跳到主要內容

臺灣博碩士論文加值系統

(44.201.92.114) 您好!臺灣時間:2023/04/01 16:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:石介文
研究生(外文):Jie-Wen Shih
論文名稱:以原子層沈積法製備氧化鋅摻鋁薄膜之研究
論文名稱(外文):Study of aluminum-doped zinc oxide thin films by atomic layer deposition
指導教授:張瑞慶張瑞慶引用關係
指導教授(外文):Rwei-Ching Chang
口試委員:李再成林宗鴻
口試委員(外文):Tzai-Cheng LiTsung-Hung Lin
口試日期:2014-06-06
學位類別:碩士
校院名稱:聖約翰科技大學
系所名稱:自動化及機電整合研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:116
中文關鍵詞:氧化鋅摻鋁薄膜原子層沈積系統
外文關鍵詞:aluminum-doped zinc oxidethin filmatomic layer deposition
相關次數:
  • 被引用被引用:2
  • 點閱點閱:94
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文以原子層沈積法(Atomic layer deposition, ALD)製作氧化鋅摻鋁 (Aluminum doped Zinc Oxide, AZO) 薄膜於撓性聚對苯二甲酸乙二酯(PET)基材上,並分析氧化鋅摻鋁薄膜的各種機光電性質。本文以不同的製程參數來沈積鋁含量2%、鋅鋁循環比例為49 : 1之氧化鋅摻鋁薄膜於PET基材上,為讓PET基材不直接受到溫度的加熱,而是以熱輻射的方式加溫,使可撓式基材能保持在較低的溫度,又能有適合的溫度環境下沈積薄膜。本文首先以不同的電漿表面處理時間,其時間分別為未處理、10、20分鐘等三種,探討其對於氧化鋅摻鋁薄膜性質的影響。再以較好的一組參數,分別以150、200、250℃等三種溫度製作氧化鋅摻鋁薄膜,探討沉積溫度對氧化鋅摻鋁薄膜性質的影響。最後再選出較佳的一組參數,分別製作50、100、150、200 nm等四種膜厚,用光激發光光譜儀、微米刮痕儀、霍爾效應量測儀、X光繞射儀、奈米壓痕儀等,來探討出以原子層沈積系統沈積氧化鋅摻鋁薄膜之最佳參數。實驗結果顯示,PET的表面處理時間,影響了薄膜本身之臨界附載力與粗糙度,隨著時間越長臨界附載力變佳,至於光電特性則是不受影響。而薄膜的性質隨著腔體環境溫度的不同而有影響,平均光穿透率則是皆在80%以上,電特性隨著溫度升至250℃而越好。對於不同的膜厚,薄膜在100 nm時有最佳的電性,而薄膜的附著力則隨著膜厚的增加而有提高的趨勢。
This work characterizes the mechanical and opto-electrical properties of aluminum doped Zinc Oxide (AZO) thin films on flexible PET substrates deposited by atomic layer deposition (ALD). The Aluminum composition of the AZO films was 2% by controlling the ratio of Zn:Al pulses as 49:1. The deposition process is heated by radiation method to protect the polymer substrates. Three types of plasma surface treatment, three deposition temperatures, and four film thicknesses are considered in prepared the specimens. Photoluminescence spectrometer, micro scratcher, Hall effects meter, X-ray diffraction machine, and nanoindentor are used to characterize the properties of the AZO thin films. The results show that the adhesion are improve by the surface plasma treatment of the PET substrates. The electric properties increase as the deposition temperature elevates. For various thicknesses, 100 nm thickness has the best electric property and the adhesion increases as the film thickness increases.
