( 您好!臺灣時間:2021/02/28 09:14
字體大小: 字級放大   字級縮小   預設字形  


研究生(外文):Yung-Shin Chang
論文名稱(外文):Development of Diffuser Film with Random Microlens Array Based on Self Assembly of Microbeads on Roller Mold
指導教授(外文):Deng-Maw LuCheng-Hsin Chuang
外文關鍵詞:Dip-coatingRoller mold transferSoft roller moldDiffuser film
  • 被引用被引用:0
  • 點閱點閱:133
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
LED照明設備應用於室內照明越來越普及化之情況,除了LED燈源本身散熱、防水氣…等問題外,亦需考慮光源過於集中之LED燈是否會對眼睛造成眩光而不適的問題,會有這樣的疑慮是由於LED為點光源的緣故,故如何將其變成均勻的面光源,也是一個重要的關鍵課題。而本研究將使用微粒子自組裝技術,利用浸泡式塗佈(Dip-coating)法於直徑50 mm幅寬100 mm之金屬中空滾筒母模和直徑190 mm幅寬100 mm之與直徑190 mm幅寬250 mm之壓克力滾筒母模成功製作具凸狀亂數排列之微透鏡結構,並通過聚二甲基矽氧烷(Polydimethylsiloxane, PDMS)材料轉印其結構,製作出幅寬100 mm 與250 mm的具凹狀結構之無接縫軟性滾筒模仁,最後利用紫外光轉印技術(Roll-to-Roll)於聚對苯二甲酸乙二酯(PET)基材上,以紫外光固化膠製作出擴散膜。
在研究中發現粒子濃度會影響滾筒上粒子之附著量,而拉升速度則會影響滾筒上自組裝結構之均勻性,因此過低的粒子濃度會造成滾筒母模表面無法完整附著粒子,而拉升速度過快則會造成表面結構不均勻,因此在實驗中藉由兩者的搭配於金屬中空滾筒母模找到在粒子濃度3%拉升速度30 mm/hr時有最緊密排列之表面填充率,而壓克力中空滾筒母模則是粒子濃度3%拉升速度40 mm/hr,最後利用滾筒模仁滾印之擴散膜其霧度值皆達到91%、穿透最高達到到73%,且有非常均勻的出光效果。
LED for Interior lighting is most popular in the recent years. But there are some disadvantages in the LED encapsulating. Not only radiation in the lamp, and moisture permeating. But also the reduction of glare from LED interior lighting is the grossest issue. Therefore the target in this study is to change the point light source to planar. In this paper, propose the dip-coating method of self-assembly is employed to fabricate metal roller mold of 100 mm in width, PMMA roller mold of 100 mm and 250 mm in width with spherical microlens structures of random distributing. A soft roller mold with a random concave microlens arrays was replicated by poured the PDMS material. Finally, to imprint the PET diffuser film by used the UV curing Roll-to-Roll imprinting process.
Experimental results indicated that volume ratio of glass bead is effect deposition amount, speed is effect structure uniformity. Therefore, higher filling ratio of packaging of glass particle which on the PMMA roller mold surface could be achieved by controlling the draw rate with fixed to the volume ratio of glass bead suspension. In this study, higher filling ratio of packaging of glass beads on the metal roller mold surface could be achieved by controlling the speed to 30 mm/hr with a 3% volume ratio of glass bead suspension, PMMA roller mold surface could be achieved by controlling the draw rate to 40 mm/hr with a 3% volume ratio of glass bead suspension. In addition, the optical measurements results of the diffuser films for haze and transmission were approximately 91% and 73%, respectively.
