(3.235.25.169) 您好!臺灣時間:2021/04/20 03:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳詩茵
研究生(外文):Chen, Shih-Yin
論文名稱:包材對乳酸菌微膠囊理化性質及存活率之探討
論文名稱(外文):Effect of coating materials on physicochemical properties and survivability of microencapsulated Lactobacillus spp. beads
指導教授:王俊權王俊權引用關係
指導教授(外文):Wang, Chiun-Chuang
口試委員:江伯源鍾雲琴
口試委員(外文):Chiang, Po-YuanChung, Yun-Chin
口試日期:2013-09-02
學位類別:碩士
校院名稱:靜宜大學
系所名稱:食品營養學系
學門:醫藥衛生學門
學類:營養學類
論文種類:學術論文
論文出版年:2013
畢業學年度:102
語文別:中文
論文頁數:127
中文關鍵詞:微膠囊晶球褐藻膠低甲氧基果膠三仙膠糊精質地乳酸菌存活量
外文關鍵詞:microencapsulated beadsalginatelow methoxy pectinxanthan gumdextrintextural propertiessurvivability
相關次數:
  • 被引用被引用:1
  • 點閱點閱:752
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:83
  • 收藏至我的研究室書目清單書目收藏:0
本試驗主要利用不同包材(褐藻膠、低甲氧基果膠、三仙膠及糊精)包埋乳酸菌(Lactobacillus delbrueckii subsp. Bulgaricus CCRC 14008),製成A系列微膠囊晶球(A、AL、AX和AD)和L系列為膠囊晶球(L、LA、LX和LD),探討對於晶球包埋之物理性質、釋放模式和存活率之影響。結果發現大部分晶球外觀皆呈現橢圓狀,僅有AL和LA晶球外觀接近圓球狀,且AL在包埋菌株能力最高。針對模擬胃液和蒸餾水浸泡中,晶球明顯隨時間延長而膨潤比有增加趨勢,並且浸泡蒸餾水之膨潤比大於浸泡模擬胃液。然而,浸泡在1 %生理食鹽水,晶球之粒徑會顯著增大,且有顆粒破裂狀況,其中以L和LX晶球破損率最為嚴重。利用400 rpm的機械攪拌,以AX和LX晶球破損率偏高,顯示利用三仙膠複合所製得的晶球較不耐機械攪拌。針對晶球的質地特性,以LA和LD晶球有較強的彈性、內聚力和恢復力。分析晶球的釋放動力學中,晶球在模擬腸胃液中,大部分較符合Higuchi模式。乳酸菌經不同包材包埋可顯著提高在模擬胃液活菌量,特別是在A、AL和L晶球的活菌量可達6.0 log cfu/mL;晶球在模擬腸液經30 min浸泡時,晶球均完全破裂,且乳酸菌的存活量達6.4 log cfu/mL以上。晶球冷藏(4℃)保存試驗,經28天的儲藏上可測到皆有活菌量,其中以AL晶球之活菌量最高,達到6.4 log cfu/ml,而LX晶球則幾乎無活菌量。
The aims of this study are to investigate the effects of coating materials, including sodium alginate, low methoxy pectin, xanthan gum and dextrin, on the physicochemical properties, release model and survival rate of microencapsulated beads. The results indicated that the shape of the beads were closed to oval shape. The AL and LA beads appeared to be round shape and AL beads had the highest encapsulation yield of Lactobacillus as compared to the others. The swelling ratio of microencapsulated beads increased with incubation period in both simulated gastric juice and distilled water. However, the broken rate of microencapsulated beads significantly increased as soaked in 1 % saline solution. For the broken rate of mechanical agitation (400 rpm), the AX and LX beads were significantly higher than the others. The fact indicated xanthan gum complex beads were brittle by using mechanical force. The textural properties indicated that LA and LD beads had the higher springiness, cohesiveness and resilience than the others. In the release mechanism, most of beads were fitted to the Higuchi model in simulated gastric and intestinal juice. The coating materials of microencapsulated beads increased the survival cells as compared to free cells in the simulated gastric juice, particularly for the A, AL and L microencapsulated beads. As soaked in the simulated intestinal juice for 30 min, the beads were released completely and remained the high survival cells for each bead (up to 6 log CFU/mL). The survival rate of microencapsulated beads was decreased with the progress of storage time. The microencapsulated AL beads had the highest survival cells as stored at 4 ℃ for 28 days.