論文摘要 I
ABSTRACT II
致謝 III
目 錄 IV
圖 目 錄 VIII
表 目 錄 XII
第一章 緒論 1
1.1 研究動機與目的 1
1.2 文獻回顧 2
1.2.1 原子層沈積技術 2
1.2.2 AZO薄膜之基本特性 3
1.2.3 AZO薄膜之導電機制 4
1.2.4 不同鋅鋁循環比例對於AZO薄膜性質的影響 4
1.2.5 不同基材對於AZO薄膜性質的影響 5
1.2.5 不同鋁含量對於AZO薄膜性質的影響 5
1.2.6 不同沈積溫度對於AZO薄膜性質的影響 6
1.2.7 AZO薄膜的應用 7
1.3 本文做法 8
第二章 研究方法與基礎理論 13
2.1 原子層沈積原理 13
2.1.1 原子層化學氣相沈積之成長機制 15
2.1.2 溫度對於原子層沈積系統之影響 23
2.2 光激發光光譜儀 24
2.2.1 光穿透率架構與原理 24
2.2.2 光穿透率量測時注意事項 25
2.2.3 穿透率實驗步驟 25
2.3 X光繞射儀 26
2.3.1 X光繞射儀架構 26
2.3.2 X光繞射儀原理 27
2.3.3 優選取向 29
2.3.4 薄膜殘留應力量測 29
2.3.5 X光繞射儀注意事項 31
2.3.6 X光繞射儀實驗步驟 31
2.4 奈米壓痕儀 31
2.4.1 奈米壓痕儀架構 32
2.4.2 奈米壓痕儀量測理論 35
2.4.3 奈米壓痕儀鑽石探針特性 38
2.4.4 奈米壓痕儀校正與誤差 39
2.4.5 奈米壓痕儀實驗注意事項 47
2.4.6 奈米壓痕儀實驗步驟 47
2.5 微米刮痕儀 47
2.5.1 微米刮痕儀架構及原理 48
2.5.2 微米刮痕儀注意事項 49
2.5.3 微米刮痕儀實驗步驟 49
2.6 霍爾效應量測儀 49
2.6.1 霍爾效應量測儀架構 49
2.6.2 霍爾效應量測儀原理 50
2.6.3 霍爾效應量測儀實驗步驟 51
2.6.4 霍爾效應量測注意事項 51
第三章 薄膜製作 52
3.1 實驗材料 52
3.2 基材選用 53
3.3 前處理 53
3.4 氧化鋅摻鋁薄膜參數 55
第四章 結果與討論 58
4.1 不同電漿清洗時間分析 58
4.1.1 表面粗糙度分析 59
4.1.2 AZO成分分析 62
4.1.3 平均光穿透率分析 63
4.1.4 電特性分析 65
4.1.5 臨界附載力分析 68
4.1.6 晶格結構分析 72
4.1.7 第一部分結果分析 74
4.2 不同腔體溫度分析 74
4.2.1 AZO成分分析 75
4.2.2 平均光穿透率分析 77
4.2.3 電特性分析 79
4.2.4 臨界附載力分析 82
4.2.5 殘留應力分析 86
4.2.6 硬度及簡化模數分析 88
4.2.7 第二部分結果分析 92
4.3 不同膜厚分析 93
4.3.1 膜厚分析 94
4.3.2 AZO成分分析 98
4.3.3 平均光穿透率分析 99
4.3.4 電特性分析 101
4.3.5 臨界附載力分析 104
4.3.6 晶格結構分析 108
4.3.7 第三部分結果分析 110
第五章 結論 111
參考文獻 113


[1]王仁宏,李正中,PET塑膠片導電透光模(ITO)應用、設計及製造,《光訊雜誌 第八十期》,1999。
[2]S. Ummartyotin, J. Juntaro, M. Sain, H. Manuspiya, “Development of transparent bacterial cellulose nanocomposite film as substrate for flexible organic light emitting diode (OLED) display”, Industrial Crops and Products, Volume 35, Issue 1, pp. 92-97, 2012.
[3]Chien-Jung Chiang, and Steve Bull, Chirs Winscom, Andy Monkman, “A nano-indentation study of the reduced elastic modulus of Alq3 and NPB thin-film used in OLED devices”, Organic Electronics, Volume 11, Issue 3, pp. 450-455 , 2010.
[4]Y. S. Yoon, H. Y. Park, Y. C. Lim, K. G. Choi, K. C. Lee, G. B. Park, C. J. Lee, D. G. Moon, J. I. Han, Y. B. Kim, S. C. Nam, “Effects of parylene buffer layer on flexible substrate in organic light emitting diode”, Thin Solid Films, Volume 513, Issues 1-2, pp. 258-263 , 2006.
