跳到主要內容

臺灣博碩士論文加值系統

(34.204.198.73) 您好!臺灣時間:2024/07/21 15:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王笠惟
研究生(外文):Wang, Li-Wei
論文名稱:超音波振動微引伸成形製程之分析
論文名稱(外文):An Analysis of Ultrasonic Vibration on Micro Drawing Processes
指導教授:黃永明黃永明引用關係
指導教授(外文):Huang, Yuung-Ming
口試委員:劉春和呂道揆
口試委員(外文):Liu, Chun-HeLeu, Daw-Kwei
口試日期:2014-01-20
學位類別:碩士
校院名稱:聖約翰科技大學
系所名稱:自動化及機電整合研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:99
中文關鍵詞:超音波振動微引伸極限引伸比
外文關鍵詞:Ultrasonic VibrationMicro Drawinglimiting Drawing ratio
相關次數:
  • 被引用被引用:0
  • 點閱點閱:191
  • 評分評分:
  • 下載下載:27
  • 收藏至我的研究室書目清單書目收藏:0
本文是以I-DEAS 套裝軟體建立模型,並且網格化後,再使用DYNAFORM 有限元素分析軟體模擬不鏽鋼板材之微引伸成形。所有料片為SUS304 不鏽鋼薄板材料,並經過標準拉伸試驗以得材料之機械性質,以驗證有限元素分析軟體對圓杯與橢圓杯微引伸成形之準確性與可行性。在成形施加超音波振動於微引伸模具,探討成形沖頭負荷與衝程之關係、主應力分佈、變形歷程及成形極限等。
在圓杯成形部份,沖頭負荷隨著衝程增加而上升,直到料片脫離壓料板後,成形負荷才趨於平緩與下降。最小厚度出現在工件與沖頭圓角接觸處。經由圓沖頭直徑與初始料片直徑所定義之極限引伸比得知,圓杯成形之極限引伸比為1.833,施加超音波振動後,可有效降低沖頭負荷,並提高極限引伸比為1.917。當施加超音波振動時,可以使料片直徑由10.5 mm之最大負荷1707.44 N,有效降低至最低1246.72 N,其最大負荷下降26.98%。當施加超音波振幅之沖頭行程在相同成形力1200 N 情況下,振幅8.6 μm 比無施加超音波振動之沖頭行程增加了18.771 %,得知施加超音波振動可以使料片行程所需之沖頭負荷下降而增加行程,使料片成形性提高。

在橢圓杯成形部份,最小厚度出現在工件與沖頭長軸接觸處,而工件短軸區域則因為曲率半徑較大,所受之周向拉伸應力較小,故厚度變化不明顯。經由橢圓沖頭周長與初始料片周長所定義之極限引伸比得知,橢圓杯成形之極限引伸比為2.015,施加超音波振動後,可有效降低沖頭負荷,並提高極限引伸比為2.116,當施加超音波振動時,可以使料片直徑由10 mm 之最大負荷1472.23 N,有效降低至最低1266.17 N,其最大負荷下降14%。當施加超音波振幅之沖頭行程在相同成形力1000 N 情況下,振幅8.6 μm 比無施加超音波振動之沖頭行程增加了8.917 %,得知施加超音波振動可以使料片行程所需之沖頭負荷下降而增加行程,使料片成形性提高。
在微成形實驗中,模具的間隙與誤差需要精準,否則在成形過程中會造成料片發生單邊引伸,導致成形失敗。

