Chin ChenWei-Hua YaoChi-Hui Tsou
口試日期:2014-06-26
學位類別:碩士
校院名稱:亞東技術學院
系所名稱:應用科技研究所
學門:工程學門
學類:紡織工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:130
中文關鍵詞:聚乳酸
外文關鍵詞:PLA
相關次數:
  • 被引用被引用:1
  • 點閱點閱:594
  • 評分評分:
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:0
本研究分為兩個部分,第一部份:將環氧擴鏈劑與起始劑混摻添加至回收聚乳酸內,以反應性擠壓方式製備得改質聚乳酸PLAAB塑料,進一步再與成核劑變化混摻比例進行混摻改質,製備得再生PLAABC(以代號Cx說明)塑料。再生塑料在FTIR-ATR光學、DSC熱學、機械性質與X-ray進行分析討論。FTIR-ATR光學結果顯示,屬於PLA末端-OH官能基特徵吸收峰(3658,1045 cm-1)消失不見,進一步在1025 cm-1發現新的特徵吸收峰。環氧擴鏈劑與PLA塑料末端-OH官能基進行反應生成新的醚基結構。DSC熱學性質中發現隨著成核劑含量的增加,再生塑料的結晶速率變快,結晶度變大。機械性質顯示,以成核劑1wt%之再生聚乳酸拉伸強力最大,與回收聚乳酸相較,抗張強力增加32%。耐衝擊強度增加132.6%。第二部份: 將回收聚乳酸、酯類彈性體、相容劑F與藥品G在變化混摻比例下進行聚乳酸增韌改質,增韌改質塑料在FTIR-ATR光學、DSC熱學性質、機械性質、斷面型態性質(SEM)與Optical transparency性質進行分析討論。機械性質結果顯示,斷裂伸長率與純聚乳酸相較提升約6566%。耐衝擊強度顯示,與純聚乳酸相較提升約585%。增韌薄膜因藥品G的添加,透明度下降。在600nm處透明度由回收聚乳酸薄膜的90%下降到54%。回收PLA為帶黃色色光的薄膜,增韌薄膜轉變成帶藍綠色光的薄膜。增韌型聚乳酸塑料易加工吹膜,能應用於農膜、包裝、生技、紡織等相關產業。
The study is divided into two parts,the first part: the chain extender and the epoxy initiator added to the collection in the blending of polylactic acid, was prepared by reactive extrusion methods have modified polylactic acid PLAAB plastic, further changes again with a nucleating agent blending proportion of blending modification, preparation was regenerated PLAABC (Cx explain the code) plastic. Recycled plastic in FTIR-ATR、DSC、 mechanical properties and X-ray analyzed and discussed. FTIR-ATR results optics belonging –OH of PLA terminal functional group characteristic absorption (3658,1045 cm-1) disappeared, Further found that the characteristic absorption peaks in the new 1025 cm-1. Epoxy chain extenders and PLA plastics with terminal-OH functional group reacted to generate a new ether structure. DSC thermal properties were found to increase the content of nucleating agent, recycled plastics crystallization rate becomes faster, the degree of crystallinity increases. Mechanical properties are shown to 1wt% of the nucleating agent of polylactic acid regeneration maximum tensile strength, compared with the recovery of polylactic acid, tensile strength increased by 32%. 132.6% increase in impact strength. Second part: the recovered lactic acid, ester elastomers, compatible agent F with pharmaceutical G with toughening modified polylactic acid mixed in the ratio of the change under doping, toughening modified plastics in FTIR-ATR、 DSC、mechanical properties、SEM and optical transparency discussed. The results showed that the mechanical properties, elongation compared with pure PLA increased by approximately 6566%. Impact strength showed, compared with pure PLA increased by approximately 585%. Toughened film by adding G drugs, reduced transparency. The recovery of transparency at 600nm of 90% polylactic acid film decreased to 54%. Recycling PLA film as a yellowish shade, toughened film into a film with a blue-green shade. Toughened polylactic acid plastic film blowing easy processing, can be used in plastic sheeting、packaging、 biotechnology、 textiles and other related industries.