摘要 I
Abstract II
致謝 III
目錄 IV
表目錄 VIII
圖目錄 IX
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 4
1.3 文獻回顧 4
1.3.1 微奈粒子自組裝技術於不同研究之比較 4 浸泡式塗佈法 (Dip coating) 4 旋轉塗佈法(Spin coating) 6 沉降法 (Self-assembly of evaporation) 7 水平對流自組裝 9
1.3.2 擴散膜製作方式比較 9
1.3.3 滾印技術(Roller Imprinting) 13
1.4 研究方法 18
第二章 理論基礎 20
2.1 微奈米球體自組裝原理 20
2.1.1 橫向毛細作用力(Lateral Capillary Force, LCF) 21
2.1.2 自組裝陣列形成機制 23
2.2 光學基本原理 27
2.2.1 反射(Reflection) 27
2.2.2 折射(Refraction) 28
2.2.3 全反射(Totally internal reflection) 30
2.2.4 光的穿透(Transmission) 31
2.2.5 吸收(Absorption) 31
2.3 ASTM D1003霧度量測規範簡介 31
第三章實驗材料、設備與流程 33
3.1 實驗材料 33
3.2 實驗設備 33
3.3 實驗流程與量測方法 40
3.3.1 微粒子自組裝滾筒母模與滾筒模仁製作流程 41
3.3.2 擴散膜之製作 42
3.3.3 中空滾筒母模表面填充率計算方法 43
3.3.4 中空滾筒母模自組裝結構層均勻性量測方法 45
第四章 結果與討論 46
4.1 不同UV膠材對於自組裝之影響 46
4.1.1 不同UV膠材對空心粒子黏附基材之影響 47
4.1.2 PDMS之凹微結構表面形貌探討 49
4.2 粒子濃度與拉升速度對自組裝之影響 50
4.2.1 金屬中空滾筒母模(幅寬 10cm)之參數探討 51
4.2.2 壓克力中空滾筒母模(幅寬 100 mm)之參數探討 56
4.2.3 壓克力中空滾筒母模(幅寬 250 mm)之參數探討 60
4.3 軟性滾筒模仁轉印結果與光學性質 65
4.2.4 軟性滾筒模仁轉印成果 65
4.2.5 光學量測結果 67
第五章 結論與未來展望 71
5.1 結論 71
5.2 未來展望 72
參考文獻 73
作者簡介 76
[1]S. Ahn, M. Choi, H. Bae, J. Lim, H. Myung, H. Kim, and S. Kang, “Design and fabrication of micro Optical film by ultraviolet roll imprinting,” Jpn. J. Appl. Phys. Vol. 46, No. 8B, pp. 5478-5484, 2007.
[2]陳品璋, “準分子雷射直寫技術應用於具微米特徵無接縫滾筒模仁,” 國立成功大學機械工程系碩士論文, 2008
[3]C. Y. Chang, S. Y. Yang, and J. L. Sheh, “A Roller Embossing Process for Rapid Fabrication of Microlens Arrays on Glass Substrates,” Microsystem Technologies 12., pp. 754-759, 2006.
[4]J. H. Moon, G. R. Yi, and S. M. Yang, “Fabrication of hollow colloidal crystal cylinders and their inverted,” Journal of Colloid and Interface Science, Vol. 287, pp. 173-177, 2005.
[5]K. Askar, B. M. Phillips, X. Dou, J. Lopez, C. Smith, B. Jiang and P. Jiang, “Self-assembled nanoparticle antiglare coatings,” Optics letters, Vol. 37(21), pp. 4380-4382, 2012.
[6]H. P. Kuo, M. Y. Chuahg, and C. C. Lin, “Design correlations for the optical performance of the particle-diffusing bottom diffusers in the LCD backlight unit,” Powder Technology, Vol. 192, pp. 116-121, 2009.
[7]K. Lee, H. Yalamanchili, L. E. Rodak, A. Kadiyala, J. Dawson, and D. Korakakis, “Large-scale fabrication and observation of self-assembled silica nanospheres on GaN,” Microelectronic Engineering, Vol. 96, pp. 45-50, 2012.
[8]Q. Zhou, P Dong, G. -Y. Yi, L. -X. Liu and B. -Y. Cheng, “Preparation of TiO2 inverse opal via a modified filling process,” Chinese Physics Letters, Vol. 22(5), pp. 1155-1158, 2005.
[9]S. Vengallatore, Y. eles, L. R. Arana, and S. M. Spearing, “Self-assembly of micro-and nanoparticles on internal micromachined silicon surfaces,” Sensors and Actuators A: Physical, Vol. 113(1), pp. 124-131, 2004.
[10]Z. Cai, J. Teng, Y. Wan, and X. S. Zhao, “An improved convective self-assembly method for the fabrication of binary colloidal crystals and inverse structures,” Journal of colloid and interface science, Vol. 380(1), pp. 42-50, 2012.
[11]S. Kim, H. D. Choi, I. D. Kim, J. C. Lee, B. K. Rhee, J. A. Lim, and J. M. Hong, “Formation of a polymer particle monolayer by continuous self-assembly from a colloidal solution,” Journal of colloid and interface science, Vol. 368(1), pp. 9-13, 2012.
[12]G. H. Kim, and J. H. Park, “A PMMA optical diffuser fabricated using an electrospray method,” Applied Physics A, Vol. 86(3), pp. 347-351, 2007.
[13]J. H. Wang, S. Y. Lien, J. R. Ho, T. K. Shih, C. F. Chen, C. C.Chen, and W. T. Whang, “Optical diffusers based on silicone emulsions,” Optical Materials, Vol. 32(2), pp. 374-377, 2009.
