|
1.Anderson, J. A., & Davis, J. (1995). An introduction to neural networks (Vol. 1): MIT Press. 2.Brezmes, J., Fructuoso, M. L., Llobet, E., Vilanova, X., Recasens, I., Orts, J., . . . Correig, X. (2005). Evaluation of an electronic nose to assess fruit ripeness. Sensors Journal, IEEE, 5(1), 97-108. 3.Gardner, J., Craven, M., Dow, C., & Hines, E. (1998). The prediction of bacteria type and culture growth phase by an electronic nose with a multi-layer perceptron network. Measurement Science and Technology, 9(1), 120. 4.Gardner, J. W., Shin, H. W., & Hines, E. L. (2000). An electronic nose system to diagnose illness. Sensors and Actuators B: Chemical, 70(1), 19-24. 5.Haykin, S. S. (2009). Neural networks and learning machines (Vol. 3): Prentice Hall New York. 6.Hecht-Nielsen, R. (1989). Theory of the backpropagation neural network. Paper presented at the Neural Networks, 1989. IJCNN., International Joint Conference on. 7.Kosko, B. (1988). Bidirectional associative memories. Systems, Man and Cybernetics, IEEE Transactions on, 18(1), 49-60. 8.Legenstein, R., Chase, S. M., Schwartz, A. B., & Maass, W. (2010). A reward-modulated hebbian learning rule can explain experimentally observed network reorganization in a brain control task. The Journal of Neuroscience, 30(25), 8400-8410. 9.Lin, C.-S., & Li, C.-K. (2000). A sum-of-product neural network (SOPNN). Neurocomputing, 30(1), 273-291. 10.Pan, C.-H., Hsieh, H.-Y., & Tang, K.-T. (2012). An Analog Multilayer Perceptron Neural Network for a Portable Electronic Nose. Sensors (Basel), 13(1), 193-207. 11.Peris, M., & Escuder-Gilabert, L. (2009). A 21st century technique for food control: Electronic noses. Analytica Chimica Acta, 638(1), 1-15. 12.Plaut, D. C., Nowlan, S. J., & Hinton, G. E. (1986). Experiments on learning by back propagation. 13.Röck, F., Barsan, N., & Weimar, U. (2008). Electronic nose: current status and future trends. Chemical Reviews, 108(2), 705-725. 14.Rosenblatt, F. (1961). Principles of neurodynamics. perceptrons and the theory of brain mechanisms: DTIC Document. 15.Rowley, H. A., Baluja, S., & Kanade, T. (1998). Neural network-based face detection. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 20(1), 23-38. 16.Rumelhart, D. E., & McClelland, J. L. (1986). Parallel distributed processing: explorations in the microstructure of cognition. Volume 1. Foundations. 17.Scott, S. M., James, D., & Ali, Z. (2006). Data analysis for electronic nose systems. Microchimica Acta, 156(3-4), 183-207. 18.Shurmer, H. V., & Gardner, J. W. (1992). Odour discrimination with an electronic nose. Sensors and Actuators B: Chemical, 8(1), 1-11. 19.Snopok, B., & Kruglenko, I. (2002). Multisensor systems for chemical analysis: state-of-the-art in electronic nose technology and new trends in machine olfaction. Thin Solid Films, 418(1), 21-41. 20.Tang, K.-T., Chiu, S.-W., Pan, C.-H., Hsieh, H.-Y., Liang, Y.-S., & Liu, S.-C. (2010). Development of a portable electronic nose system for the detection and classification of fruity odors. Sensors (Basel), 10(10), 9179-9193. 21.Werbos, P. J. (1990). Backpropagation through time: what it does and how to do it. Proceedings of the IEEE, 78(10), 1550-1560. 22.Zhang, H., Chang, M., Wang, J., & Ye, S. (2008). Evaluation of peach quality indices using an electronic nose by MLR, QPST and BP network. Sensors and Actuators B: Chemical, 134(1), 332-338. 23.張晉瑋. (2009). 植基於基因演算法的漸進式學習架構. 實踐大學資訊科技與管理研究所畢業論文 24.黃華山, & 邱一勳. (2005). 類神經網路預測台灣 50 股價指數之研究. 資訊, 科技與社會學報, 5, 19-42.
|