跳到主要內容

臺灣博碩士論文加值系統

(44.200.82.149) 您好!臺灣時間:2023/06/11 03:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:潘藝勻
研究生(外文):Pan, Yi-Yun
論文名稱:ITO薄膜電阻式記憶體之特性研究
論文名稱(外文):Characteristics Investigation of ITO Resistance Random Access Memory Thin Films
指導教授:陳美利陳美利引用關係
指導教授(外文):Chen, Mei-Li
學位類別:碩士
校院名稱:南台科技大學
系所名稱:光電工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:103
畢業學年度:102
語文別:中文
論文頁數:75
中文關鍵詞:電阻式記憶體ITO
外文關鍵詞:Resistance Random Access Memory
相關次數:
  • 被引用被引用:1
  • 點閱點閱:677
  • 評分評分:
  • 下載下載:122
  • 收藏至我的研究室書目清單書目收藏:0
本論文是利用常溫射頻磁控濺鍍法在ITO/Glass基板上沉積ITO薄膜絕緣層及
ITO頂電極,因此形成一個金屬/絕緣層/金屬(MIM)電阻式記憶體。實驗過程中
嘗試不同參數改變,其中分別有改變不同濺鍍功率、通入不同氧氣濃度、不同快
速熱退火溫度及不同濺鍍時間;並經過物理量測、電特性及漏電流機制分析且探
討其最佳特性組合。
ITO薄膜在物理量測方面是利用X-光繞射(XRD)分析其結晶相和組成成分,
利用描式電子顯微鏡(SEM)分析ITO薄膜的表面型態、結晶性、表面粗糙度與粒
子分佈的均勻度,利用光譜儀(UV-VIS Spectrophotometer)量測ITO薄膜的穿透率。
在電特性量測方面則使用半導體參數分析儀(HP4156C)量測ITO薄膜的電流-電
壓(I-V)特性曲線,以此探討電阻式記憶體之特性,找出最佳參數與穩定的電壓
與電流曲線圖。
本研究中ITO薄膜的最佳參數為濺鍍功率50W及通入氧氣濃度50%且濺鍍時
間為5分鐘。ITO薄膜的操作電壓大約是-1.5V~+1.8V,具有低電壓操作,且有較大
的記憶視窗,整個記憶體是呈現透明,具有良好的穿透率。ITO薄膜電阻式記憶體
製程結構簡單、成本低、低耗能、透明度佳等優點,將來可將ITO薄膜製程在軟性
基板上方,得到體積小且透明性高的記憶體。
In this study, the RF magnetron sputtering was used to deposited ITO thin films on
the ITO/glass substrates, and the top electrode was deposited on the ITO thin film to
form a Metal/Insulator/Metal (MIM) structure. The effects of different oxygen
concentrations, different sputter power, Rapid Thermal Annealing anddifferent sputter
time were analzed. The mechanisms behind resistance switching and current leakage
inhigh/low resistance state were investigated.
ITO film was measured by X-ray diffraction analysis to determine the crystalline
phase and composition. The ITO film patterns, crystallinity, surface roughness and
uniformity were analyzed by scanning electron microscopy.The transmittance of ITO
films was measured by UV-Vis spectrophotometer.The semiconductor parameter
analyzer (HP4156C) is used to measuring electrical characteristics. In order to
investigatethe characteristic of ITO RRAM, we performed the current-voltage
measurement for the ITO films.
In this study, we used the 50W sputtering power with 50% oxygen concentration
and 5 minutes sputtering time to fabricate the ITO film. A large memory window
between -1.5V~+1.8V is rang of operating voltage for the ITO film. The highly
transparent memory device results better penertration. The advantages for the resistive
memory structure of ITO film are easy to fabricate, low in cost, low operating voltage
and excellent transparency. The highly transparency of ITO film memory can be grown
on flexible substrate and minimized its size in the future.