中文摘要Ⅰ
AbstractⅡ
目錄Ⅲ
表次Ⅵ
圖次Ⅸ
壹、前言 1
貳、文獻回顧3
一、益生菌簡介3
(1) 益生菌定義與特性3
(2) 益生菌種類4
(3) 益生菌與人類腸道關係4
(4) 益生菌之生物功用9
二、微膠囊包覆技術 14
(1) 定義及功用14
(2) 分類15
(3) 製備方式15
(4) 常用壁材應用29
叁、研究目的46
肆、實驗架構47
伍、材料與方法48
一、實驗材料48
(1) 菌株保存與活化48
(2) 壁材溶液製備48
(3) 乳酸菌混合液製備50
(4) 微膠囊晶球製作50
(5) 使用藥品50
(6) 使用儀器52
二、實驗方法53
(1) 造粒品質試驗53
A.外觀型態和粒徑大小試驗53
B.水分含量和水活性試驗53
C.乳酸菌包覆率試驗53
D.機械強力試驗53
E.質地剖面分析試驗54
F.擴散速率試驗54
G.膨潤程度試驗54
H.膨潤力試驗55
(2) 釋放動力學試驗55
A.微膠囊晶球製作55
B.模擬腸胃液製備55
C.蕊材釋放試驗55
(3) 活菌量試驗59
A.模擬腸胃液製備 59
B.模擬胃液耐受性試驗59
C.模擬腸液釋放試驗59
D.冷藏保存試驗59
(3) 統計分析60
陸、結果與討論61
一、不同包材對於乳酸菌微膠囊晶球之品質探討61
(1) 外觀型態61
(2) 水分含量、水活性、粒徑及包覆率63
(3) 機械強度65
(4) 質地剖面分析70
(5) 擴散速率72
(6) 膨潤程度74
(7) 膨潤力81
二、不同包材對於晶球之釋放機制86
(1) 模擬胃液86
(2) 模擬腸液90
三、不同包材對於菌株活菌量提升及釋放性之探討93
(1) 模擬腸胃液93
(2) 模擬胃液耐受性101
(3) 模擬腸液釋放性102
(4) 冷藏保存試驗106
染、結論108
參考文獻109

李振登。基礎食品微生物學。偉明圖書有限公司。台北,台灣(2006)。
林宏昇:以模式系統評桂枝之凝膠造粒技術及釋放速率改善之研究。國立中興大學食品暨應用生物科技研究所碩士論文,台中,台灣(2011)。
張為憲、張基郁、李敏雄、呂政義、張永和、陳昭雄、孫璐西、陳怡宏、嚴國欽、林志城、林慶文:食品化學。華香園出版社。台北,台灣(1997)。
郭怡孜:應用最適化方法開發具隔熱性益生菌微膠囊。國立臺灣大學動物科學技術學系碩士論文,台北,台灣(2006)。
陳姿伶:幾丁聚醣—果膠複合顆粒及交聯顆粒之特性及在包覆阿莫斯西林與其控制釋放上之研究。國立臺灣海洋大學食品科學研究所碩士論文,基隆,台灣(2002)。
葉長盛:仙草葉膠、三仙膠與刺槐豆膠應用於粉圓模式系統之評估。國立中興大學食品暨應用生物科技研究所碩士論文,台中,台灣(2006)。
劉廷英、吳家成、陳美惠、莊淑惠、吳志律、陳慶源、袁國芳、林欣榜、賴進此、許美芳、陳健祺、林錫杰、莊淑惠、陳彥霖:幾丁質/幾丁聚醣專輯。食品工業發展研究所。新竹,台灣(2001)。
蔡馥旦:牛蒡葉萃取液機能晶球製備及其體外模擬釋放評估。國立中興大學食品暨應用生物科技研究所碩士論文,台中,台灣(2012)。
顏國欽、劉展冏、韓建國、劉冠汝、李嘉展、陳建元、孫芳明、蘇敏昇、馮惠萍、謝秋蘭、饒家麟、梁弘人、林聖敦、江伯源、李政達、盧更煌、周志輝:食品化學。華格那企業有限公司。台北,台灣(2007)。
Ainsworth, P. (1994).Chemistry in the Kitchen-Fruit and Vegetables 1. Journal of Nutrition and Food Science, 94, 25 ~28.
Alvim, I. D., & Grosso, C. R. F. (2009). Microparticles obtained by complex coacervation: influence of the type ofreticulation and the drying process on the release of the core material. Food Science and Technology. 30, 1069-1076.
Ankerfors, C. (2008). Polyelectrolyte complexes: Their preparation, adsorption behaviour, and effect on paper properties. Sweden:Longman, (Chapter 1).
Annan, N. T., Borza, A. D., & Hansen, L. A. (2008). Encapsulation in alginate-coated gelatin microspheres improves survival of the probiotic Bifidobacterium adolescentis 15703T during exposure to simulated gastro-intestinal conditions. Journal of Agricultural and Food Chemistry, 52, 7300-7305.
Annan, N. T., Borza, A. D., & Hansen, L. T. (2008). Encapsulation in alginate-coated gelatin microspheres improve survival of the probiotic Bifidobacterium adolescentis 15703T during exposure to simulated gastro-intestinal conditions. Food Research International, 41, 184–193.
Azeez, O. S. (2005). Production of Dextrins from Cassava Starch. Leonardo Journal of Sciences, 7, 9~16.