目 錄
論文摘要 I
ABSTRACT II
誌謝 IV
目錄 V
圖表索引 VIII
第一章 前言 1
第二章 文獻回顧 3
2.1生物分解塑膠定義 3
2.2 生物分解性塑膠之分類 3
2.3 生物分解性規範 7
2.4 聚乳酸(Polylactic acid, PLA) 10
2.4.2 聚乳酸之合成 12
2.4.3 聚乳酸晶體結構 13
2.4.4 結構與性能的關係 15
2.4.4.1 玻璃化轉變溫度 15
2.4.4.2 熔融溫度 16
2.4.5 結晶動力學 17
2.4.6 聚乳酸的應用 22
2.4.7 聚乳酸的未來展望 25
2.5 高分子混摻理論 26
2.6 相容劑 36
第三章 實驗 40
3.1 全降解型回收聚乳酸材料再生改質產品技術開發 40
3.1.1 實驗材料 35
3.1.2再生聚乳酸塑料製備 40
3.1.3 紅外線光譜 (FT-IR)性質分析 40
3.1.4 DSC熱學分析 40
3.1.5 機械性質分析 40
3.1.6 IZOD耐衝擊性質分析 40
3.2 全降解型聚乳酸半透明複合膜技術開發 41
3.2.1 實驗材料 41
3.2.2 實聚乳酸複合膜塑料製備 41
3.2.3 紅外線光譜 (FT-IR)性質分析 41
3.2.4 DSC熱學分析 41
3.2.5 機械性質分析 41
3.2.6 形態性質分析 41
3.2.7 紫外光-可見光光譜儀(UV-VIS)穿透度性質分析 42
3.2.8 CIE Lab色彩強度的量測 42
第四章 結果與討論 43
4.1 全降解型回收聚乳酸材料再生改質產品技術開發
4.1.1 傅立葉紅外光譜(FTIR)分析 43
4.1.2 X光繞射儀分析(XRD) 45
4.1.3 DSC熱學性質分析 46
4.1.3.1 DSC熱學性質分析 46
4.1.3.2 非等溫結晶動力學分析 50
4.1.4 動態機械性質分析(DMA) 62
4.1.5 拉伸強力性質分析 66
4.1.6 耐衝擊性質分析 66
4.1.7結論 68
4.2 全降解型聚乳酸半透明複合膜技術開發
4.2.1 傅立葉紅外光譜(FTIR)分析 69
4.2.1.1 PLA,DxEy,D與E的紅外光譜圖 69
4.2.2 X光繞射儀分析(XRD) 71
4.2.3 DSC熱學性質分析 73
4.2.3.1 基礎塑料的熱學性質分析 73
4.2.3.2 複合膜的熱學性質分析 75
4.2.4 動態機械性質分析(DMA) 84
4.2.5 抗張機械性質分析 90
4.2.5.1 基礎塑料的抗張機械性質分析 90
4.2.5.2 複合膜的抗張機械性質分析 91
4.2.6 耐衝擊性質分析 93
4.2.7 SEM表面型態分析 98
4.2.8 Optical transparency 100
4.2.9結論 102
參考文獻 104
作者簡介 121






圖目錄
圖2 – 1兩種不同形式的乳酸化學結構 10
圖2 – 2均聚物的乳酸構型 10
圖2 – 3聚乳酸化學結構 12
圖2 – 4聚乳酸生物分解與循環圖 12
圖2 – 5聚乳酸的製備方法 13
圖2 – 6 Tg與的Mn(平均分子量)的關係圖 16
圖2 - 7熔化溫度與D-lactate含量關係圖 16
圖2 – 8球晶密度與結晶溫度的關係圖 18
圖2 – 9結晶性高分子材料在不同結晶溫度下Xt 對時間之關係圖 22
圖2-10混合過程中分佈作用之示意圖 27
圖2-11摻合物加工後物性與組成之關係 28
圖圖2-12 DSC thermograms during the second heating scan at 10 ℃/min of PLA-OLA films after processing 29
圖2-13 Structures and compositions of PLA-b-PEG block copolymerssynthesized and used as plasticizers for PLA 32
圖2-14 DSC diagrams of neat PLA and PLA:(COPO4/TBC) compositions with different percentages of plasticizer (%, by weight) 32
圖2-15 MDI結構式 38
圖2-16 PLA/Starch (a)未添加MDI ,(b)添加MDI 混摻之SEM圖 39
圖4-1 (a)PLA, (b) C5,的紅外光譜圖 44
圖4-2 (a) PLAA, (b) C0.5, (c) C1, (d) C3,(e) C5,的紅外光譜圖 44
圖4-3 (a)C5, (b)C3, (c)C1, (d)C0.5, (e)PLAA, (f)PLAAB, (g)PLA 之X-ray性質分析圖 45
圖4-4 (a)PLA, (b)PLAA, (c)PLAAB的DSC熱分析圖 47
圖4-5 (a) C0.25, (b) C0.5 , (c) C1 , (d) C3 , (e) C5 的DSC熱分析圖 52
圖4-6 (a) C0.25, (b)C0.5, (c) C1(d) C3(e)C5在降溫速率0.5℃/min與升溫速率10℃/min的DSC熱分析圖 55
圖4-7 (a) C0.25, (b)C0.5, (c) C1(d) C3(e)C5在降溫速率1℃/min與升溫速率10℃/min的DSC熱分析圖 56
圖4-8 (a) C0.25, (b)C0.5, (c) C1(d) C3(e)C5在降溫速率3℃/min與升溫速 率10℃/min的DSC熱分析圖 57
圖4-9 (a) C0.25, (b)C0.5, (c) C1(d) C3(e)C5在降溫速率5℃/min與升溫速率 10℃/min的DSC熱分析圖 58
圖4-10 (a) C0.25, (b)C0.5, (c) C1(d) C3(e)C5在降溫速率10℃/min與升溫速率10℃/min的DSC熱分析圖 59
圖4-11 Cx 再結晶溫度與成核劑含量關係圖 60
圖4-12 Cx 再結晶熱焓值與成核劑含量關係圖 60
圖4-13 Cx樣品的CRC值比較圖 61
圖4-14 (a)PLA, (b)PLAA, (c)PLAAB的DMA動態機械性質圖 63
圖4-15 PLA和Cx的DMA動態機械性質圖 64
圖4-16 PLA及Cx含量改質聚合物之耐衝擊強度 67
圖4-17 (a)PLA, (b) D10E10,(c)D,(d)E的紅外光譜圖 69
圖4-18 聚乳酸複合膜塑料的紅外光譜圖 70
圖4-19 (a) D20E10, (b) D15E10, (c) D10E10, (d) D5E10, (e) PLA, (f)E, (g)D 之X-ray性質分析圖 72
圖4-20 薄膜基礎塑料(a)D ,(b)PLA, (c)E在升降溫速度10℃/min的二次升降溫熱分析圖 74
圖4-21複合膜(a) D5E10 ,(b) D10E10, (c) D15E10, (d) D20E10的DSC熱分析圖 76
圖4-22 複合膜(a)D10E5 ,(b) D10E10, (c) D10E15的DSC熱分析圖 77
圖4-23 複合膜(a) D10E10 ,(b)D10E10F0.25, (c) D10E10F0.5, (d) D10E10F1.0, (e) D10E10F2.0的DSC熱分析圖 79