[5]Tuomo Suntola, Jorma Antson, “Method for Producing Compound Thin Films”, United States Patent, No. 4058430, 1977.
[6]Mikko Ritala, Markku Leskelä, Jan-Pieter Dekker, Cees Mutsaers, Pekka J. Soininen, Jarm Skarp, “Perfectly conformal TiN and Al2O3 films deposited by atomic layer deposition”, Chemical Vapor Deposition, Volume 5, Issue 1, pp. 7-9, 1999.
[7]M. D. Groner, F. H. Fabreguette, S. M. George, “Low-Temperature Al2O3 Atomic Layer Deposition”, Chemistry of Materials, Volume 16, No. 4, pp. 639-645, 2004.
[8]Jyh-Tsung Lee, Fu-Ming Wang, Chin-Shu Cheng, Chia-Chen Li, Chun-Hao Lin, “Low-temperature atomic layer deposited Al2O3 thin film on layer structure cathode for enhanced cycleability in lithium-ion batteries”, Electrochimica Acta, Volume 55, Issue 12, 2010, pp.4002-4006.
[9]Jani Pӓivӓsaari, Matti Putkonen, Timo Sajavaara, Lauri Niinistӧ, “Atomic layer deposition of rare earth oxides: erbium oxide thin films from β-diketonate and ozone precursors”, Journal of Alloys and Compounds, Volume 374, Issues1-2, pp. 124-128, 2004.
[10]Markku Leskelӓ, Mikko Ritala, “Atomic layer deposition (ALD): from precursors to thin film structures”, Thin Solid Films, Volume 409, Issue 1, pp. 138-146, 2002.
[11]A. Hikavyy, P. Clauws, K. Vanbesien, P. De Visschere, O. A. Williams, M. Daenen, K. Haenen, J. E. Butler, T. Feygelson, “Atomic layer deposition of ZnO thin films on boron-doped nanocrystalline diamond”, Diamond & Related Materials, Volume 16, Issues 4-7, pp. 983-986, 2007.
[12]David M. King, Xinhua Liang, Peng Li, Alan W. Weimer, “Low-temperature atomic layer deposition of ZnO films on particles in a fluidized bed reactor”, Thin Solid Films, Volume 516, Issue 23, pp. 8517-8523, 2008.
[13]E. Cianci, S. Lattanzio, G. Seguini, S.Vassanelli, M. Fanciulli, “Atomic layer deposited TiO2 for implantable brain-chip interfacing devices”, Thin Solid Films, Volume 520, Issue 14, pp. 4745-4748, 2012.
[14]Yong Shin Kim, Sun Jin Yun, “Studies on polycrystalline ZnS thin films grown by atomic layer deposition for electroluminescent applications”, Applied Surface Science, Volume 229, Issues 1-4, pp. 105-111, 2004.
[15]E. Guziewicz, M. Godlewski, K. Kopalko, E. Lusakowska, E. Dynowska, M. Guziewicz, M. M. Godlewski, M. Phillips, “Atomic layer deposition of thin films of ZnSe-structural and optical characterization”, Thin Solid Films, Volume 446, Issue 2, pp. 172-177, 2004.
[16]Jun-Jun Zhu, Zai-Quan Xu, Guo-Qiang Fan, Shuit-Tong Lee, Yan-Qing Li, Jian-Xin Tang, “Inverted polymer solar cells with atomic layer deposited CdS film as an electron collection layer”, Organic Electronics, Volume 12, Issue 12, pp. 2151-2158, 2011.
[17]Dae-Yong Moon, Dong-Suk Han, Sae-Yong Shin, Jong-Wan Park, Baek Mann Kim, Jae Hong Kim, “Effects of the substrate temperature on the Cu seed layer formed using atomic layer deposition”, Thin Solid Films, Volume 519, Issue 11, pp. 3636-3640, 2011.
[18]Jong-Bong Ha, Sang-Won Yun, Jung-Hee Lee, “Effect of poly silicon thickness on the formation of Ni-FUSI gate by using atomic layer deposited nickel film”, Current Applied Physics, Volume 10, Issue1, pp. 41-46, 2010.