Bakan, J. A. (1986). Microencapsulation. In L. Lachman H. A. Lieberman, & J. L. Kanig (Eds.), The theory and Practice of Industrial Pharmacy (pp. 412-429). Lea & Febiger, Philadelphia, USA.
Baroutkoub, A., Mehdi, R. Z., Beglarian, R., Hassan, J., Zahra, S., Mohammad, M. S., & Mohammad, E. (2010). Effects of probiotic yoghurt consumption on the serum cholesterol levels in hypercholestromic cases in Shiraz, Southern Iran. Journal of Scientific Research and Essays, 5, 2206-2209.
Boza, Y., Barbin, D., & Scamparini, A.R.P. (2004). Effect of spray-drying on the quality of encapsulated cells of Beijerinckia sp. Journal of Process Biochemistry, 39, 1275–1284.
Brossard, S. K., Du H., & Miller, J. D. (2008).Characteristics of dextrin adsorption by elemental sulfur. Journal of Colloid and Interface Science, 317, 18-25.
Burgain, J., Gaiani, C., Linder, M., & Scher, J. (2011). Encapsulation of probiotic living cells: From laboratory scale to industrial applications. Journal of Food Engineering, 104, 467–483.
Buschmann, H. J., & Schollmeyer, E. (2002). Applications of cyclodextrins in cosmetic products: a review. Journal of Cosmetic Science, 53, 185–191.
Cal, K., & Centkowska, K. (2008). Use of cyclodextrins in topical formulations: Practical aspects. European Journal of Pharmaceutics and Biopharmaceutics, 68, 467~478.
Calvo, P., Herna´ndez, T., Lozano, M., & Gonza´lez-Go´mez, D. (2010). Microencapsulation of extra-virgin olive oil by spray-drying: Influence of wall material and olive quality. European Journal of Lipid Science and Technology, 112, 852–858.
Carvalho, J., Goncalves, C., Gil, A. M., & Gama, F. M. (2007). Production and characterization of a new dextrin based hydrogel. European Journal of Polymer, 43, 3050-3059.
Chandramouli, V., Kailasapathy, K., Peiris, P., & Jones, M. (2004). An improved method of microencapsulation and its evaluation to protect Lactobacillus spp. in simulated gastric conditions. Journal of Microbiological Methods, 56, 27– 35.
Chávarri, M., Marañón, I., Ares, R., Ibáñez, F. C., Marzo, F., & Villarán, M. D. C. (2011). Microencapsulation of a probiotic and prebiotic in alginate-chitosan capsules improves survival in simulated gastro-intestinal conditions. Journal of Food Microbiology, 142, 185-189.
Chen, H., Ouyang, W., Martoni, C., & Prakash, S. (2009). Genipin Cross-Linked Polymeric Alginate-Chitosan Microcapsules for Oral Delivery: In-Vitro Analysis. International Journal of Polymer Science, doi:10.1155/2009/617184.
Cheng, S. Y., Yuen, C. W. M., Kan, C. W., & Cheuk, K. K. L. (2008). Development of Cosmetic Textiles Using Microencapsulation Technology. Research Journal of Textile and Apparel, 12, 41-51.
Darrabie, M. D., Jr. W. F. K., & Opar, E. C. (2005). Characteristics of Poly-L-Ornithine-coated alginate microcapsules. Biomaterials, 26, 6846-6852.
Dash, S., Murthy, P. N., Nath, L., & Chowdhury, P. (2010). Kinetic modeling on drug release from controlled drug delivery systems. Acta Poloniae Pharmaceutica n Drug Research, 67, 217-223.
Desai, K. G. H., & Park, H. J. (2005). Recent Developments in Microencapsulation of Food Ingredients. Journal of Drying Technology, 23, 1361–1394.
Desai, K. G. H., & Park, H. J. (2005). Recent Developments in Microencapsulation of Food Ingredients. Journal of Drying Technology. 23, 1361~1394.
Dhanasingh, S., & Nallaperumal, S. K. (2010).Chitosan/Casein Microparticles: Preparation,Characterization and Drug Release Studies. World Academy of Science, Engineering and Technology, 44, 229-233.
Dibaise, J. K., Zhang, H., Crowell, M. D., Karjmalnik-Brown, R., Decker, G. A., & Rittmann, B. E.(2008). Gut microbiota and its possible relationship with obesity. Mayo Clinic Proceedings, 83, 460-469.
Dimantov, A., Kesselman, E., & Shimoni, E. (2004). Surface characterization and dissolution properties of high amylase corn starch-pectin coatings. Food Hydrocolloids, 18, 29-37.
Ding, W. K., & Shah, N. P. (2008).An improved method of microencapsulation of probiotic bacteria for their stability in acidic and bile conditions during storage. Institute of Food Technologists, 74, M54-M56.
Ding, W. K., & Shah, N. P. (2009). Effect of various encapsulating materials on the stability of probiotic bacteria. Food Microbiology and Safety, 74, M100-M107.
Doleyres, Y., & Lacroix, C. (2005). Technologies with free and immobilised cells for probiotic bifidobacteria production and protection. International Dairy Journal, 15, 973–988.