圖4-24 複合膜(a) D10E10F2.0 ,(b) D10E10F2.0G10, (c) D10E10F2.0G15的DSC熱分析圖 81
圖4-25 複合膜(a)D15E10 ,(b) D15E10F0.25, (c) D15E10F0.5, (d) D15E10F1, (e) D15E10F 2 的DSC熱分析圖 83
圖4-26 DxE10的DMA動態機械性質圖 85
圖4-27 D10E10、D10E10Fx的DMA動態機械性質圖 87
圖4-28 D10E10F2.00、D10E10F2.00Gx的DMA動態機械性質圖 89
圖4-29薄膜基礎塑料(a)D ,(b)E, (c)PLA的機械性質圖 90
圖4-30 複合膜樣品的應力應變曲線圖 92
圖4-31 PLA,D10E10F2.00G15與D複合膜斷裂延伸率圖 93
圖4-32 PLA複合薄膜 (a)PLA ,(b)D5E10, (c)D10E10,(d) D15E10F0.25, (e)D15E10F1.0, (f)D15E10F2.0的SEM圖 99
圖4-33 UV-vis spectra of PLA and D10E10F2.00 and D10E10F2.0Gx films (film thickness: 30 μm) 100
圖4-33 PLA與D10E10F2.0的Lab座標圖 101






















表目錄
表2-1生物分解性高分子種類及商品 4
表2-2列出目前各國測試生物分解性所用之規範 9
表2-3聚乳酸與其他泛用塑膠材料物性比較 11
表2-4 PLA不同晶型的特性 14
表2-5 PLLA的Hoffman–Lauritzen公式參數 19
表2-6不同成核與成長形態之Avrami 指數 22
表2-7生物分解性材料之應用產品 24
表2-8 Elastic modulus (E), elongation at break (εtB) and oxygen transmission rate per film thickness (OTR*e) of neat PLA and plasticized films after processing. Results are given as average ± standard deviation 30
表2-9 Mechanical properties of neat PLA and PLA plasticized with blends TBC/PLA-b-PEG copolymers 33
表2-10學術上應用於PLA塑化劑之特性 34
表2-11 Average Tg and Tm depression of PLA as a function of plasticizer type and concentration 35
表2-12各種聚合物的力學性能 37
表2-12 PLA/Starch 混摻之DSC熱分析數據 39
表4-1 PLA 、PLAA、PLAAB樣品熱分析數據(10℃/min) 47
表4-2 Cx樣品熱分析數據(10℃/min) 49
表4-3 Cx樣品熱分析數據 55
表4-4 Cx樣品熱分析數據 56
表4-5 Cx樣品熱分析數據 57
表4-6 Cx樣品熱分析數據 58
表4-7 Cx樣品熱分析數據 59
表4-8 PLA、PLAA、PLAAB、Cx之儲存模數 65
表4-9 PLA、PLAA、PLAAB、Cx樣品拉伸強力數據 66
表4-10 PLA、PLAA、PLAAB、Cx樣品耐衝擊分析數據 67
表4-11為DxE10樣品熱分析數據(二次升溫圖) 76
表4-12為D10Ex樣品熱分析數據(二次升溫圖) 78
表4-13 複合膜D10E10與D10E10Fx樣品熱分析數據 79
表4-14 複合膜D10E10F2.0與D10E10F2.0Gx樣品熱分析數據 81
表4-15 複合膜D15E10與D15E10Fx樣品熱分析數據 84
表4-16 薄膜基礎塑料(a)D ,(b)E, (c)PLA的機械性質數據 90
表4-17 複合膜樣品的機械性質數據 91
表4-18 DxE10、D10E10Fx、D15E10Fx與D10E10F2.00Gx耐衝擊試驗試片斷面照片 95
表4-19 複合膜樣品的機械性質數據 97
表4-20 Optical transparency of PLA and D10E10F2.0、D10E10F2.0Gx films 101


1.環境資訊中心,摘譯自2014年2月17日ENS美國,伊利諾州,香檳市報導
2.生物塑料,生长正茂[ J]國外塑料,( 7 ) : 22-23 (2009)。
3.金融危機難阻欧洲生物塑料發展步伐[ N] 中國化工報,2008 - 12 -29。
4.降解塑料市场5需求分析及预测[ J] 印刷技术,(SI):239(2008)。
5.高炜丽,可生物降解澱粉塑料研究進展[ 1] 廣東化丁二, ( 7): 57 – 60(2007)。
6.生物降解塑料市場需求將持续增长[ J] 塑料,(4 ) : 121, (2009)。
7.A.K. Schneider, U.S. Patent 2703316(1955) .
8.R. Auras, B. Harte, S. Selke. An Overview of Polylactides as Packaging Materials. Macromol Biosci,Vol.4(9) , 835-864(2004)。
9.E. T. Vink, K. R. Rabago, D. A. Glassne., The Sustainability of Nature Works Polylactide Polymers
and Ingo Polylactide Fibers: J. Macromol Biosci , Vol.4 (6) ,551 – 564(2004)。
10.A. R. Webb, J. Yang, G. A. Ameer., Biodegradable Polyester Elastomers in Tissue Engineer , Vol.4(6) ,801-812(2004)。
11.T. H. V. Erwin, R. R. B. Kari, A.G. Oavid., Applications of Life Cycle Assessment to Nature Works. J. Polym Degrad Stab ,Vol. 80 ,403 - 419(2003)。
12.D.Calson, L. Nie, R. Barayan, Dubois, J. Appl. Polym. Sci. 72, 477 (1999).
13. N. A. Higgins, U.S. Patent 2676945(1954).
14.J.W. Leenalag, University of Groningen, Amsterdam, The Netherlands(1982).
15.A. Gopferrich., Eur. J. Pham. Biopharm, Vol. 42, 1 (1996).
