跳到主要內容

臺灣博碩士論文加值系統

(44.222.104.206) 您好!臺灣時間:2024/05/27 23:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:麥瑟莉
研究生(外文):Marcelli Indriana
論文名稱:應用資料探勘技術於旅遊景點推薦
論文名稱(外文):Applying Data Mining Techniques for Tourist Spot Recommendations
指導教授:黃謙順黃謙順引用關係
指導教授(外文):Hwang, Chein-Shung
口試委員:謝文恭蘇意晴
口試委員(外文):Shih, Wen-GongSu, Yi-Ching
口試日期:2014-06-23
學位類別:碩士
校院名稱:中國文化大學
系所名稱:資訊管理學系
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:80
外文關鍵詞:Hybrid Recommender SystemData MiningLinear RegressionNeural NetworkContent-Based FilteringCollaborative FilteringDemographic Filtering
相關次數:
  • 被引用被引用:2
  • 點閱點閱:911
  • 評分評分:
  • 下載下載:298
  • 收藏至我的研究室書目清單書目收藏:1
Recommender systems have become an important research area in past few years. They have been developed for a variety of domains, especially e-commerce. Recommender systems also can be applied in tourism industry to help tourists organizing their travel plans. Recommender systems can be developed by a variety of different techniques such as Content-Based filtering (CB), Collaborative Filtering (CF), and Demographic Filtering (DF). However, each method has its own advantages and disadvantages. For this reason, many previous researches used several mixed methods with an aim to reduce the disadvantages of using a single method and get more accurate recommendations.
In this research, we proposed a hybrid recommender system that combines the results of different recommendation methods using data mining techniques. Data mining technique is a method to dig out hidden knowledge and rules among the various items from large number of information and establish the relationship between model data attributes and categories in order to get more effective relationship model predictions.
The experimental results showed that the proposed hybrid recommendation method outperforms each individual recommendation method in terms of five evaluation metrics.

ABSTRACT iii
ACKNOWLEDGEMENT iv
LIST OF TABLES vii
LIST OF FIGURES viii
CHAPTER ONE INTRODUCTION 1
1.1 Research Background and Motivation 1
1.2 Research Objectives 4
1.3 Research Scope 5
1.4 Research Process 5
1.5 Research Framework 6
CHAPTER TWO LITERATURE REVIEW 7
2.1 Recommender Systems 7
2.2 Recommender Systems Techniques 8
2.2.1 Content-Based filtering 8
2.2.2 Collaborative filtering 8
2.2.3 Demographic filtering 9
2.3 Data Mining Techniques 10
2.3.1 Linear regression 11
2.3.2 Artificial Neural Networks (ANN) 12
2.4 Hybrid Recommender Systems 14
2.4.1 Monolithic hybridization design 16
2.4.2 Parallel hybridization design 17
2.4.3 Pipelined hybridization design 18
2.5 Applications of Hybrid Recommender Systems 19
CHAPTER THREE RESEARCH METHOD 22
3.1 Introduction 22
3.2 System Architecture 22
3.2.1 Data Sources 23
3.2.2 Recommendation Techniques 23
3.1.1 Data Mining Techniques 29
3.2 System Assessment 30
3.2.1 Root-Mean-Square Error (RMSE) 31
3.2.2 Precision 31
3.2.3 Recall 32
3.2.4 F-Measure 32
3.2.5 Accuracy 32
CHAPTER FOUR EXPERIMENTAL RESULT & EVALUATION 33
4.1 Statistical Analysis of Experimental Data 33
4.2 Experimental Design 42
4.2.1 Content-Based Filtering 42
4.2.2 Collaborative Filtering 44
4.2.3 Demographic Filtering 45
4.2.4 Linear Regression Model 46
4.2.5 Neural Network Model 47
4.3 Analysis of the experimental results and evaluation 49
4.3.1 Root-mean-square error comparison of different models 50
4.3.2 Precision comparison of different models 51
4.3.3 Recall comparison of different models 53
4.3.4 F-measure comparison of different models 55
4.3.5 Accuracy comparison of different models 56
CHAPTER FIVE CONCLUSION 58
5.1 Conclusion 58
5.2 Future Work 59
REFERENCES 60
APPENDIXES 64

Adomavicius, G., & Tuzhilin, A. (2005). Toward the Next Generation of Recommender Systems: A Survey of the State-of-the-Art and Possible Extensions. Institute of Electrical and Electronics Engineers Transactions on Knowledge and Data Engineering, 17(6), 734-749.