Dubey, R., Shami, T.C., & Rao, K.U. B. (2009). Microencapsulation Technology and Applications. Journal of Defence Science. 59, 82– 95.
Earnshaw, R. G. (1992). The antimicrobial action of lactic acid bacteria: natural food preservation systems. In: The Lactic Acid Bacteria in Health and Disease. B. J. B. Wood (Eds.), Elsevier Applied Science (pp. 211-232). London, UK.
Elcin, Y.M. (1995). Encapsulation of urease enzyme in xanthan–alginate spheres. Journal of Biomaterials, 16, 1157–1161.
El-Helw, A. M., Al-Hazimi, A. M., Youssef, R. M., & Pharm B. (2008). Preparation of Sustained Release Phenobarbitone Microspheres Using Natural and Synthetic Polymers. Medical Science, 15, 39-53.
El-Nawawi, S. A., & Heikal, Y. A. (1995). Factors affecting the production of low-ester pectin gels. Carhohydrorr Polymers, 26, 189-l 93.
Erdinc, B. I. (2007). Micro/nanoencapsulation of proteins within alginate/chitosan matrix by spray drying. Kingston, Ontario, Canada.
FAO/WHO (2001). Health and Nutritional Properties of Probiotics in Food including Powder Milk with Live Lactic Acid Bacteria. Report of a joint FAO/WHO expert consultation on evaluation of health and nutritional properties of probiotics in food including powder milk with live lactic acid, Cordoba, Argentina 1-4 October, 2001.
Faria, S., Vieira, P. A., Resende, M. M., França, F. P., & Cardoso, V. L. (2009). A Comparison Between Shaker and Bioreactor Performance Based on the Kinetic Parameters of Xanthan Gum Production. Applied Biochemistry and Biotechnology, 156, 475-488.
Fotiadis, C. I., Stoidis, C. N., & Spyropoulos, B. G. (2008). Role of probiotics, prebiotics and synbiotics in chemoprevention for colorectal cancer. World Journal of Gastroenterol , 14, 6453-6457.
Fries, L., Antonyuk, S., Heinrich, S., Dopfer, D., & Palzer, S. (2013). Collision dynamics in fluidised bed granulators:A DEM-CFD study. Chemical Engineering Science, 86, 108-123.
Fuller, R. (1998). Probiotics in man and animals. Journal of Applied Bacterioogyl, 66, 365-378.
Gaurav, R., & Tejal, S. (2011). Liposomal Drug Delivery System: An Overview. Journal of Pharmaceutical & Biological Archives, 2, 1575-1580.
George, M., & Abraham, T. E. (2006). Polyionic hydrocolloids for the intestinal delivery of protein drugs: Alginate and chitosan-a review. Journal of Controlled Release, 114, 1-14.
Ghanbarzadeh, B., & Almasi, H. (2013). Biodegradable Polymers. Iran:Longman, (Chapter 6).
Gilliland, S. E., Nelson, C. R., & Maxwell, C. (1985). Assimilation of cholesterol by Lactobacillus acidophilus. Journal of Applied and Environmental Micorbiology, 49, 377-381.
Gismondo, M. R., Drago, L., & Lombardi, A. (1999). Review of probiotics available to modify gastrointestinal flora. Journal of Antimicrobial Agents, 12, 287-292.
Gursel, I., & Hasirci, V. (1995). Properties and drug release behavior of poly (3-hydroxybutyric acid) and various poly(3-hydroxybutyrate-hydroxyvalerate) copolymer microcapsules. Journal of Microencap, 12, 185-93.
Havenaar, R., Brink, T. B., & HuisIn’t, Veld J. H. J. (1992). Selection of strains for probiotic use. Journal of Chapman and Hall, 1, 209-224.
He, T., Priebe, M. G., Zhong, Y., Huang, C., Harmsen, H. J., Raangs, G. C., Antoine, J. M., Welling, G. W., & Vonk, R. J. (2008). Effects of Yogurt and Bifidobacteria Supplementation on the Colonic Microbiota in Lactose-Intolerant Subjects. Journal of Applied Microbiology, 104, 595-604.
Heidebach, T., Forst, P., & Kulozik, U. (2009). Microencapsulation of probiotic cells by means of rennet-gelation of milk proteins. Journal of Food Hydrocolloids, 23, 1670-1677.
Henning, S., Leick, S., Kott, M., Rehage H., & Suter, D. (2012). Sealing liquid-filled pectinate capsules with a shellac coating. Journal of Microencapsulation, 29, 147-155.
Holzapfel, W. H., & Schillinger U. (2002). Introduction to pre- and probiotics. Journal of Food Research International, 35, 109-116
Holzapfel, W. H., Haberer, P., Snel J., Schillinger, Huis in’t Veld J. H.J. (1998). Overview of gut flora and probiotics. Journal of Food Microbiology, 41 85–101.