16.E. Muller, M. Allgower, R. Schneider, H. Willlenegger, Manual of Internal Fixation, Verlag, Berlin(1979)
17.Jacobsen S, Fritz HG. Plasticizing polylactide – the effect of different plasticizers on the mechanical properties. Polym Eng Sci 1999;39(7):1303–10.
18.Baiardo M, Frisoni G, Scandola M, Rimelen M, Lips D, Ruffieux K, et al. Thermal and mechanical properties of plasticized poly(L-lactic acid). J Appl Polym Sci 2003;90:1731–8.
19.Kulinski Z, Piorkowska E. Crystallization, structure and properties of plasticized poly(L-lactide). Polymer 2005;46:10290–300.
20.Hongbo Li, Michel A. Huneault*,Effect of nucleation and plasticization on the crystallization of poly(lactic acid),Polymer 48 (2007) 6855-6866.
21.Long Jiang, Jinwen Zhang*, Michael P. Wolcott, Comparison of polylactide/nano-sized calcium carbonate and polylactide/montmorillonite composites: Reinforcing effects and toughening mechanisms., Polymer 48 (2007) 7632-7644.
22.M.S. Huda a, L.T. Drzal a, A.K. Mohanty b, M. Misra a,* The effect of silane treated- and untreated-talc on the mechanical and physico-mechanical properties of poly(lactic acid)/newspaper fibers/talc hybrid composites., Composites: Part B 38 (2007) 367–379.
23.Hongbo Li, Michel A. Huneault,* Effect of nucleation and plasticization on the crystallization of poly(lactic acid)., Polymer 48 (2007) 6855-6866.
24.Mukesh Kumar , S. Mohanty , S.K. Nayak , M. Rahail Parvaiz , Effect of glycidyl methacrylate (GMA) on the thermal, mechanical and morphological property of biodegradable PLA/PBAT blend and its nanocomposites, Bioresource Technology 101 (2010) 8406–8415.
25.Y. Hu, Y.S. Hu, V. Topolkaraev, A. Hiltner, E. Baer, Aging of poly(lactide)/poly(ethylene glycol) blends.Part 2. Poly(lactide) with high stereoregularity, Polymer 44 (2003) 5711–5720.
26.O.Martin,L.Averous,Poly(lactic acid): plasticization and properties of biodegradable multiphase systems, Polymer 42 (2001) 6209–6219.
27.Weiyang Zhang , ZongyanGui , ChongLu , ShujunCheng , DianxiongCai , YunGao ,Improving transparency of incompatible polymer blends by reactive compatibilization, Materials Letters 92 (2013) 68–70.
28.ASTM D883-92。
29.簡志青,2003,“淺談微生物系生物可降解性塑膠",化工資訊與商情月刊,第5期,11月。
30.姜燮堂,2001,“分解性塑膠",產業調查與技術季刊 第137期 04月。
31.ASTM D5210-92(2002);D5217-93;D5511-94:D5522-94a;D5526-94;D5951-96;D5998-96;D6002-96;D6003-96;D5338-98e1;D6340-98;D6691-96;D6692-01
32.ISODIS14851(1999);ISODIS14852(1999);ISODIS14855(1999).
33.ISODIS14851(1999);ISODIS14852(1999);ISODIS148551(1999).
34.Sajjad Saeidlou, Michel A. Huneaulta, Hongbo Li, Chul B. Parkc, Poly(lactic acid) crystallization, Progress in Polymer Science 37 (2012) 1657– 1677.
35.Kulkarni, R. K.,Pani, K. G.,Neuman, C. and Leonard, F. ,1966 ,
“Polylactic acid for surgical implants",Arch. Surg., vol.93 ,pp 839-843.
36.P. J. Tarcha, 1989 ,“Polymers for Controlled Drug Delivery" CRC Press Boca Raton Ann Arbor Boston, pp 128-145.
37.Liviu-Iulian Palade, Hans J. Lehermeier, and John R. Dorgan , 2001“ Melt Rheology of High L-Content Poly(lactic acid)",Macromolecules, 34, pp 1384-1390.
38.R. C. Methta, R. Jeyanthi, S. Calis, 1994,“Biodegradable microspheres as depot system for patenteral delivery of peptide drugs "Journal of Controlled Release 29, 375-384.
39.M. S. Hardonk F. Molenaar and P. Nieuwenhuis, 1990,“Enzymatic
activity toward poly(L-lactic acid )implants" Journal of Biomedical Materials Research, 24, pp 529-545.
40.Naotsugu Nagasawa, Ayako Kaneda, Shinichi Kanazawa, Toshiaki Yagi Hiroshi Mitomo, Fumio Yoshii, Masao Tamada , 2005,Application of poly(lactic acid) modified by radiation crosslinking ,Nuclear Instruments and Methods in Physics Research B 236 ,pp 611-616 .
41.A.P. Gupta, V. Kumar, Eur. Polym. J. 43 4053-4074 (2007)
42.楊慕震,工研院IEK-IT IS 計畫
43.Q. Fang, M. A. Hanna, Indus. Crops. Pdts., 10 47-53 (1999)
44.D. Garlotta, J. Polym. Environ. 9 61-84 (2002)
45.L. I. Palade, H. J. Lehermeier, J. R. Dorgan, Macromolecules 34 1384-1290 (2001)
46.H. Yamane, K. Sasai, Polymer 44 2569-2575 (2003)
47.綠色建築博客http://www.igreen.cn/20246/viewspace-7386
48.Erwin T.H. Vinka, ,Karl R. Ra bago ,David . Glassner ,Patrick R.Gruber , 2003,Applications of life cycle assessment to NatureWorks polylactide (PLA) production , Polymer Degradation and Stability ,80-403–419.
49.Stefan Mecking , 2004 ,“Nature or Petrochemistry—Biologically Degradable Materials ”Angewandate Chemie-Interation Edition .,43,pp1078-1085.