This research employs I-DEAS software to build up the model, DYNAFORM finite element analysis software to simulate the micro deep drawing process assisted with ultrasonic vibration with stainless steel plate. The experimental materials adopt SUS304 stainless steel thin plates which the mechanical properties were attained through standard tension testing. To confirm the suitability and feasibility, we apply ultrasonic vibration to micro deep drawing die and then discuss the relation between punch load and stroke, the distribution of main stress, deforming process and forming limit.
In terms of round cups forming process, the punch load increases with increasing stroke. This increase continues up until the specimen apart from the punch then the forming load trends to decrease gently. The local region at the place formed specimen contact with punch corner where the minimum thicknesses have. Through limit drawing ratio which defined by round punch diameter and initial specimen diameter the limit drawing ration of round cup is 1.833. While applied ultrasonic vibration may efficiency lower punch load and improve the limit drawing ratio to 1.913. The drop in maximum load from 1707.44 N decreases to 1246.72 N in effect to a specimen diameter 10.5 mm, lower the maximum load 26.98%. On the condition forming force 1200 N, the stroke was 18.771% higher than the experiment result without ultrasonic vibration.
On the elliptic cups forming process, the local region at the place specimen contact with the major axis of punch where the minimum thickness has, while the large radius of curvature of minor axis the specimen have smaller axial tension stress, the thickness variation is unobvious. Through limit drawing ratio which defined by elliptic punch circumference and initial specimen circumference the limit drawing ratio of elliptic cup is 2.015. While applied ultrasonic vibration may efficiency lower punch load and improve the limit drawing ratio to 2.116. The drop in maximum load from 1472.23 N decreases to 1266.17 N in effect to a specimen diameter 10 mm, lower the maximum load 14%. On the condition forming force 1000 N, the stroke was 8.917% higher than the experiment result without ultrasonic vibration.
The micro deep drawing assisted with ultrasonic vibration has been proved to lower punch load and increase stroke at the same time through the forming process, eventually attained better formed products. To avoid failure in forming, the gate between punch and die has to be precious controlled, or the specimen could be draw unequally.

論文摘要 I
ABSTRACT III
致謝 V
目錄 VI
圖目錄 X
表目錄 XIV
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.2.1 微成形製程 2
1.2.2 超音波振動輔助金屬成形 5
1.2.3 橢圓杯成形製程 7
1.3 論文架構 8
第二章 研究方法與基礎理論 9
2.1 Dynaform 有限元素模擬分析系統之介紹 9
2.2 基本假設與原理 11
2.3 有限變形之應變與應變率 12
2.4 有限變形之應力與應力率 13
2.5 有限變形之total Lagrangian formulation 15
2.6 有限變形之update Lagrangian formulation 18
2.7 材料之彈塑性構成關係式 19
2.8 超音波共振理論 22
2.9 引伸成形 25
2.9.1 引伸成形過程與成形模具 25
2.9.2 引伸比與引伸率 27
第三章 有限元素法與實驗設備簡介 28
3.1 有限元素法簡介 28
3.1.1 形狀函數(Shape function) 28
3.1.2 應變與位移關係式 28
3.1.3 元素之平衡方程式 29
3.1.4 整體結構之平衡方程式 31
3.1.5 求解方程式 31
3.1.6 動態方程式 31
3.2 實驗設備簡介 32
3.2.1 超音波設備 32
3.2.2 MTS拉伸試驗機 35
3.2.3 模具組立圖 37
3.3 拉伸試驗與結果 38
3.3.1 拉伸試片製作 38
3.3.2 拉伸試驗步驟 38
3.3.3 真實應力-真實應變 39
3.3.4 塑性強度係數與加工硬化指數 40
3.3.5 不鏽鋼(SUS304)之材料參數 40
第四章 超音波輔助圓杯微引伸成形製程之分析 41
4.1 實驗方式 41
4.2 圓杯極限引伸比(Limiting Drawing Ratio) 42
4.3 有限元素模擬設定 43
4.3.1 數值分析之流程 43
4.3.2 接觸與負載設定 44
4.4 超音波圓杯微引伸實驗與模擬成形比較 46
4.4.1 圓杯微引伸之沖頭負荷比較 46
4.4.2 料片應力分佈之模擬 47
4.4.3 數值模擬FLD 成形極限圖 49
4.5 工件厚度變化之比較 51
4.5.1 工件厚度之量測方式 51
4.5.2 工件厚度之比較 53
4.6 超音波振動輔助對圓杯微引伸之極限引伸比分析 56
4.7 超音波振動輔助對圓杯微引伸沖頭負荷之影響 63
4.8 超音波振動輔助對圓杯微引伸之成形性的影響 65
第五章 超音波輔助橢圓杯微引伸成形製程之分析 67
5.1 模具設計與實驗方式 67
5.2 橢圓杯極限引伸比(Limiting Drawing Ratio) 73
5.3 有限元素模擬設定 75
5.3.1 數值分析之流程 75
5.3.2 接觸與負載設定 75
5.4 超音波橢圓杯微引伸實驗與模擬成形比較 77
5.4.1 橢圓杯微引伸之沖頭負荷比較 77
5.4.2 料片應力分佈之模擬 78
5.4.3 數值模擬FLD 成形極限圖 80
5.5 工件厚度變化之比較 81
5.5.1 工件厚度之量測方式 81
5.5.2 工件厚度之比較 84
5.6 超音波振動輔助對橢圓杯微引伸之極限引伸比分析 86
5.7 超音波振動輔助對橢圓杯微引伸沖頭負荷之影響 92
5.8 超音波振動輔助對圓杯微引伸之成形性的影響 94
第六章 結論 96
參考文獻 98