Hoover, D. G. (1993). Bifidobacteria: activity and potenial benefits. Journal of Food Technology, 47, 120-124.
Hughes, D. B., & Hoover, D. G. (1991). Bifidobacteria: Their potential for use in American dairy products. Journal of Food Technology, 45, 74–83.
Huis,in't, Veld, J. H. J., & Havenaar, R. (1991). Probiotics and health in man and animal. Journal of Chemical Technology and Biotechnology, 51, 562-567.
Israelachvili, J.N., Mitchell, D.J., & Ninham, B.M.W. (1977). Theory of self-assembly of lipid bilayers and vesicles. Biochimica et Biophysica Acta (BBA) - Biomembranes, 470, 185-201.
Jadupati, M., Tanmay, D., & Souvik, G. (2012).Microencapsulation:an indispensable technology for drug delivery system. International Research Journal of Pharmacy, 3, 8-13.
Jiang, T., Mustapha, N., & Savaiano, D. A. (1996). Improvement of Lactose Digestion in Humans by of Unfermented Milk Containing Bifidobacterium longum. Journal of Dairy Science, 79(5), 750-757.
Junga, J., Arnoldb, R. D., & Wicker, L. (2013). Pectin and charge modified pectin hydrogel beads as a colon-targeted drug delivery carrier. Colloids and Surfaces B: Biointerfaces, 104, 116-121.
Jyothi N.V.N., Sakarkar, S. N., Kumar, G. Y. S., & Prasanna, M. (2010). Microencapsulation techniques, factors influencing encapsulation efficiency: A review. Journal of microencapsulation, 27, 187~197.
Kailasapathy, K., & Sultana, K. (2003). Survival and b-D-galactosidase activity of encapsulated and free Lactobacillus acidophilus and Bifidobacterium lactis in ice-cream. Australian Journal of Dairy Technology, 58, 223–227.
Kim, H. S., & Gilliland, S. (1983). Lactobacillus acidophilus as a dietary adjunct for milk to aid lactose digestion in humans. Journal of Dairy Science, 66, 959-966.
Kosaraju, S. L. (2005). Colon targeted delivery systems: review of polysaccharides for encapsulation and delivery. Critical Reviews in Food Science and Nutrition, 45, 251-258.
Krasaekoopt, W., Bhandari, B., & Deeth. (2004). The influence of coating materials on some properties of alginate beads and survivability of microencapsulated probiotic bacteria. International Dairy Journal, 14, 737-743.
Kurkov, S. V., & Loftsson, T. (2012). Cyclodextrins. Journal of Pharmaceutics, 453, 167-180.
Lanciotti, R., Patrignani, F., Bagnolini, F., Guerzoni, M.E., & Gardini, F. (2003).Evaluation of diacetyl antimicrobial activity against Escherichia coli, Listeria monocytogenes and Staphylococcus aureus. Journal of Food Microbiology, 20, 535-543.
Lasic, D. D. (1995). Applications of Liposomes. Liposome Technology, 1, 493-516.
Lee, J. S., Cha, D. S., & Park, H. J. (2004). Survival of freeze-dried Lactobacillus bulgaricus KFRI 673 in Chitosan-Coated Calcium Alginate Microparticles. Journal of Agricultural and Food Chemistry, 52, 7300-7305.
Lee, K.-Y., & Heo T.- R. (2000). Survival of bifidobacterium longum immobilized in calcium alginate beads in simulated gastric juices and bile salt solution. Applied and environmental microbiology, 66, 869-873.
Lee, S. J., & Rosenberg, M. (1999). Preparation and properties of glutaraldehyde cross-linked whey protein-based microcapsules containing theophylline. Journal of Controlled Release, 61, 123-136.
Lee, S. J., & Rosenberg, M. (2000). Whey protein-based microcapsules prepared by double emulsication and heat gelation. LWT - Food Science and Technology, 33(2), 80-88.
Lee, Y.-K., & Salminen, S. (1995). The coming of age of probiotics. Journal of Trends Food Science and Technology, 6, 241-244.
Lian, W.-C., Hsiao, H.-C., & Chou, C.-C. (2003).Viability of microencapsulated bifidobacteria in simulated gastric juice and bile solution. Journal of Food Microbiology, 86, 293-301.
Lilly, D. M., & Stillwell, R. H. (1965). Probiotics: growth-promoting factors produced by microorganisms. Science, 147, 747-748.
Loftsson, T., & Duchene, D. (2007). Cyclodextrins and their pharmaceutical applications. Journal of Pharmaceutics, 329, 1–11.
Lopez-Rubio, A., Gavara, R., & Lagaron, J. M. (2006). Bioactive packaging: turning foods into healthier foods through biomaterials. Trends in Food Science and Technology, 17, 567-575.
Lourens-Hattingh, A., & Viljoen B. C. (2001). Yogurt as probiotic carrier food. Journal of International Dairy, 11, 1-17.