Ardissono, L., Goy, A., Petrone, G., Segnan, M., & Torasso, P. (2003). Intrigue: Personalized Recommendation of Tourist Attractions for Desktop and Handset Devices. Applied AI, 17(8-9), 687-714.
Balabanovic, M., & Shoham, Y. (1997, March). Fab: Content-Based, Collaborative Recommendation. Communications of the ACM, 40(3), 66-72.
Basu, C., Hirsh, H., & Cohen, W. (1998). Recommendation as Classification:Using Social and Content-Based Information in Recommendation. Proceedings of the 15th National Conference on Artificial Intelligence, 714-720. American Association for Artificial Intelligence Press.
Buckland, M. (2002). Al Techniques for Game Programming. Course Technology.
Burke, R. (2002). Hybrid Recommender Systems: Survey and Experiments. User Modeling and User-Adapted Interaction, 12(4), 331-370.
Chowdary, B. (2007). Back-Propagation Artificial Neural Network Approach for Machining Centre Selection. Journal of Manufacturing Technology Management, 18(3), 315-332.
Chung, H., & Gray, P. (1999). Special Section: Data Mining. Journal of Management Information Systems, 16(1), 11-17.
Claypool, M., Gokhale, A., Miranda, T., Murnikov, P., Netes, D., & Sartin, M. (1999). Combining Content-Based and Collaborative Filters in an Online Newspaper. Proceedings of the ACM SIGIR Workshop on Recommender Systems: Algorithms and Evaluation. Berkeley, CA.
Cotter, P., & Smyth, B. (2000). PTV: Intelligent Personalised TV Guides. Proceedings of the 17th National Conference on Artificial Intelligence, 957-964. American Association for Artificial Intelligence Press.
Curt, H. (1995). The Devile’s in the Detail: Techniques, Tool, and Applications for Data Mining and Knowledge Discovery - Part 1. Intelligent Software Strategies, 6(9), 1-15.
Dayhoff, J., & DeLeo, J. (2001). Artificial Neural Networks. Cancer, 91(8), 1615-1635.
Delgado, J., & Davidson, R. (2002). Knowledge Bases and User Profiling in Travel and Hospitality Recommender Systems. Proceedings of the Enter Conference, 1-16. Austria: Springer Vienna.
Fesenmaier, D., Ricci, F., Schaumlechner, E., Wober, K., & Zanella, C. (2003). Dietorecs: Travel Advisory for Multiple Decision Styles. Information and Communication Technologies in Tourism.
Garcia, I., Sebastia, L., & Onaindia, E. (2011). On the Design of Individual and Group Recommender Systems for Tourism. Expert Systems with Applications, 38(6), 7683-7692.
Hagan, M. T., Demuth, H. B., & Beale, M. H. (1996). Neural Network Design. Brooks/Cole.
Han, J., & Kamber, M. (2006). Data Mining: Concepts and Techniques, (2). San Fransisco: Morgan Kaufmann.
Haubl, G., & Trifts, V. (2000). Consumer Decision Making in Online Shopping Environments: The Effects of Interactive Decision Aids. Marketing Science, 19(1), 4-21.
Heaton, J. (2008). Introduction to Neural Networks with Java. Heaton Research.
Hecht-Nielsen, R. (1989). Theory of the Backpropagation Neural Network. Proceedings of the International Joint Conference on Neural Networks, 593-605. New York: Institute of Electrical and Electronics Engineers Publications.
Heijden, H., Kotsis, G., & Kronsteiner, R. (2005). Mobile Recommendation Systems for Decision Making ‘On the Go’. Proceedings of the International Conference on Mobile Business, 137-143.
Jannach, D., Zanker, M., Felfernig, A., & Friedrich, G. (2011). Recommender Systems: An Introduction. New York: Cambridge University Press.
Kolodner, J. (1993). Case-Based Reasoning. San Fransisco, CA: Morgan Kaufmann.