[14]S. J. Liu, Y. C. Huang, S. Y. Yang, and K. H Hsieh, “Rapid fabrication of surface-relief plastic diffusers by ultrasonic embossing,” Optics & Laser Technology, Vol. 42(5), pp.794-798, 2010.
[15]Z. Fang, H. Zhang, X. Zhou, and L. Chen, “Design and fabrication of a controllable haze diffuser film,” In: Photonics Asia. International Society for Optics and Photonics. pp. 85600B-85600B-6, 2012.
[16]C. Y. Wu, T. H. Chiang, and C. C. Hsu, “Fabrication of microlens array diffuser films with controllable haze distribution by combination of breath figures and replica molding methods,” Optics express, Vol. 16(24), pp. 19978-19986, 2008.
[17]S. Zio, I. Frese, H. Kasprzak, and S. Kufner,i, “Contactless Embossing of Microlenses-a Parameter study,” Optical Engineering, Vol. 42, No. 5, pp.1451-1455, 2003.
[18]T. Kololuoma, M. Tuomikoski, T. Haring, and H. Kopla, “Roll-to-roll manufacturing technologies for flexible MEMS applications,” IEEE/LEOS International Conference on pp. 87-88, 2005.
[19]S. M. Seo, T. I. Kim, and H. H. Lee, “Simple fabrication of nanostructure by continuous rigiflex imprinting,” Microelectronic Engineering Vol. 84(4), pp. 567-572, 2007.
[20]T. Mäkelä, T. Haatainen, P. Majander, J. Ahopelto, and V. Lambertini, “Continuous double-sided roll-to-roll imprinting of polymer film,” Japanese journal of applied physics, Vol. 47 (6), pp. 5142-5144, 2008.
[21]H. Yoshikawa, J. Taniguchi, G. Tazaki, and T. Zento, “Fabrication of high-aspect-ratio pattern via high throughput roll-to-roll ultraviolet nanoimprint lithography,” Microelectronic Engineering, Vol. 112, pp. 273-277, (2013).
[22]G. M. Whitesides and B. Grzybowski, “Self-Assembly at All Scales”, Science Vol. 295 pp. 2418-2421, 2002.
[23]A. N. Shipway, E. Katz, and I. Willner, “Nanoparticle Arrays on Surfaces for Electronic, Optical and Sensoric Applications”, Chemphyschem Vol. 1(1) pp. 18-52, 2000.
[24]A. S. Dimitrov and K. Nagayama, “Continuous Convective Assembling of Fine Particles into Two-Dimensional Arrays on Solid Surfaces“, Langmuir Vol. 12(5) pp. 1303-1311, 1996.
[25]J. A. Zasadzinski, R. Viswanathan, L. Madsen, J. Garnaes, and D. K. Schwartz, “Langmuir-blodgett films“, Science, Vol. 263(5154), pp. 1726-1733, 1994.
[26]H. Kim, C. Mattevi, H. J. Kim, A. Mittal, K. A. Mkhoyan, R. E. Riman, and M. Chhowalla, “Optoelectronic properties of graphene thin films deposited by a Langmuir–Blodgett assembly“, Nanoscale, Vol. 5(24), pp. 12365-12374, 2013.
[27]N. D. Denkov, O. D. Velev, P. A. Kralchevsky, I. B. Ivanov, H. Yoshimura and K. Nagayama, “Mechanism of Formation of Two-Dimensional Crystals from Latex Particles on Substrates“, Langmuir Vol. 8(12), pp. 3183-3190, 1992.
[28]P. A. Kralchevsky, V. N. Paunov, I. B. Ivanov, and K. Nagayama, “Capillary Meniscus Interactions between Colloidal Particles Attached to a Liquid-Fluid Interface“, J. Colloid Interface Sci. Vol. 151(1) pp. 79-94, 1992.
[29]P. A. Kralchevsky, V. N. Paunov, N. D. Denkov, I. B. Ivanov, and K. Nagayama, “Energetical and Force Approaches to the Capillary Interactions between Particles Attached to a Liquid-Fluid Interface“, J. Colloid Interface Sci. Vol. 155 (2) pp. 420-437, 1993.
[30]P. A. Kralchevsky, and K. Nagayama, “Capillary Forces between Colloidal Particles“, Langmuir Vol. 10(1) pp. 23-36, 1994.
[31]J. Zhang, Z. Sun, and B. Yang, “Self-assembly of photonic crystals from polymer colloids“, Current Opinion in Colloid & Interface Science, Vol. 14(2) pp.103-114, 2009.
[32]ANSI/ASTM D1003-00, Standard Test Method for Haze and Luminance Transmittance of Transparent Plastics, 2000.
[33]林俊男 “複合式滾印系統於微結構轉印之製程參數最佳化研究” 南台科技大學機械工程系碩士論文, 2010.
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