目次
摘要……………………………………………………………………………………iv
Abstract…………………………………………………………………………………………………………………………………………v
致謝……………………………………………………………………………………vi
目次……………………………………………………………………………………vii
表目錄…………………………………………………………………………………x
圖目錄…………………………………………………………………………………xi
第一章 緒論……………………………………………………………………………1
1-1 前言………………………………………………………………………………1
1-2 記憶體簡介………………………………………………………………………2
1-2.1 磁阻式記憶體(MRAM)………………………………………………………3
1-2.2 鐵電記憶體(FeRAM)………………………………………………………4
1-2.3 相變化記憶體(PCRAM)……………………………………………………4
1-2.4 電阻式記憶體(RRAM)………………………………………………………5
1-3 研究動機…………………………………………………………………………6
第二章 理論分析簡介…………………………………………………………………7
2-1 材料簡介…………………………………………………………………………7
2-1.1 ITO(Indium Tin Oxide,氧化銦錫)…………………………………7
2-2 電阻式記憶體轉換現象…………………………………………………………11
2-2.1 單極性切換(Unipolar Switching) …………………………………11
2-2.2 雙極性切換(Bipolar Switching) ……………………………………11
2-2.3 電阻轉換現象(Switching phenomenon)………………………………12
2-3 電阻轉換現象機制………………………………………………………………14
2-3.1 電燈絲理論……………………………………………………………………14
2-3.2 Mott 轉變……………………………………………………………………16
2-4 漏電流機制………………………………………………………………………17
2-4.1 歐姆傳導(Ohmic Conduction)…………………………………………17
2-4.2 空間電荷限制電流(SCLC)…………………………………………………17
2-4.3 蕭特基發射(Schottky Emission)……………………………………18
2-4.4 普爾-法蘭克發射(Poole-Frenkel Emission)………………………19
第三章 實驗步驟流程…………………………………………………………………20
3-1 薄膜製備流程簡介………………………………………………………………20
3-1.1 ITO/ITOx/ITO結構及製程流程圖…………………………………………20
3-2 薄膜製備…………………………………………………………………………22
3-2.1 ITO靶材………………………………………………………………………22
3-2.2 ITO/Glass基板清洗…………………………………………………………22
3-2.3 射頻磁控濺鍍法濺鍍ITO絕緣層薄膜………………………………………23
3-2.4 射頻磁控濺鍍法濺鍍ITO頂電極……………………………………………24
3-2.5 快速熱退火(RTA)…………………………………………………………25
3-3 薄膜物性量測……………………………………………………………………26
3-3.1 X-光繞射分析(XRD)………………………………………………………26
3-3.2 掃描式電子顯微鏡(SEM)…………………………………………………28
3-3.3 紫外光-可見光光譜儀(UV/VIS Spectrophotometer)………………28
3-4 薄膜電性量測……………………………………………………………………29
3-4.1 電壓-電流(I-V)特性曲線量測……………………………………………29
3-4.2 漏電流機制分析………………………………………………………………30
第四章 結果與討論……………………………………………………………………31
4-1 嘗試ITO薄膜特性的參數…………………………………………………………31
4-2 不同濺鍍功率之ITO薄膜研究……………………………………………………32
4-2.1 X-光繞射(XRD)晶相分析…………………………………………………33
4-2.2 掃描式電子顯微鏡(SEM)分析……………………………………………34
4-2.3 光譜儀(UV-VIS Spectrophotometer)量測…………………………35
4-2.4 電壓與電流(I-V)特性曲線………………………………………………36
4-2.5 漏電流機制特性分析…………………………………………………………38
4-3 通入不同氧氣濃度之ITO薄膜研究……………………………………………40
4-3.1 X-光繞射(XRD)晶相分析…………………………………………………41
4-3.2 掃描式電子顯微鏡(SEM)分析……………………………………………42
4-3.3 光譜儀(UV-VIS Spectrophotometer)量測…………………………43
4-3.4 電壓與電流(I-V)特性曲線………………………………………………44
4-3.5 漏電流機制特性分析…………………………………………………………46
4-4 快速熱退火(RTA)不同溫度之ITO薄膜研究…………………………………48
4-4.1 X-光繞射(XRD)晶相分析…………………………………………………49