[1]M. Geiger, M. Kleiner, R. Eckstein, N. Tiesler and U. Engel, “Microforming,” CIRP Annals - Manufacturing Technology, Vol. 50, pp. 445-462 (2001).
[2]Y. Saotome, K. Yasuda and H. Kaga, “Microdeep drawability of very thin sheet steels,” Journal of Materials Processing Technology, Vol. 113, pp. 641-647 (2001).
[3]M. Colgan and J. Monaghan, “Deep drawing process: analysis and experiment,” Journal of Materials Processing Technology, Vol. 132, pp. 35-41 (2003).
[4]F. Vollertsen, Z. Hu, H. S. Niehoff and C. Theiler, “State of the art in micro forming and investigations into micro deep drawing,” Journal of Materials Processing Technology, Vol. 151, pp. 70-79 (2004).
[5]V. Savas and O. Secgin, “A new type of deep drawing die design and experimental results,” Materials & Design, Vol. 28, pp. 1330-1333 (2007).
[6]K. Siegert and J. Ulmer, “Influencing the friction in metal forming processes by superimposing ultrasonic waves,” CIRP Annals - Manufacturing Technology, Vol. 50, pp. 195-200 (2001).
[7]李佳緯,“模具幾何在超音波輔助微沖壓成形之影響研究,”國立中央大學,機械工程學系,碩士論文 (2002)。
[8]V. C. Kumar and I. M. Hutchings, “Reduction of the sliding friction of metals by the application of longitudinal or transverse ultrasonic vibration,” Tribology International, Vol. 37, pp. 833-840 (2004).
[9]Y. Ashida and H. Aoyama, “Press forming using ultrasonic vibration,” Journal of Materials Processing Technology, Vol. 187-188, pp. 118-122 (2007).
[10]C. Bunget and G. Ngaile, “Influence of ultrasonic vibration on micro-extrusion,” Ultrasonics, Vol. 51, pp. 606-616 (2011).
[11]A. M. Zaky, A. B. Nassr and M. G. El-Sebaie, “Optimum blank shape of cylindrical cups in deep drawing of anisotropic sheet metals,” Journal of Materials Processing Technology, Vol. 76, pp. 203-211 (1998).
[12]H. Huh, S. H. Kim and S. H. Kim, “Process design for multi-stage elliptic cup drawing with the large aspect ratio,” Proc. ECCOMAS, pp. 1-16 (2000).
[13]J. B. Kim, J. W. Yoon, D. Y. Yang and F. Barlat, “Investigation into wrinkling behavior in the elliptical cup deep drawing process by finite element analysis using bifurcation theory,” Journal of Materials Processing Technology, Vol. 111, pp. 170-174 (2001).
[14]S. H. Kim, S. H. Kim and H. Huh, “Design modification in a multi-stage rectangular cup drawing process with a large aspect ratio by an elasto-plastic finite element analysis,” Journal of Materials Processing Technology, Vol. 113, pp. 766-773 (2001).
[15]D. H. Park, S. S. Kang and S. B. Park, “A study on the improvement of formability for elliptical deep drawing process,” Journal of Materials Processing Technology, Vol. 113, pp. 662-665 (2001).
[16]島川正憲著,賴耿陽譯,“超音波工學理論及實務,”復漢出版社,台南(2001)。
[17]賴耿陽,“高周波工業技術應用,”復漢出版社,台南(1997)。
[18]邱先拿,“沖壓模具技術手冊,”金屬工業研究發展中心,高雄(2000)。
[19]MARC Analysis Research Corporation, “MARC training guide,” MARC Analysis Research Corporation, pp. 21-24 (1999).
[20]王柏村,“電腦輔助工程分析實務與應用,”全華科技圖書股份有限公司 (2001)。
[21]京華超音波股份有限公司,規格手冊 (2010)。
[22]ASTM E345-93, “Standard test methods of tension testing of metallic foil,” Annual Book of ASTM Standards (2008).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top