Madene, A., Jacquot, M., Scher, J., & Desobry, S. P. (2006). Flavour encapsulation and controlled release - a review. International Journal of Food Science and Technology, 41, 1-21.
Mandal, S., Puniya, A. K., & Singh, K. (2006). Effect of alginate concentrations on survival of microencapsulated Lactobacillus casei NCDC-298. International Dairy Journal, 16, 1190-1195.
Mao, R., Tang, J., & Swanson, G. (2000). Texture properties of high and low acyl mixed gellan gels. Journal of rbohydrate Polymers, 41, 331-338.
Miyoshi, E., Takaya, T., & Nishinari, K. (1996). Rheological and thermal studies of gel-sol transition in gellan gum aqueous solutions. Journal of Carbohydrate polymers, 30, 109-119.
Modler, H. W., McKellar, R. C., & Yaguchi, M. (1990). Bifidobacteria and bifidogenic factors. Journal of Canadian Institute of Food Science and Technology, 23, 29-41.
Morris, G. A., Kok, G. A., Harding, S. E., & Adam, G. G. (2010). Polysaccharide drug delivery systems based on pectin and chitosan. Biotechnology and Genetic Engineering Reviews, 27, 257-284.
Murtaza, G., Ahmad, M., & Shahnaz, G. (2010). Microencapsulation of diclofenac Sodium by non-solvent addition technique. Tropical Journal of Pharmaceutical Research, 9, 187-195.
Naidu, A.S., W.R. Bidlack, & R.A. Clemens. (1999). Probiotic spectra of lactic acid bacteria (LAB). Journal of Critical Reviews in Food Science and Nutrition, 39, 13-126.
Nickerson, M. T., Paulson, A. T., & Speers, R. A. (2003). Rheological properties of gellan solutions:effect of calcium ions and temperature on pre-gel formation. Journal of Food Hydrocolloids, 17, 577–583.
Nishi, H., & Kuwahara, Y. (2001). Enantiomer separation by capillary electrophoresis utilizing noncyclic mono-, oligo- and polysaccharides as chiral selectors. Journal of Biochemical Biophysical Methods, 48, 89-102.
O’Flaherty, S., & Klaenhammer, T. R. (2010). The role and potential of probiotic bacteria in the gut, and the communication between gut microflora and gut/host. Journal of International Dairy Journal, 20, 262-268.
O’Sullivan, L. Ross, R. P., & Hill, C. (2002). Potential of bacteriocin-producing lactic acid bacteria for improvements in food safety and quality. Biochimie, 84, 593–604.
O’Sullivan, M. G., Thornton, G., O’Sullivan, G. C., & Collins, J. K. (1992). Probiotic bacteria: myth or reality? Trends in Food Science and Technology, 3, 309-314.
Oliveiraa, G F., Ferrari, P C., Carvalho, L. Q., & Evangelistaa, R. C. (2010). Chitosan-pectin multiparticulate systems associated with enteric polymers for colonic drug delivery. Journal of Carbohydrate Polymers, 82, 1004-1009.
Omoto, T., Uno Y., & Asai, I. (1999). The latest technologies for the application of gellan gum. Progress in Colloid and Polymer Science, 114, 123-126.
Ouwehand, A. C., & Salminen, S. J. (1998). The health effects of cultured milk products with viable and nonviable bacteria. International Dairy Journal, 8, 749-758.
Ouwehand, A. C., & Salminen, S. J. (1998). The health effects of cultured milk products with viable and nonviable bacteria. International Dairy Journal, 8, 749-758.
Ouyang, W., Chen, H., Jones, M., Haque, T., Martoni, C., Afkhami, F., & Prakash, S. (2009). Novel multi-layer APPPA microcapsules for oral delivery: preparation condition, stability and permeability. Indian Journal of Biochemistry and Biophysics, 46, 491-497.
Parvez, S., Malik, K. A., Ah, K. S., & Kim H.-Y. (2006). Probiotics and their fermented food products are beneficial for health. Journal of Applied Microbiology, 100, 1171-1185.
Patli, J. S., Kamalapur, M. V., Marapur, S. C., & Kadam, D. V. (2010). Ionotropic gelation and polyelectrolyte complexation: The novel thchniques to design hydrogel particulate sustained, modulated drug delivery system: A review. Digest Journal of Nanomaterials and Biostructures, 5, 241-248.
Pillay, V., & Fassihi, R. (1999). In vitro release modulation from crosslinked pellets for site-specific drug delivery to the gastrointestinal tract II. Physicochemical characterization of calcium–alginate, calcium– pectinate and calcium–alginate–pectinate pellets. Journal of Controlled Release, 59, 243-256.
Pillay, V., & Fassihi, R. (1999). In vitro release modulation from crosslinked pellets for site-specific drug delivery to the gastrointestinal tract II. Physicochemical characterization of calcium–alginate, calcium– pectinate and calcium–alginate–pectinate pellets. Journal of Controlled Release, 59, 243–256.
