(3.237.20.246) 您好!臺灣時間:2021/04/14 08:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蔡銘仁
研究生(外文):Ming-Jen Tsai
論文名稱:利用選擇性基因剔除小鼠探討轉譯調控腫瘤蛋白(TCTP)在胰島β細胞內所扮演之角色
論文名稱(外文):Exploring the roles of TCTP in pancreatic β-cell via RIP-cre derived conditional knockout mice
指導教授:陳松鶴
指導教授(外文):Sung-Ho Chen
口試委員:賴志嘉邱鐵雄郭重雄翁慶豐陳松鶴
口試日期:2013-12-25
學位類別:博士
校院名稱:慈濟大學
系所名稱:藥理暨毒理學碩士班/博士班
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:117
中文關鍵詞:β細胞FoxO1p70S6激酶葡萄糖耐受不良高脂肪飲食高血糖糖尿病胰島素阻抗腫瘤抑制蛋白P53細胞增生轉譯調控腫瘤蛋白
外文關鍵詞:β-cellβ-cell growthβ-cell massDiabetes mellitusFoxO1Glucose intoleranceHigh-fat feedingHyperglycemiaInsulin resistanceP53p70S6 kinaseProilferationTranslationally controlled tumor-associated proteinTCTP
相關次數:
  • 被引用被引用:0
  • 點閱點閱:270
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
背景、目的: 動物體血糖之恆定需依靠胰島β細胞分泌胰島素調控血糖。胰島之β細胞數目於一生中維持著一種動態平衡狀態以恆定血糖。於出生前後時期,β細胞會短暫快速的增生,以增加β細胞團以因應出生後體內之血糖恆定。在成年期,如體內產生胰島素阻抗之病理狀態時,β細胞具有細胞生長與增生的能力以代償性增加β細胞團以分泌足夠的胰島素因應。轉譯調控腫瘤蛋白(TCTP)是一種演化上高度保留之蛋白質,已被證實與細胞生長及增生有關。近期的體外細胞研究證實其在胰島β細胞內扮演著一種可受葡萄糖調控及支持細胞存活之蛋白。但TCTP於活體動物β細胞內之角色仍未明。本研究之目的在探討於正常生理發育階段與產生病理胰島素阻抗時期,TCTP在活體動物胰島β細胞扮演之角色為何?
實驗方法: 進行小鼠胚胎時期到成鼠階段TCTP於胰島β細胞表達量之評估後,利用選擇性基因剔除小鼠模式,將TCTPfl/fl小鼠與RIP-cre小鼠交配以產生β細胞專一性剔除TCTP基因之基因剔除鼠。進行血糖代謝相關測試與胰島組織病理切片以分析TCTP於小鼠胰島β細胞剔除後之影響。並利用免疫螢光染色法、西方墨點法與即時定量反轉錄聚合脢連鎖反應來分析胰島細胞內之蛋白質與mRNA之改變。
結果:剛出生前後之β細胞高度增生期及餵食高脂肪飲食後產生胰島素阻抗期為TCTP高度表達於β細胞之兩時期。將TCTP於小鼠胰島β細胞剔除後會導致胰島β細胞內總FoxO1、核內FoxO1及腫瘤抑制蛋白P53表達量增加,以及降低磷酸化態p70S6激酶、cyclin D2及CDK2之表達。進而降低β細胞生長與增生的能力並減少胰島β細胞團,使得胰島素分泌不足而產生高血糖現象。
結論: TCTP對於生長發育階段與胰島素阻抗階段之β細胞團建立與增生扮演重要之角色。在未來,或許可藉由調控TCTP促進β細胞團增生達到治療糖尿病的目的。

Aim: Pancreatic β-cells undergo dynamic remodeling for glucose homeostasis throughout life. In perinatal stage, they are characterized by a transient burst in proliferation to increase β-cell mass in response to the need for glucose homeostasis throughout life. In adulthood, the ability of β-cells to grow, proliferate, and expand their mass is also characteristic of pathological states of insulin resistance. Translationally controlled tumor-associated protein (TCTP), an evolutionarily highly conserved protein that is implicated in cell growth and proliferation, has been identified as a novel glucose-regulated survival-supporting protein in pancreatic β-cells in vitro. The aim of the present study is to define the in vivo role of TCTP in pancreatic β-cells during development and in insulin resistant states in mice.