50.黃義侑, 1996,“生物分解性PLA 及其工具勿在醫學上的應用"化學技術, 第七期, 頁155-159.
51.E. T. H. Vink, K. R. Bago, D. A. Glassner, P. R. Gruber, Polym. Degrad.Stabil., 80, 403, (2003)
52.De Santis P, Kovacs AJ. Molecular conformation of poly(S-lactic acid). Biopolymers 1968;6:299–306.
53.Kalb B, Pennings AJ. General crystallization behaviour of poly(llactic acid). Polymer 1980;21:607–12.
54.Hoogsteen W, Postema AR, Pennings AJ, Brinke Gt, Zugenmaier P. Crystal structure conformation and morphology of solution-spun poly(l-lactide) fibers. Macromolecules 1990;23:634–42.1996;197:3483–99.
55.Kobayashi J, Asahi T, Ichiki M, Oikawa A, Suzuki H, Watanabe T, Fukada E, Shikinami Y. Structural and optical properties of poly lactic acids. Journal of Applied Physics 1995;77:2957–73.
56.Zhang J, Duan Y, Sato H, Tsuji H, Noda I, Yan S, Ozaki Y. Crystal modifications and thermal behavior of poly(l-lactic acid) revealed by infrared spectroscopy. Macromolecules 2005;38:8012–21.
57.Kawai T, Rahman N, Matsuba G, Nishida K, Kanaya T, Nakano M, Okamoto H, Kawada J, Usuki A, Honma N, Nakajima K, Matsuda M. Crystallization and melting behavior of poly(l-lactic acid). Macromolecules 2007;40:9463–9.
58.Zhang J, Tashiro K, Tsuji H, Domb AJ. Disorder-to-order phase transition and multiple melting behavior of poly(l-lactide) investigated by simultaneous measurements of WAXD and DSC. Macromolecules 2008;41:1352–7.
59.Cocca M, Lorenzo MLD, Malinconico M, Frezza V. Influence of crystal polymorphism on mechanical and barrier properties of poly(llactic acid). European Polymer Journal 2011;47:1073–80.
60.Eling B, Gogolewski S, Pennings AJ. Biodegradable materials of poly(l-lactic acid) – 1. Melt-spun and solution-spun fibres. Polymer 1982;23:1587–93.
61.Puiggali J, Ikada Y, Tsuji H, Cartier L, Okihara T, Lotz B. The frustrated structure of poly(l-lactide). Polymer 2000;41:8921–30.
62.Cartier L, Okihara T, Ikada Y, Tsuji H, Puiggali J, Lotz B. Epitaxial crystallization and crystalline polymorphism of polylactides. Polymer 2000;41:8909–19.
63.Ikada Y, Jamshidi K, Tsuji H, Hyon SH. Stereocomplex formation between enantiomeric poly(lactides). Macromolecules 1987;20:904–6.
64.Sajjad Saeidlou, Michel A. Huneault, Hongbo Li, Chul B. Park, Poly(lactic acid) crystallization, Progress in Polymer Science 37 (2012) 1657– 1677
65.Sodergard A, Nasman JH. Stabilization of poly(l-lactide) in the melt. Polymer Degradation and Stability 1994;46:25–30.
66.Witzke DR. Introduction to properties engineering and prospects of polylactide polymers. PhD Dissertation. E. Lansing, MI: Michigan State University, 1997.
67.Kolstad JJ. Crystallization kinetics of poly(l-lactide-co-mesolactide). Journal of Applied Polymer Science 1996;62:1079– 91.
68.Bigg DM. Polylactide copolymers: effect of copolymer ratio and end capping on their properties. Advances in Polymer Technology 2005;24:69–82.
69.Hartmann M. High molecular weight polylactic acid polymers. In: Kaplan D, editor. Biopolymers from renewable resources. Berlin/Heidelberg: Springer-Verlag; 1998. p. 367–411.
70.Kikkawa Y, Abe H, Fujita M, Iwata T, Inoue Y, Doi Y. Crystal growth in poly(l-lactide) thin film revealed by in situ atomic force microscopy. Macromolecular Chemistry and Physics 2003;204:1822–31.
71.Yuryev Y, WoodAdams P, Heuzey MC, Dubois C, Brisson J. Crystallization of polylactide films: an atomic force microscopy study of the effects of temperature and blending. Polymer 2008;49:2306–20.
72.Tsuji H, Ikada Y. Crystallization from the melt of poly(lactide)s with different optical purities and their blends. Macromolecular Chemistry and Physics
73.Tsuji H, Takai H, Saha SK. Isothermal and non-isothermal crystallization behavior of poly(l-lactic acid): effects of stereocomplex as nucleating agent. Polymer 2006;47:3826–37.
74.Yasuniwa M, Tsubakihara S, Iura K, Ono Y, Dan Y, Takahashi K. Crystallization behavior of poly(l-lactic acid). Polymer 2006;47:7554–63.
75.Li XJ, Li ZM, Zhong GJ, Li LB. Steady-shear-induced isothermal crystallization of poly(l-lactide) (PLLA). Journal of Macromolecular Science, Part B: Physics 2008;47:511–22.
76.Lauritzen Jr JI, Hoffman JD. Extension of theory of growth of chainfolded polymer crystals to large undercoolings. Journal of Applied Physics 1973;44:4340–52.
77.Hoffman JD, Davis TG, Lauritzen Jr JI. The rate of crystallization of linear polymers with chain folding. In: Hannay NB, editor. Treatise on solid state chemistry: crystalline and noncrystalline solids, vol. 3. New York: Plenum Press; 1976. p. 497–614.