Pongjanyakul, T., & Puttipipatkhachorn, S. (2007). Xanthan–alginate composite gel beads: Molecular interaction and in vitro characterization. International Journal of Pharmaceutics, 331, 61–71.
Pool-Zobel, B. L., & Sauer, J. (2007). Overview of experimental data on reduction of colorectal cancer risk by inulin-type fructans. Journal of Nutrition, 137, 2580-2584S.
Prajapati, V. D., Jani, G. K., Zala, B. S., & Khutliwala, T. A. (2013). Rheological properties of gellan solutions:effect of calcium ions and temperature on pre-gel formation. Journal of Carbohydrate Polymers, 93, 670-678.
Qi, W., Ma, J., Liu, Y., Liu, X., Xiong, Y., Xie, Y., & Ma, X. (2006). Insight into permeability of protein through microcapsule membranes. Journal of Membrane Science, 269, 126–132.
Radley J.A. (1976). Industrial Uses of Starch and its Derivatives. England: Longman, (Chapter 1).
Rajinikanth, P. S., & Mishra, B. (2007). Preparation and in vitro characterization of gellan based floating beads of acetohydroxamic acid for eradication of H. pylori. Journal of Acta Pharmaceutical, 57, 413-427.
Rao, A. V., Shiwnarain, N., & Mahraj, I. (1989). Survival of microencapsulated Bifidobacterium pseudolongum in simulated gastric and intestinal juices. Canadian Institute of Food Science and Technology Journal, 22, 345-349.
Reddy, K. R., & Reddy, P. S. (2010). Effect of different Co-polymers on Sodium Alginate Microcapsules Containing Isoniazid. Journal of PharmTech Research, 2, 2198-2203.
Reid, G., Jass, J., Sebulsky, M. T., & McCormick, J. K. (2003). Potential Uses of Probiotics in Clinical Practice. Clinical Microbiology Reviews, 16, 658-672.
Richardson, G., Kidman, S., Langton, M., & Hermansson, A.-M. (2004). Differences in amylose aggregation and starch gel formation with emulsifiers. Journal of Carbohydrate Polymers, 58, 7-13.
Ridley, B. L., O’Neill, M. A., & Mohnen, D. (2001). Pectins: structure, biosynthesis, and oligogalacturonide-related signaling. Phytochemistry, 57, 929-967.
Rodd, A. B., Cooper-White, J., Dunstan, D. E., & Boger, D. V. (2001). Gel point studies for chemically modified biopolymer networks using small amplitude oscillatory rheometry. Journal of Science and Technology of Polymers, 42, 185-198.
Roux, M., Perly, B., & Djedaı¨ni-Pilard, F. (2007). Self-assemblies of amphiphilic cyclodextrins. Journal of European Biophysics, 36, 861-867.
Rowley, J.A., Madlambayan, G., & Mooney, D. J. (1999). Alginate hydrogels as synthetic extracellular matrix materials. Journal of Biomaterials, 20, 45-53.
Saarela, M., Lahteenmaki, L., Salminen, S., & Mattila-Sandholm, S. (2002). Gut bacteria and health foods-the European perspective. Journal of Food Microbiology, 78, 99-117.
Sabra, W., Zeng, A. P., & Deckwer, W. D. (2001). Bacterial alginate:physiology, product quality and process aspects. Applied Microbiology and Biotechnology, 56, 315-325.
Sandoval-Castilla, O., Lobato-Calleros, C., Garcia-Galindo, H. S., Alvarez-Ramirez J., & Vernon-Carter E. J. (2010).Textural properties of alginate-pectin beads and survivability of entrapped Lb. casei in simulated gastrointestinal conditions and in yoghurt. Food Research International, 43, 111-117.
Sankalia, M. C., Mashru, R. C., Sankalia, J. M., & Sutariya V. B. (2007). Reversed chitosan-alginate polyelectrolyte complex for stability improvement of alpha-amylase: Optimization and physicochemical characterization. European Journal of Pharmaceutics and Biopharmaceutics , 65, 215-232.
Santana, P., Huda N., & Yang T. A. (2012). Gel characteristics of Surimi Powder added with hydrocolloids. UMT 11th International Annual Symposium on Sustainability Science and Management, Terengganu, Malaysia. 09th-11th July 2012.
Scher, H. B., Rodson, M., & Lee, K.-S. (1998). Microencapsulation of Pesticides by Interfacial Polymerization Utilizing Isocyanate or Aminoplast Chemistry. Pest Management Science, 54, 394~400.
Schrezenmeir, J., & Vrese, M. D. (2001). Probiotics, prebiotics, and synbiotics-approaching a definition. Journal of Clinical Nutrition, 73, 361-4S.
Shahidi, F., & Han, X. Q. (1993). Encapsulation of food ingredients. Journal of Critical Reviews in Food Science and Nutrition, 33, 501-547.
Shalviri, A., Liu Q., Abdekhodaie, M. J., & Wu, X. Y. (2010). Novel modified starch-xanthan gum hydrogels for controlled drug delivery: Synthesis and characterization. Carbohydrate Polymers, 79, 898-907.