Materials and methods: The expression of TCTP was assessed in pancreatic β-cells from embryo to adult mice. Mice with deletions of TCTP specific in β-cells were generated by mating TCTPfl/fl mice to rat insulin II promoter Cre recombinase mice (RIP-cre mice). Metabolic and islet morphological studies were performed to determine the effects of deleting this gene on β-cell mass and glucose homeostasis. Changes in islet proteins and mRNA were investigated by immunofluorescence, immunoblotting and quantitative RT-PCR.
Results: The expression of TCTP in pancreatic β-cells paralleled the enhanced β-cell proliferation during perinatal islet development and in insulin-resistant states of high-fat feeding. Specific knockout of TCTP in β-cells led to increased expression of total and nuclear FoxO1 and tumor suppressor P53, and decreased expression of p70S6 kinase phosphorylation and cyclin D2 and CDK2. These changes resulted in decreased β-cell proliferation and growth, reduced β-cell mass and insulin secretion; together these effects led to hyperglycemia.
Conclusions: TCTP is essential for β-cell mass expansion during development and β-cell adaptation in response to insulin resistance. TCTP may be a potential therapeutic target that could be harnessed to promote β-cell mass expansion in diabetes in the future.

目錄 1
中文摘要 4
Abstract 6
Abbreviations 8
Introduction 9
The primary cause of diabetes – the pancreatic β-cells defect 9
The pancreatic β-cell differentiation and β-cell mass establishment 10
The translationally controlled tumor-associated protein (TCTP) 11
The TCTP and β-cells mass establishment. 12
Materials and Methods 14
Production, breeding, and genotyping of conditional knockout mice 14
Metabolic studies and hormone measurement 15
Immunofluorescence and immunohistochemical staining 16
Analyses of β-cell mass, size, proliferation, apoptosis; and determinations of nuclear FoxO1+ cells percentage and α-cell/β-cell ratio 16
Islet isolation 17
Western blot analysis 18
RNA isolation and real-time reverse transcriptase polymerase chain reaction (RT-PCR) 19
Statistical analysis 20
Results 21
TCTP is transiently expressed in mouse pancreatic β-cells during embryonic and neonatal periods 21
Production of pancreatic β-cell-specific TCTP-deficient mice 21
Ablation of TCTP in pancreatic β-cells leads to progressive hyperglycemia and glucose intolerance 22
Ablation of TCTP in β-cells leads to decreased β-cell mass caused by impaired cell proliferation 23
Ablation of TCTP in pancreatic β-cell leads to diabetes after HFD feeding 24
TCTP is required for β-cell adaptation in response to insulin resistance 25
Ablation of TCTP changes FoxO1 cellular distribution and decreases p70S6K phosphorylation 26
Ablation of TCTP induces P53 activation and decreases cyclin D2, CDK2 expression 27
Discussion 29
Conclusion 33
Acknowledgment 34
References 35
Figure 1 43
Figure 2 45
Figure 3 46
Figure 4 47
Figure 5 49
Figure 6 50
Figure 7 52
Figure 8 54
Figure 9 56
Figure 10 58
Figure 11 60
Figure 12 62
Figure 13 64
Figure 14 66
Figure 15 68
Figure 16 70
Figure 17 72
Figure 18 73
Figure 19 75
Figure 20 77
Figure 21 79
Figure 22 80
Figure 23 82
Figure 24 83
Figure 25 85
Figure 26 87
Figure 27 89
Appendix 91

Accili, D. (2001). A kinase in the life of the beta cell. J Clin Invest 108, 1575-1576.
Ackermann, A.M., Costa, R.H., and Gannon, M. (2008). Beta-cell proliferation, but not neogenesis, following 60% partial pancreatectomy is impaired in the absence of FoxM1. Diabetes 57, 3069-3077.
Ackermann, A.M., and Gannon, M. (2007). Molecular regulation of pancreatic beta-cell mass development, maintenance, and expansion. J Mol Endocrinol 38, 193-206.
Amson, R., Pece, S., Lespagnol, A., Vyas, R., Mazzarol, G., Tosoni, D., Colaluca, I., Viale, G., Rodrigues-Ferreira, S., Wynendaele, J., et al. (2012). Reciprocal repression between P53 and TCTP. Nat Med 18, 91-99.
Assmann, A., Hinault, C., and Kulkarni, R.N. (2009). Growth factor control of pancreatic islet regeneration and function. Pediatr diabetes 10, 14-32.
Bernard-Kargar, C., and Ktorza, A. (2001). Endocrine pancreas plasticity under physiological and pathological conditions. Diabetes 50 Suppl 1, S30-35.