78.Vasanthakumari R, Pennings AJ. Crystallization kinetics of poly(llactic acid). Polymer 1983;24:175–8. Fischer EW, Sterzel HJ, Wegner G. Investigation of the structure of solution grown crystals of lactide copolymers by means of chemical reactions. Colloid and Polymer Science 1973;251:980–90.
79.Abe H, Kikkawa Y, Inoue Y, Doi Y. Morphological and kinetic analyses of regime transition for poly[(S)-lactide] crystal growth. Biomacromolecules 2001;2:1007–14.
80.Di Lorenzo ML. Determination of spherulite growth rates of poly(l-lactic acid) using combined isothermal and non-isothermal procedures. Polymer 2001;42:9441–6.
81.Tsuji H, Miyase T, Tezuka Y, Saha SK. Physical properties crystallization and spherulite growth of linear and 3-arm poly(l-lactide)s. Biomacromolecules 2005;6:244–54.
82.Huang J, Lisowski MS, Runt J, Hall ES, Kean RT, Buehler N, Lin JS. Crystallization and microstructure of poly(l-lactide-co-mesolactide) copolymers. Macromolecules 1998;31:2593–9.
83.He Y, Fan Z, Wei J, Li S. Morphology and melt crystallization of poly(l-lactide) obtained by ring opening polymerization of l-lactide with zinc catalyst. Polymer Engineering and Science 2006;46:1583–9.
84.Tsuji H, Tezuka Y, Saha SK, Suzuki M, Itsuno S. Spherulite growth of l-lactide copolymers: effects of tacticity and comonomers. Polymer 2005;46:4917–27.
85.Di Lorenzo ML. Crystallization behavior of poly(l-lactic acid). European Polymer Journal 2005;41:569–75.
86.Pan P, Zhu B, Kai W, Dong T, Inoue Y. Effect of crystallization temperature on crystal modifications and crystallization kinetics of poly(l-lactide). Journal of Applied Polymer Science 2008;107:54–62.
87.蔡尚修, "生物可分解性共聚合物之結晶行為與結構研究", 國立台灣科技大 學材料科技研究所碩士論文, 民 93 年.
88.劉興鑑, "乙二醇/乳酸崁段共聚物之水解動力學與結晶性質", 國立臺灣工業 技術學院纖維及高分子工程技術研究所博士論文, 民 82 年.
89.Nuria Burgos, Verónica P. Martino, Alfonso Jiménez , Characterization and ageing study of poly(lactic acid) films plasticized with oligomeric lactic acid, Polymer Degradation and Stability 98 (2013) 651-658
90.Sajjad Saeidlou, Michel A. Huneaulta, Hongbo Li, Chul B. Parkc, Poly(lactic acid) crystallization, Progress in Polymer Science 37 (2012) 1657– 1677
91.王天民、王文雄、白育綸,2004年,環境生態材料,新文京開發出版股份有限公司
92.楊斌,2010年,“PLA聚乳酸環保塑膠“,五南圖書出版公司。
93.Andrews R, Jacques D, Minot M, Rantell T .Macromol Mater Eng2002;287:395–403.
94.彭耀寰,高分子科學導論,1988。
95.Stevens, M. P., 1990, Polmer Chemistry, Elsevier Scientific Publishing Company,p.101.
96.陳宥伸,2002,纖維強化塑膠(FRP)廢棄物與聚丙烯(PP)、聚乙烯(PE)廢塑膠混摻之研究,國立高雄第一科技大學環境與安全衛生工程系,碩士論文。
97.L.A Utracki , Polymer. Eng Sci.,22,1166(1982)
98.C.J. Wu, J.F. Kuo, and C.Y. Chen, polymer. Eng Sci.,33,1329(1993)
99.J. A. Manson and L. H. Sperling ,Polymer Blends and Composites, Plenum Press, New York,Chap.2,51(1976).
100.A. K. Gupta, and S. N. Purwar, J. Appl. Polym. Sci., 29, 1595(1984).
101.Nuria Burgos a, Verónica P. Martino b, Alfonso Jiménez a, Characterization and ageing study of poly(lactic acid) films plasticized with oligomeric lactic acid, Polymer Degradation and Stability 98 (2013) 651-658.
102.J. R. Randall, C. M. Ryan, “Impact modified melt-stable lactide polymer compositions and processes for manufacture thereof”,Cargill, US Patent 6495631, (Dec. 17 2002).
103.E. B. Bond, J. M. Autran, “Fibers comprising starch and biodegradable polymers”, Cargill, US Patent 6946506, (Dec 12-2002).
104.D. Cohn, T. Stern, M. F. Gonzalez, J. Epstein, “Biodegradable poly(ethylene oxide)/poly(_-caprolactone) multiblock copolymers”, J Biomed Mater Res, 59, 273-281 (2002).
105.X. Y. Xiong, K. C. Tam, L. H. Gan, “Synthesis and thermal responsive properties of P(LA-b-EO-b-PO-b-EO-b-LA) block copolymers with short hydrophobic poly(lactic acid) (PLA) segments”, Polymer, 46, 1841-1850 (2005).
106.D. Cohn, A. Hotovely-Salomon, “Biodegradable multiblock PEO/PLA thermoplastic elastomers: molecular design and properties”, Polymer, 46, 2068-2075 (2005).
107.B. H. Li, M.C. Yang, “Improvement of thermal and mechanical properties of poly(L-lactic acid) with 4,4-methylene diphenyl diisocyanate”, Polym for Adv Tech, 17, 439-443 (2006).
108.X. Deng, Z. Zhu, C. Xiong, L. Zhang, “Synthesis and characterization of biodegradable block copolymers of ε-caprolactone and D,L-lactide initiated by potassium poly(ethylene glycol)ate”, J Polym Sci, Part A Polym Chem, 35, 703-708 (1997).