[19]Anil U. Mane, John P. Greene, Jerry A. Nolen, Uma Sampathkumaran, Thomas W. Owen, Ray Winter, Jeffrey W. Elam, “Refractory nanoporous materials fabricated using tungsten atomic layer deposition on silica aerogels”, Applied Surface Science, Volume 258, Issue 17, pp. 6472-6478, 2012.
[20]H. L. Hartnagel, A. K. Jain, C. Tagadish, “Semiconducting Transparent Thin Films”, Institude of Physics Publication, pp.124, 1995.
[21]Takashi komarn, “Optimization of Transparent Conductive Oxide for Improved Resistance to Reactive and/or High Temperature Optoelectronic Device Processing”, Japanese Journal of Applied Physic, Volume 38, Issue 10, pp.5796-5804, 1999.
[22]Tae Young Ma, Dae Keum Shim, “Effects of rapid thermal annealing on the morphology and electrical properties of ZnO/In films”, Thin Solid Films, Volume 410, Issues 1-2, pp.8-13, 2002.
[23]Tadatsugu Minami, “New N-type Transparent Conducting Oxides”, MRS Bull, pp.38, 2000.
[24]Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S. J. Cho, H. Morkoҫ, “A comprehensive review of ZnO materials and devices”, Journal of Applied Physics, Volume 98, Issue 4, pp.1-103, 2005.
[25]Yung-Chen Cheng, “Effects of post-deposition rapid thermal annealing on aluminum-doped ZnO thin films grown by atomic layer deposition”, Applied Surface Science, Volume 258, Issue 1, pp.604-607, 2011.
[26]G. Luka, B.S. Witkowski, L. Wachnicki, R. Jakiela, I.S. Virt, M. Andrzejczuk, M. Lewandowska, M. Godlewski, “Electrical and mechanical stability of aluminum-doped ZnO films grown on flexible substrates by atomic layer deposition”, Materials Science and Engineering B, Volume 186, pp.15-20, 2014.
[27]Su-Cheol Gomg, Ji-Geun Jang, Ho-Jung Chang, Jin-Seong Park, “The characteristics of organic light emitting diodes with Al doped zinc oxide grown by atomic layer deposition as a transparent conductive anode”, Synthetic Metals, Volume 161, Issues 9-10, pp. 823-827, 2011.
[28]Tara Dhakal, Abhishek S. Nandur, Rachel Christian, Parag Vasekar, Seshu Desu, Charles Westgate, D.I. Koukis, D.J. Arenas, D.B. Tanner, “Transmittance from visible to mid infra-red in AZO films grown by atomic layer deposition system”, Solar Energy, Volume 86, Issue 5, pp. 1306-1312, 2012.
[29]O. Bethge, M. Nobile, S. Abermann, M. Glaser, E. Bertagnolli, “ALD grown bilayer junction of ZnO:Al and tunnel oxide barrier for SIS solar cell”, Solar Energy Materials and Solar Cells, Volume 117, pp.178-182, 2013.
[30]M. Otto, M. Kroll, T. Kӓsebier, S-M. Lee, M. Putkonen, R. Salzer, P.T. Miclea, R.B. Wehrspohn, “Conformal transparent conducting oxides on black silicon”, Volume 22, Issue 44, pp.5035-5038, 2010.
[31]Tuomo Suntola , “Atomic layer epitaxy”, in Handbook of Crystal Growth 3, Thin Films and Epitaxy, Part B: Growth Mechanisms and Dynamics, Volume 3, pp. 601-663, 1994.
[32]Cagla Ozgit, Inci Donmez, Mustafa Alevli, Necmi Biyikli, “Self-limiting low-temperature growth of crystalline AlN thin films by plasma-enhanced atomic layer deposition”, Thin Solid Films, Volume 520, Issue 7, pp. 2750-2755, 2012.
[33]章詠湟,陳智,彭智龍,原子層沈積系統原理及其應用,《科儀新知159》,2007。
[34]Tuomo Suntola, Arto J. Pakkala, Sven G. Lindfors, “Preparation of Ni / Al2O3 catalysts from vapor phase by Atomic Layer Epitaxy”, United States Patent, No. 4413022, 1983.