4-4.2 掃描式電子顯微鏡(SEM)分析……………………………………………50
4-4.3 光譜儀(UV-VIS Spectrophotometer)量測…………………………51
4-4.4 電壓與電流(I-V)特性曲線………………………………………………52
4-4.5 漏電流機制特性分析…………………………………………………………53
4-5 不同濺鍍時間之ITO薄膜研究…………………………………………………55
4-5.1 X-光繞射(XRD)晶相分析…………………………………………………56
4-5.2 掃描式電子顯微鏡(SEM)分析……………………………………………57
4-5.3 光譜儀(UV-VIS Spectrophotometer)量測…………………………58
4-5.4 電壓與電流(I-V)特性曲線………………………………………………59
4-5.5 漏電流機制特性分析…………………………………………………………61
4-6 最佳參數之量測…………………………………………………………………63
4-6.1連續量測之電壓與電流(I-V)特性曲線分析………………………………64
第五章 結論……………………………………………………………………………68
參考文獻…………………………………………………………………………………70
[1]余昭倫,「綜觀新世代記憶體-相變化記憶體」,Digitimes 技術IT,2006 。
[2]簡昭欣、呂正傑、陳志遠、張茂男、許世祿、趙天生,「先進記憶體簡介」,國研科技創刊號。
[3]G. Muller, T. Happ, M. Kund, G. Y. Lee, N. Nagel, and R. Sezi, ―Status and outlook of emerging nonvolatile memory technologies‖, Tech. Dig. - Int. Electron Devices Meet. 2004, 567(2004).
[4]葉林秀、李佳謀、徐明豐等,「磁阻式隨機存取記憶體技術的發展—現在與未來」,物理雙月刊 廿六卷四期,2004 。
[5]高明哲,「產要要聞」,2004 年研究報告。
[6]客橋,「淺談新興非揮發性記憶體技術」,台灣區電機電子工業同業公會,2006。
[7]高明哲,「非揮發性記憶體,相變化記憶體」,奈米電子元件技術組。
[8]林宗輝,「記憶體產業大革命超長壽命次世代快閃記憶體技術閱兵」,Digitimes技術IT,2006。
[9]電子月刊,「鐵電記憶元件特輯」,2002。
[10]I. G. Baek, M. S. Lee, S. Seo, M. J. Lee, D. H. Seo, D. S. Suh, J. C. Park, S. O. Park, H. S. Kim, I. K. Yoo , U-In Chung, and J. T. Moon, ―Highly Scalable Non-volatile Resisitive Memory using Simply Binary Oxide Driven by Asymmetric Unipolar Voltage Pulses‖, Tech. Dig. - Int. Electron Devices Meet. 2004, 587 (2004).
[11]C. Rohde, B. J. Choi, D. S. Jeong, S. Choi, J. S. Zhao, and C. S. Hwang, ―Identification of a determining parameter for resistive switching of TiO2 thin films‖, Appl. Phys. Lett. 86, 262907 (2005).
[12]S. Kim, I. Byun, I. Hwang, J. Kim, J. Choi, B. H. Park, S. Seo, M. J. Lee, D. H. Seo, D. S. Suh, Y. S. Joung, and I. K. Yoo, ―Giant and Stable Conductivity Switching Behaviors in ZrO2 Films Deposited by Pulsed Laser Depositions ‖, Jpn. J. Appl. Phys. 44 L345 (2005).
[13]H. B. Lv, M. Yin, Y. L. Song, X. F. Fu, L. Tang, P. Zhou, C. H. Zhao, T. A. Tang, B. A. Chen, and Y. Y. Lin, ―Forming Process Investigation of CuxO Memory Films‖, IEEE Electron Device Lett., 29(1), 47-79(2008).
[14]Z. Wei, Y. Kanzawa, K. Arita, Y. Katoh, K. Kawai, S. Muraoka, S. Mitani, S. Fujii, K. Katayama, M. Iijima, T. Mikawa, T. Ninomiya, R. Miyanaga, Y. Kawashima, K. Tsuji, A. Himeno, T. Okada, R. Azuma, K. Shimakawa, 113 H. Sugaya, T. Takagi, R. Yasuhara, K. Horiba, H. Kumigashira, and M. Oshima, ―Highly Reliable TaOx ReRAM and Direct Evidence of Redox Reaction Mechanism‖, Tech. Dig. - Int. Electron Devices Meet. 2008, 293(2008).