109.C. H. Ho, C. H. Wang, C. I. Lin, Y. D. Lee, “Synthesis and characterization of TPO–PLA copolymer and its behavior as compatibilizer for PLA/TPO blends”, Polymer, 49, 3902-3910(2008).
110.J. S. Choi, W. H. Park, “Effect of biodegradable plasticizers on thermal and mechanical properties of poly(3-hydroxybutyrate)”, Polymer testing, 23, 455-460 (2004).
111.S. McCarthy, X. Song, “Biodegradable Plasticizers for Polylactic Acid”, J Appl Med Polym J Appl Med Polym, 6:Part 2, 64-69 (2002).
112.O. Martin, L. Averous, “Poly(lactic acid): plasticization and properties of biodegradable multiphase systems”, Polymer, 42,6209-6219 (2001).
113.Yahia Lemmouchi ,1, Marius Murariu , Ana Margarida Dos Santos , Allan J. Amass ,Etienne Schacht , Philippe Dubois * ,Plasticization of poly(lactide) with blends of tributyl citrate and low molecular weight poly(D,L-lactide)-b-poly(ethylene glycol) copolymers, European Polymer Journal 45 (2009) 2839–2848.
114.N. Ljungberg, B. Wesslen, “Tributyl citrate oligomers as plasticizers for poly(lactic acid): thermo-mechanical film properties and aging”, Polymer, 44, 7679-7688 (2003).
115.T. Ouchi, S. Ichimura, Y. Ohya, “Synthesis of branched poly(lactide) using polyglycidol and thermal, mechanical properties of its solution-cast film”, Polymer, 47, 429-434 (2006).
116.H. T. Oyama, “Super-tough poly(lactid acid) materials: Reactive blending with ethylene copolymer”, Polymer, 50, 747-751 (2009).
117.Yahia Lemmouchi a,1, Marius Murariub, Ana Margarida Dos Santos c, Allan J. Amass a,Etienne Schacht c, Philippe Dubois b,* Plasticization of poly(lactide) with blends of tributyl citrate and low molecular weight poly(D,L-lactide)-b-poly(ethylene glycol) copolymers, European Polymer Journal 45 (2009) 2839–2848.
118.Hongbo Li, Michel A. Huneault, Effect of nucleation and plasticization on the crystallization of poly(lactic acid), Polymer 48 (2007) 6855-6866.
119.Y. Hua, Y.S. Hua, V. Topolkaraevb, A. Hiltnera,*, E. Baera, Aging of poly(lactide)/poly(ethylene glycol) blends. Part 2. Poly(lactide) with high stereoregularity, Polymer 44 (2003) 5711–5720.
120.E. Piorkowska, Z. Kulinski, A. Galeski*, R. Masirek, Plasticization of semicrystalline poly(L-lactide) with poly(propylene glycol), Polymer 47 (2006) 7178-7188.
121.O.Martin, L.Averous, Polymer, Vol.6209,No.42,2001.
122.Nadia Ljungberg,Bengt Wessle′n,J.Appl.Polym.Sci., Vol. 1227, No.86, 2002.
123.Nuria Burgos a, Verónica P. Martino b, Alfonso Jiménez a, Characterization and ageing study of poly(lactic acid) films plasticized with oligomeric lactic acid, Polymer Degradation and Stability 98 (2013) 651-658.
124.Bor-Kuan Chen a,*, Chia-Hsu Shen a, Shu-Chuan Chen a, Antonia F. Chen , Ductile PLA modified with methacryloyloxyalkyl isocyanate improves mechanical properties, Polymer 51 (2010) 4667-4672.
125.Sajjad Saeidloua, Michel A. Huneaulta, Hongbo Li b, Chul B. Parkc, Poly(lactic acid) crystallization, Progress in Polymer Science 37 (2012) 1657– 1677.
126.Qing Cai, Yuqing Wan, Jianzhong Bei, Shenguo Wang*, Synthesis and characterization of biodegradable polylactide-grafted dextran and its application as compatilizer, Biomaterials 24 (2003) 3555–3562.
127.Koning C, van Duin M, Pagnoulle C, Jerome R. Prog Polym Sci 1998:23(4):707-757.
128.H. Wang, X. Sun, P. Seib, J. Appl. Polym. Sci. Vol. 82, 1761-1767 (2001)
129.Long Jiang, Jinwen Zhang, Michael P. Wolcott, Comparison of polylactide/nano-sized calcium carbonate and polylactide/montmorillonite composites: Reinforcing effects and toughening mechanisms Polymer 48 (2007) 7632-7644.
130.Jian Hu, Tongping Zhang, Minggang Gu, Xing Chen, Jianming Zhang, Spectroscopic analysis on cold drawing-induced PLLA mesophase, Polymer 53 (2012) 4922-4926.
131.Jiyi Yanga, Yuyue Qina,∗, Minglong Yuanb, Jing Xuec, Jianxin Caoa, Yan Wua, Mingwei Yuanb, Preparation and characterization of poly(l-lactide)-co-poly(trimethylene carbonate)/talc film.
132.Chengxiang Li , Rucheng Wang, Xiancai Lu, Ming Zhang , Mineralogical characteristics of unusual black talc ores in Guangfeng County, Jiangxi Province, China,Applied Clay Science 74(2013)37-46.
133.K.W.Chew*, T.C. Ng* and Z. H. How, Conductivity and Microstructure Study of PLA-Based Polymer Electrolyte Salted With Lithium Perchloride, LiClO4 , J. Electrochem. Sci., 8 (2013) 6354 – 6364.
134.Xing-Ping Zhou , Xiao-Lin Xie, Zhong-Zhen Yu , Yiu-Wing Mai , Intercalated structure of polypropylene/in situ polymerization-modified talc composites via melt compounding.