Shan, Y. (2011). Viability Of microencapsulation of E.Coli DH5 for urea removal using inkjet bio-prinying. USA:Longman, (Chapter 1).
Siepmann, J., & Peppas, N.A. (2001). Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Advanced Drug Delivery Reviews, 48, 139-157.
Singhvi, G., & Singh, M. (2011). Review in-vitro drug release characterization models. Journal of Pharmaceutical Studies and Research, II, 77-84.
Sjosten, J., Golriz M. R., & Grace J. R. (2006). Further study on the influence of particle coating on fluidized bed heat transfer. International Journal of Heat and Mass Transfer, 49, 3800-3806.
Soma P. K., Williams P. D., & Lo Y. M. (2009). Advancements in non-starch polysaccharides research for frozen foods and microencapsulation of probiotics. Frontiers of Chemical Science and Engineering, 3, 413-426.
Sunitha, S., Amareshwar, M., Santhoshkumar, N., & Vijaykumar, N. (2010). Study on effect of solvents and nonsolvents on the release of drug from microcapsules prepared by various coacervation phase separation techniques. Journal of Pharmacy and Pharmaceutical Sciences, 2, 95-100.
Szetjli, J.(1998). Introduction and general overview of cyclodextrin chemistry. Chemical Reviews, 98, 1743-53.
Taormina, P J., Niemira, B. A., & Beuchat, L. R. (2001). Inhibitory activity of honey against foodborne pathogens as influenced by the presence of hydrogen peroxide and level of antioxidant power. Journal of Food Microbiology, 69, 217-225.
Uresti, R. M., López-Arias, N., Ramírezl, J. A., & Vázquez M. (2003). Effect of amidated low methoxyl pectin on the mechanical properties and colour attributes of fish mince. Food Technology and Biotechnology, 41, 131-136.
Vahabzadeh, F., Zivdar, M., & Najafi, A. (2004). Microencapsulation of sweet orange oil by complex coacervation and itsrelease behavior. Transactions B: Applications. 17, 333-342.
Vall, E. M. M. D. (2004). Cyclodextrins and their uses: a review. Process Biochemistry, 39, 1033-1046.
Verma, A., & Pandit, J. K. (2011). Rifabutin-loaded Floating Gellan Gum Beads: Effect of Calcium and Polymer Concentration on Incorporation Efficiency and Drug Release. Tropical Journal of Pharmaceutical Research February, 10, 61-67.
Vesa, T. H., Marteau, P., & Korpela, R. (2000). Lactose intolerance. Journal of American College of Nutrition, 19(2), 165-175.
Vonk, R. J., Reckman, G. A. R., Harmsen, H. J.M., & Priebe, M. G. (2012). Probiotics. Netherlands:Longman, (Chapter 7).
Voo, W.-P., Ravindra, P., Tey, B.-T., & Chan, E.-S. (2011). Comparison of alginate and pectin based beads for production of poultry probiotic cells. Journal of Bioscience and Bioengineering, 111, 294-299.
Vrese, M. d., Stegelmann, A., Richter, B., Fenselau, S., Laue, C., & Schrezenmeir, J. (2001). Probiotics-compensation for lactase insufficiency. American Journal of Clinical Nutrition, 73, 421-429S.
Wang, K., & He, Z. (2002). Alginate-konjac glucomannan-chitosan beads as controlled release matrix. Journal of Parmaceutics, 244, 117-126.
Wang, Y., Lu, Z., Lv, F., & Bie, X. (2009). Study on microencapsulation of curcumin pigments by spray drying. Journal of European Food Research and Technology, 229, 391-396.
Willats, W. G. T., Knox, J. P., & Mikkelsen, J. D. (2006). Pectin: new insights into an old polymer are starting to gel. Trends in Food Science & Technology, 17, 97-104.
Wilson, N., & Shah, N. P. (2007). Microencapsulation of Vitamins. Asian Journal of Food , 14, 1-14.
Yang, Z. (2000). Antimicrobial compounds and extracellular polysaccharides produced by lactic acid bacteria structures and properties. Finland:Longman, (Chapter 2).
Yeo, Y., Baek, N., & Park, K. (2001). Microencapsulation methods for delivery of protein drugs. Biotechnol. Bioprocess Engineering, 6, 213-230.
Yeo, Y., Basaran, O. A., & Park, K. (2003). A new process for making reservoir-type microcapsules using inkjet technology and interfacial phase separation. Journal of Controlled Release, 93, 161-173.
Zang, Y., Wei, W., Lv, P., Wang, L., & Ma, G. (2010). Preparation and evaluation of alginate-chitosan microspheres for oral delivery of insulin. European Journal of Pharmaceutics and Biopharmaceutics, 77, 11-19.
Zuidam, N. J., & Shimoni, E. (2010). Encapsulation Technologies for Active Food Ingredients and Food Processing. Netherlands:Longman, (Chapter 2).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