[35]U. Welzel, J. Ligot, P. Lamparter, A.C. Vermeulen, E.J. Mittemeijer, “Stress analysis of polycrystalline thin films and surface region by X-ray diffraction”, Applied Crystallography, Volume 38, pp.1-29, 2005.
[36]Hadi Savaloni, Ali Taherizadeh, Akbar Zendehnam, “Residual stress and structural characteristics in Ti and Cu sputtered films on glass substrates at different substrate temperatures and film thickness”, Physica B, Volume 349, Issues 1-4, pp. 44-55, 2004.
[37]Ismail C. Noyan, Cohen B. Jerome, “Residual Stress: Measurement by Diffraction and Interpretation” Springer Verlag, Ch. 6, 1987.
[38]潘鼎翔,光學薄膜應力量測與分析之探討,《碩士論文》,2003。
[39]小林英男,破壞力學,《龍璟文化技術叢書》,2004。
[40]郭正次,朝春光,奈米結構材料科學,《全華科技圖書》,2004。
[41]M. D. Michel, L. V Muhlen, C. A. Achete and C. M. Lepienski, “Fracture toughness, hardness, elastic modulus of hydrogenated amorphous carbon films deposited by chemical vapor deposition”, Thin Solid Films, Volume 496, Issue 2, pp. 481-488, 2006.
[42]Xiaodong Li, Bharat Bhushan, “Measurement of fracture toughness of ultra-thin amorphous carbon films”, Thin Solid Films, Volume 315, Issues 1-2, pp. 214-221, 1998.
[43]Hysitron, “TriboScope User Manual”, Hysitron, 2002.
[44]M. J. Mayo, R. W. Siegel, A. Narayanasmy, W.D. Nix, “Mechanical properties of nanophase TiO2 as determined by nanoindentation”, Journal of Materials Research, Volume 5, Issue 5, pp. 1073-1082, 1990.
[45]G. M. Pharr, Warren C. Oliver and F. R. Brotzen, “On the generality of therelationship among contact stiffness contact area and elastic modulus during indentation”, Journal of Materials Research, Volume 7, Issue 7, pp. 613-617, 1992.
[46]Warren C. Oliver, G. M. Pharr, “Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology”, Journal of Materials Research, Volume 19, Issue 1, pp. 9-20, 2004.
[47]Warren C. Oliver, John B. Pethica, “Methods for continuous determination of the elastic stiffness of contact between two bodies”, United States Paten, No. 4848141 t, 1989.
[48]Warren C. Oliver, G. M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments”, Journal of Materials Research, Volume 7, Issue 6, pp. 1564-1583, 1992.
[49]Warren C. Oliver, G. M. Pharr, “Measurement of mechanical properties by ultra-low load indentation”, Maerials Science and Engineering A, Volume 253, Issues1-2, pp. 151-159, 1998.
[50]A. Bolshakov, G.M. Pharr, “Influence of pile-up on the measurement of mechanical properties by load and depth sensing indentation techniques”, Journal of Materials Research, Volume 13, Issue 4, pp. 1049-1058, 1998.
[51]C. Guillén, J. Herrero, “Comparison study of ITO thin films deposited by sputtering at room temperature onto polymer and glass substrates”, Thin Solid Films, Volume 481, pp. 129-132, 2005.
[52]馬振基,奈米材料科技原理與應用,《全華科技圖書》,2003。
[53]A. E. Giannakopoulos, S. Suresh, “Determination of elastic-plastic properties by instrumented sharp indentation”, Scripta Materiala, Volume 40, Issue 10, pp. 1191-1198, 1999.
[54]A. Bolshakov, G.M. Pharr, “Influence of pile-up on the measurement of mechanical properties by load and depth sensing indentation techniques”, Journal of Materials Research, Volume 13, pp. 1049-1058, 1998.
[55]張瑞慶,石介文,以原子層沈積製備氧化鋅摻鋁薄膜之特性分析,《2013中華民國航空太空學會學術研討會暨國科會航太學門專題研究計畫成果發表會》,2013。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top