Lee, M., Choi, P., & Woo, Y. (2002). A Hybrid Recommender System Combining Collaborative Filtering with Neural Network. Adaptive Hypermedia and Adaptive Web-Based Systems Lecture Notes in Computer Science, 2347, 531-534.
Lewis, D. D., Schapire, R. E., Callan, J. P., & Papka, R. (1996). Training Algorithms for Linear Text Classifiers. SIGIR ‘96 Proceedings of the 19thAnnual International ACM SIGIR Conference on Research and Development in Information Retrieval, 298-306.
Loh, S. L. (2004). A Tourism Recommender System Based on Collaboration and Text Analysis. Information Technology & Tourism, 6(3), 157-165.
Melville, P., Mooney, R., & Nagarajan, R. (2002). Content-Boosted Collaborative Filtering for Improved Recommendations. Proceedings of the 8th National Conference on Artificial Intelligence, 187-192. American Association for Artificial Intelligence Press.
Middleton, S., Shadbolt, N., & De Roure, D. (2003). Capturing Interest Through Inference and Visualization. Proceedings of International Conference on Knowledge Capture, 62-69. Florida: Association for Computering Machinery Press.
Mooney, R., & Roy, L. (2000). Content-Based Book Recommending Using Learning for Text Categorization. Proceedings of the fifth ACM Conference on Digital Libraries, 195-204.
Noguerra, J., Barranco, M., Segura, R., & Martinez, L. (2012). A Mobile 3D-GIS Hybrid Recommender System for Tourism. Information Sciences, 215, 37-52.
Pazzani, M. (1999). A Framework for Collaborative, Content-Based and Demographic Filtering. Artificial Intelligence Review, 13(5-6), 393-408.
Resnick, P., & Varian, H. (1997). Recommender Systems. Communications of the ACM, 40(3), 56-58.
Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., & Riedl, J. (1994). GroupLens: An Open Architecture for Collaborative Filtering of Netnews. Proceedings of Conference on Computer Supported Cooperative Work, 175-186. Chapel Hill, NC: Association for Computering Machinery Press.
Ricci, F., Arsian, B., Mirzadeh, N., & Venturini, A. (2002). ITR: A Case-based Travel Advisory System. Proceedings of the 6th European Conference on Advances in Case-Based Reasoning, 613-641. Aberdeen, Scotland: Springer-Verlag.
Schafer, J., Konstan, J., & Riedl, J. (1999). Recommender Systems in E-Commerce. Proceedings of the 1st ACM Conference on Electronic Commerce, 158-166.
Schein, A., Popescul, A., Ungar, L., & Pennock, D. (2002). Methods and Metrics for Cold-Start Recommendations. Proceedings of the 25th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, 253-260.
Shardanand, U., & Maes, P. (1995). Social Information Filtering: Algorithms for Automating “Word of Mouth”. Proceedings of the Conference on Human Factors in Computing Systems, 210-217. Denver, CO: Association for Computering Machinery.
Spiegel, S., Kunegis, J., & Li, F. (2009). Hydra: A Hybrid Recommender System [Cross-Linked Rating and Content Information]. Proceedings of the 1st ACM International Workshop on Complex Networks Meet Information & Knowledge Management, 75-80.
Taiwan Tourism Bureau. (2012). Taiwan's Inbound Tourism Market. Retrieved from http://admin.taiwan.net.tw/upload/contentFile/auser/b/annual_2012_htm/English/chapter1_2.html
Terveen, L., & Hill, W. (2001). Beyond Recommender Systems: Helping People Help Each Other. HCI in The New Millenium, 487-509.
van Rijsbergen, C. (1979). Information Retrieval. Journal of the American Society for Information Science, 30(6), 374-375.
Witten, I., & Frank, E. (2000). Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations. San Fransisco, California: Morgan Kaufmann.
Ye, N. (2003). The Handbook of Data Mining. Lawrence Erlbaum Associates.
Zanker, M., & Jessenitschnig, M. (2009). Case-studies on Exploiting Explicit Customer Requirements in Recommender Systems. User Modelling and User-Adapted Interaction, 19(1-2), 133-166.
Zanker, M., Jessenitschnig, M., Jannach, D., & Gordea, S. (2007). Comparing Recommendation Strategies in a Commercial Context. IEEE Intelligent Systems, 22(3), 69-73.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