Bhushan, A., Itoh, N., Kato, S., Thiery, J.P., Czernichow, P., Bellusci, S., and Scharfmann, R. (2001). Fgf10 is essential for maintaining the proliferative capacity of epithelial progenitor cells during early pancreatic organogenesis. Development 128, 5109-5117.
Bommer, U.A., Heng, C., Perrin, A., Dash, P., Lobov, S., Elia, A., and Clemens, M.J. (2010). Roles of the translationally controlled tumour protein (TCTP) and the double-stranded RNA-dependent protein kinase, PKR, in cellular stress responses. Oncogene 29, 763-773.
Bommer, U.A., and Thiele, B.J. (2004). The translationally controlled tumour protein (TCTP). Int J Biochem Cell Biol 36, 379-385.
Bonner-Weir, S. (2000a). Islet growth and development in the adult. J Mol Endocrinol 24, 297-302.
Bonner-Weir, S. (2000b). Perspective: Postnatal pancreatic beta cell growth. Endocrinology 141, 1926-1929.
Brissova, M., Fowler, M.J., Nicholson, W.E., Chu, A., Hirshberg, B., Harlan, D.M., and Powers, A.C. (2005). Assessment of human pancreatic islet architecture and composition by laser scanning confocal microscopy. J Histochem Cytochem 53, 1087-1097.
Cans, C., Passer, B.J., Shalak, V., Nancy-Portebois, V., Crible, V., Amzallag, N., Allanic, D., Tufino, R., Argentini, M., Moras, D., et al. (2003). Translationally controlled tumor protein acts as a guanine nucleotide dissociation inhibitor on the translation elongation factor eEF1A. Proc Natl Acad Sci U S A 100, 13892-13897.
Chen, D., Kon, N., Li, M., Zhang, W., Qin, J., and Gu, W. (2005). ARF-BP1/Mule is a critical mediator of the ARF tumor suppressor. Cell 121, 1071-1083.
Chen, S.H., Wu, P.S., Chou, C.H., Yan, Y.T., Liu, H., Weng, S.Y., and Yang-Yen, H.F. (2007). A knockout mouse approach reveals that TCTP functions as an essential factor for cell proliferation and survival in a tissue- or cell type-specific manner. Mol Biol Cell 18, 2525-2532.
Cnop, M., Welsh, N., Jonas, J.C., Jorns, A., Lenzen, S., and Eizirik, D.L. (2005). Mechanisms of pancreatic beta-cell death in type 1 and type 2 diabetes: many differences, few similarities. Diabetes 54 Suppl 2, S97-107.
Diraison, F., Hayward, K., Sanders, K.L., Brozzi, F., Lajus, S., Hancock, J., Francis, J.E., Ainscow, E., Bommer, U.A., Molnar, E., et al. (2011). Translationally controlled tumour protein (TCTP) is a novel glucose-regulated protein that is important for survival of pancreatic beta cells. Diabetologia 54, 368-379.
Dong, X., Yang, B., Li, Y., Zhong, C., and Ding, J. (2009). Molecular basis of the acceleration of the GDP-GTP exchange of human ras homolog enriched in brain by human translationally controlled tumor protein. J Biol Chem 284, 23754-23764.
Dor, Y., Brown, J., Martinez, O.I., and Melton, D.A. (2004). Adult pancreatic beta-cells are formed by self-duplication rather than stem-cell differentiation. Nature 429, 41-46.
Elayat, A.A., el-Naggar, M.M., and Tahir, M. (1995). An immunocytochemical and morphometric study of the rat pancreatic islets. J Anat 186 ( Pt 3), 629-637.
Elghazi, L., Balcazar, N., Blandino-Rosano, M., Cras-Meneur, C., Fatrai, S., Gould, A.P., Chi, M.M., Moley, K.H., and Bernal-Mizrachi, E. (2010). Decreased IRS signaling impairs beta-cell cycle progression and survival in transgenic mice overexpressing S6K in beta-cells. Diabetes 59, 2390-2399.
Finegood, D.T., Scaglia, L., and Bonner-Weir, S. (1995). Dynamics of beta-cell mass in the growing rat pancreas. Estimation with a simple mathematical model. Diabetes 44, 249-256.
Gachet, Y., Tournier, S., Lee, M., Lazaris-Karatzas, A., Poulton, T., and Bommer, U.A. (1999). The growth-related, translationally controlled protein P23 has properties of a tubulin binding protein and associates transiently with microtubules during the cell cycle. J Cell Sci 112 ( Pt 8), 1257-1271.
Georgia, S., and Bhushan, A. (2004). Beta cell replication is the primary mechanism for maintaining postnatal beta cell mass. J Clin Invest 114, 963-968.