[15]I. G. Baek, D. C. Kim, M. J. Lee, H.-J. Kim, E. K. Yim, M. S. Lee, J. E. Lee, S. E. Ahn, S. Seo, J. H. Lee, J. C. Park, Y. K. Cha, S. O. Park, H. S. Kim, I. K. Yoo, U.-I. Chung, J. T. Moon, and B. I. Ryu, ―Multi-layer Cross-point Binary Oxide Resistive Memory (OxRRAM) for Post-NAND Storage Application‖, Tech. Dig. - Int. Electron Devices Meet. 2005, 750(2005).
[16]黃崇傑, 電子與材料, 2000, 10, 115.
[17]汪正時, 彩色液晶顯示器之透明電極製作技術, 國立台北科技大學,2000.
[18]日本學術振興會, 電子材料, 1999, 1-4, 166.
[19]郭俊頡, “利用濺鍍技術於室溫下將ITO成長在塑膠基板上之研究”,光電工程研究所,pp.6-7,(九十四年六月)
[20]Keishi; N., Tadanori; J., Toshio; T., J. Mater. Sci., 1996, 31, 1761.
[21]Furusaki; T., Takahashi; J., Kodaira; K., J. Ceram. Soc. Japan, 1994, 102, 202.
[22]Radhouane; T. H. B., Takayuki; B., Yutaka; O., Yasutaka; T., J. Appl. Phys. 1998, 83, 2139.
[23]Yamamoto; M., Furusaki; T., Kodaira; K., Shimada; S., Matsushita; T., Mat. Res. Bull., 1986, 21, 803.
[24]Djaoued; Y., Phone; V.-H., Badilescu; S., Ashrit; P.-V., Girouard; F.-E., Truong; V.-V., Thin Solid Films, 1997, 293, 108.
[25]Ramanan; S.-R., Thin Solid Films, 2001, 389, 207.
[26]Tomonaga; H., Morimoto; T., Thin Solid Films, 2001, 392, 243.
[27]]Kim; S.-S., Choi; S.-Y., Park; C.-G., Jin; H.-W., Thin Solid Films, 1999, 347, 155.
[28]Saxena; A.-K., Singh; Ota; S.-P., Nakmura; Y., K., Thin Solid Films, 1983, 102, 1.
[29]Ishibashi; S., Higuchi; Y., Ota; Y., Mat. Res. Soc., 1992,271, 401.
[30]Sreenivas; K., Sudersena Rao; T., Appl. Phys. 1982, 27, 197.
[31]Qi Liu, Weihua Guan, Shibing Long, Sen Zhang, Qin Wang, and Junning Chen, “Resistance Switching of Au-Implanted-ZrO2 Film for Nonvolatile Memory Application”, J. Appl. Phys., vol. 104, pp. 114514-1-114514-5, 2008.
[32]H. A. Fowler, J. E. Devaney, J. G. Hagedorn, “Growth Model for Filamentary Streamers in an Ambient Field”, IEEE Transactions on Dielectrics and Electrical Insulation., Vol. 10, No. 1, (2003).
[33]B. J. Choi, D. S. Jeong, S. K. Kim, C. Rohde, S. Choi, J. H. Oh, H. J. Kim, C. S.Hwang, K. Szot, R. Waser, B. Reichenberg and S. Tiedke, “Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition”, J. Appl. Phys. 98, 033715(2005).
[34]R. Waser, M. Aono, ―Nanoionics-based resistive switching memories‖, Nature Materials, Vol.6, November 833(2007).
[35]A. Sawa, ―Resistive switching in transition metal oxides‖, Materialstoday,Vol 11, 282008).
[36]麥軒豪,“熱氧化法製備氧化鈦電阻式記憶體之特性研究”,國立東華大學電機工程學系,pp. 11-12, 2011.
[37]R. Waser, M. Aono, ―Nanoionics-based resistive switching memories‖, Nature Materials, Vol.6, November 833(2007).