135.E. T. Vink, K. R. Rabago, D. A. Glassne., The Sustainability of Nature Works Polylactide Polymers and Ingo Polylactide Fibers: J. Macromol Biosci , Vol.4 (6) ,551 – 564(2004)。
136.Hongbo Li, Michel A. Huneault,* Effect of nucleation and plasticization on the crystallization of poly(lactic acid)., Polymer 48 (2007) 6855-6866.
137.T. Tábi, I. E. Sajó, F. Szabó, A. S. Luyt, J. G. Kovács, Crystalline structure of annealed polylactic acid and its relation to processing, eXPRESS Polymer Letters Vol.4, No.10 (2010) 659–668.
138.Pan P., Zhu B., Kai W., Dong T., Inoue Y.: Polymorphic transition in disordered poly(L-lactide) crystals induced by annealing at elevated temperatures. Macromolecules.41, 4296–4304 (2008).
139.Emilie Picard, Eliane Espuche *, René Fulchiron, Effect of an organo-modified montmorillonite on PLA crystallization and gas barrier properties, Applied Clay Science 53 (2011) 58–65
140.Ting-Yu Liu, Wen-Ching Lin, Ming-Chien Yang, San-Yuan Chen*, Miscibility, thermal characterization and crystallization of poly(L-lactide) and poly(tetramethylene adipate-co-terephthalate) blend membranes, Polymer 46 (2005) 12586–12594.
141.Zhang L, Goh SH, Lee SY. Polymer 1998;39:4841.
142.Emilie Picard, Eliane Espuche *, René Fulchiron, Effect of an organo-modified montmorillonite on PLA crystallization and gas barrier properties, Applied Clay Science 53 (2011) 58–65
143.Hongbo Li, Michel A. Huneault*, Effect of nucleation and plasticization on the crystallization of poly(lactic acid), Polymer 48 (2007) 6855-6866.
144.Wan-Ying Lina, Yeng-Fong Shiha*, Ching-Hsuan Linb, Chuan-Chen Leec, Yi-Hsiuan Yud, The preparation of multi-walled carbon nanotube/poly(lactic acid) composites with excellent conductivity, Journal of the Taiwan Institute of Chemical Engineers 44 (2013) 489–496.
145.Y. Hu, Y.S. Hu, V. Topolkaraev, A. Hiltner*, E. Baer, Aging of poly(lactide)/poly(ethylene glycol) blends.Part 2. Poly(lactide) with high stereoregularity, Polymer 44 (2003) 5711–5720.
146.Long Jiang, Jinwen Zhang, Michael P. Wolcott, Comparison of polylactide/nano-sized calcium carbonate and polylactide/montmorillonite composites: Reinforcing effects and toughening mechanisms Polymer 48 (2007) 7632-7644.
147.Jian Hu, Tongping Zhang, Minggang Gu, Xing Chen, Jianming Zhang, Spectroscopic analysis on cold drawing-induced PLLA mesophase, Polymer 53 (2012) 4922-4926.
148.K.W.Chew*, T.C. Ng* and Z. H. How, Conductivity and Microstructure Study of PLA-Based Polymer Electrolyte Salted With Lithium Perchloride, LiClO4 , J. Electrochem. Sci., 8 (2013) 6354 – 6364.
149.Xing-Ping Zhou , Xiao-Lin Xie *, Zhong-Zhen Yu , Yiu-Wing Mai , Intercalated structure of polypropylene/in situ polymerization-modified talc composites via melt compounding.
150.Joao de Araújo Jr, Dulce Magalhães, Nara A. de Oliveira, Marcelo, M. Nóbrega, Marcia L. A. Temperini, Jivaldo R. Matos and Hélio Wiebeck, PBAT-PLA Blends Buried In Simulated Soil: Characterization by Differential Scanning Calorimetry, Raman Spectroscopy and Wide Angle X-Ray Diffraction, E- ISSN: 2249 –1929.
151.F. H. Abd-EI Kader , G. Said, G. Attia and A. M. Abo-El Fadl, Study of Structural and Optical Properties of Ethylene Vinyl Acetate Copolymer Films Irradiated with y-Rays, Egypt. 1. Phys. Vol. 37, No.2, pp. 111 126 (2006).
152.I. Mouraa, R. Nogueira, Veronique Bounor-Legare, A.V. Machado, Synthesis of EVA-g-PLA copolymers using transesterification reactions, Materials Chemistry and Physics 134 (2012) 103– 110.
153.Hongbo Li, Michel A. Huneault,* Effect of nucleation and plasticization on the crystallization of poly(lactic acid)., Polymer 48 (2007) 6855-6866.
154.T. Tábi, I. E. Sajó, F. Szabó, A. S. Luyt, J. G. Kovács, Crystalline structure of annealed polylactic acid and its relation to processing, eXPRESS Polymer Letters Vol.4, No.10 (2010) 659–668.
155.Pan P., Zhu B., Kai W., Dong T., Inoue Y.: Polymorphic transition in disordered poly(L-lactide) crystals induced by annealing at elevated temperatures. Macromolecules, 41, 4296–4304 (2008).
156.Mukesh Kumar , S. Mohanty , S.K. Nayak , M. Rahail Parvaiz , Effect of glycidyl methacrylate (GMA) on the thermal, mechanical and morphological property of biodegradable PLA/PBAT blend and its nanocomposites, Bioresource Technology 101 (2010) 8406–8415.
157.Y. Hu, Y.S. Hu, V. Topolkaraev, A. Hiltner*, E. Baer, Aging of poly(lactide)/poly(ethylene glycol) blends.Part 2. Poly(lactide) with high stereoregularity, Polymer 44 (2003) 5711–5720.
158.I. Mouraa, R. Nogueira, Veronique Bounor-Legare, A.V. Machado, Synthesis of EVA-g-PLA copolymers using transesterification reactions, Materials Chemistry and Physics 134 (2012) 103– 110.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top