[38]N. Xu, B. Gao, L. F. Liu, B. Sun, X. Y. Liu, R. Q. Han, J. F. Kang, and B. Yu, ―A Unified Physical Model of Switching Behavior in Oxide-Based RRAM‖, VLSI, 100(2008).
[39]M. J. Rozenberg, I. H. Inoue, and M. J. S’anchez, “Strong Electron Correlation Effects in Nonvolatile Electronic Memory Devices,” Appl. Phys. Lett., vol. 88, pp. 033510-1-033510-3, 2006.
[40]林群傑,“利用熱氧化法製備氧化銅電阻式記憶體之特性研究”,國立東華大學電機工程學系,pp. 15, 2011.
[41]鄭環宜,“氧化物變阻式記憶體製備與特性研究”,南台科技大學電子工程研究所,pp. 10-11, 2010.
[42]王秉勳, “射頻磁控濺鍍技術製備0.95(Na0.5 Bi0.5)TiO3-0.05BaTiO3 (NBT-BT3)薄膜之研究”, 高苑科技大學電子工程學系, pp. 16-19, (2009).
[43]施敏與伍國珏原著,張鼎張與劉柏村譯著,“半導體元件物理學”,交大出版社,pp. 274-278, 97年8月第一版.
[44]D. K. Schroder, “Semiconductor Material and Device Characterization”, 2nd Edition, John Wiley and Cons, Inc., pp. 1105-1109, 1998.
[45]C. K. Maiti, S. Maikap, S. Chatterjee, S. K. Nandi, and S. K. Samanta, “Hafnium Oxide Gate Dielectric for Strained-Si1-xGex”, Solid-State Electronic, vol. 47, pp. 1995-2000, 2003.
[46]Kittel, Introduction to solid state Phys, John Wiley & sons Inc.
[47]Nath S. S., Chakdar D., and Gope G.; Synthesis of CdS and ZnS quantum dots and their applications in electronics, Nanotrends- A journal of nanotechnology and its application, 02(03), ( 2007).
[48]Nath S. S., Chakdar D., Gope G., and Avasthi D. K.; Effect of 100 Mev Nickel Ions on Silica Coated ZnS Quantum Dot, Journal of Nanoelectronics and Optoelectronics, 3, 1-4 (2008).
[49]R. Das, S.S. Nath, D. Chakdar, G. Gope and R. Bhattacharjee ; Preparation of Silver Nanoparticles and Their Characterization , Journal of nanotechnology online, (DOI : 10.2240/azojono0129)
[50]B. D. Hall, D. Zanchet and D. Ugarte ; Estimating nanoparticle size from diffraction measurements , Journalof Applied Crystallography, Volume 33, Part 6 (December 2000)
[51]A.K. Kulkarni, K.H. Schulz, T.-S. Lim, M. Khan ‘‘Electrical, optical and structural characteristics of indium-tin-oxide thin films deposited on glass and polymer substrates’’ Thin Solid Films 308-309 (1997) 1-7.
[52]El Akkad, M. Marafi, A. Punnoose and G. Prabu, ‘‘Effect of Substrate Temperature on the Structural, Electrical and Optical Properties of ITO Films Prepared by RF Magnetron Sputtering’’, Phy. Stat. Sol. (a), 177 (2000) 445.
[53]S. K.Choi, J. I. Lee, ‘‘Effect of films density on electrical properties of indium tin oxide films deposited by dc magnetron reactive sputtering’’ J. Vac. Sci. Technol. A, Vol. 19, NO. 5, (2001) 2043~2047.
[54]Chang Hwa Jung, Seong Ihl Woo, Yun Seok Kim, Kwang Soo No, “Reproducible resistance switching for BaTiO3 thin films fabricated by RF-magnetron sputtering”, Thin Solid Films, vol. 519, pp. 3291-3294, (2010).
[55]鄭建民,陳開煌,“二氧化鈦電阻式記憶體之特性“,南台學報第36卷第1期2011年4月,pp. 25-34.
[56]鄭建民,蘇峯毅,陳開煌,“V2O5薄膜電阻式記憶體之研究“,會議論文,2011年台灣真空學會.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top