Georgia, S., Hinault, C., Kawamori, D., Hu, J., Meyer, J., Kanji, M., Bhushan, A., and Kulkarni, R.N. (2010). Cyclin D2 is essential for the compensatory beta-cell hyperplastic response to insulin resistance in rodents. Diabetes 59, 987-996.
Glauser, D.A., and Schlegel, W. (2007). The emerging role of FOXO transcription factors in pancreatic beta cells. J Endocrinol 193, 195-207.
Gonzalez, A., Merino, B., Marroqui, L., Neco, P., Alonso-Magdalena, P., Caballero-Garrido, E., Vieira, E., Soriano, S., Gomis, R., Nadal, A., et al. (2013). Insulin Hypersecretion in Islets From Diet-Induced Hyperinsulinemic Obese Female Mice Is Associated With Several Functional Adaptations in Individual beta-Cells. Endocrinology 154, 3515-3524.
Gotoh, M., Maki, T., Kiyoizumi, T., Satomi, S., and Monaco, A.P. (1985). An improved method for isolation of mouse pancreatic islets. Transplantation 40, 437-438.
Gu, Y., Lindner, J., Kumar, A., Yuan, W., and Magnuson, M.A. (2011). Rictor/mTORC2 is essential for maintaining a balance between beta-cell proliferation and cell size. Diabetes 60, 827-837.
Hay, N., and Sonenberg, N. (2004). Upstream and downstream of mTOR. Gene Dev 18, 1926-1945.
Hinault, C., Kawamori, D., Liew, C.W., Maier, B., Hu, J., Keller, S.R., Mirmira, R.G., Scrable, H., and Kulkarni, R.N. (2011). Delta40 Isoform of p53 controls beta-cell proliferation and glucose homeostasis in mice. Diabetes 60, 1210-1222.
Hsu, Y.C., Chern, J.J., Cai, Y., Liu, M., and Choi, K.W. (2007). Drosophila TCTP is essential for growth and proliferation through regulation of dRheb GTPase. Nature 445, 785-788.
Huang, H., Regan, K.M., Lou, Z., Chen, J., and Tindall, D.J. (2006). CDK2-dependent phosphorylation of FOXO1 as an apoptotic response to DNA damage. Science 314, 294-297.
Jung, J., Kim, H.Y., Kim, M., Sohn, K., and Lee, K. (2011). Translationally controlled tumor protein induces human breast epithelial cell transformation through the activation of Src. Oncogene 30, 2264-2274.
Kazmierski, W., Wire, W.S., Lui, G.K., Knapp, R.J., Shook, J.E., Burks, T.F., Yamamura, H.I., and Hruby, V.J. (1988). Design and synthesis of somatostatin analogues with topographical properties that lead to highly potent and specific mu opioid receptor antagonists with greatly reduced binding at somatostatin receptors. J Med Chem 31, 2170-2177.
Kikuchi, O., Kobayashi, M., Amano, K., Sasaki, T., Kitazumi, T., Kim, H.J., Lee, Y.S., Yokota-Hashimoto, H., Kitamura, Y.I., and Kitamura, T. (2012). FoxO1 gain of function in the pancreas causes glucose intolerance, polycystic pancreas, and islet hypervascularization. PLoS One 7, e32249.
Kim, D.K., Nam, B.Y., Li, J.J., Park, J.T., Lee, S.H., Kim, D.H., Kim, J.Y., Kang, H.Y., Han, S.H., Yoo, T.H., et al. (2012). Translationally controlled tumour protein is associated with podocyte hypertrophy in a mouse model of type 1 diabetes. Diabetologia 55, 1205-1217.
Kim, M., Jung, J., and Lee, K. (2009). Roles of ERK, PI3 kinase, and PLC-gamma pathways induced by overexpression of translationally controlled tumor protein in HeLa cells. Arch Biochem Biophys 485, 82-87.
Kim, S.K., and MacDonald, R.J. (2002). Signaling and transcriptional control of pancreatic organogenesis. Curr Opin Genet Dev 12, 540-547.
Kitamura, T. (2013). The role of FOXO1 in beta-cell failure and type 2 diabetes mellitus. Nature reviews Endocrinology 9, 615-623.
Kitamura, T., Nakae, J., Kitamura, Y., Kido, Y., Biggs, W.H., 3rd, Wright, C.V., White, M.F., Arden, K.C., and Accili, D. (2002). The forkhead transcription factor Foxo1 links insulin signaling to Pdx1 regulation of pancreatic beta cell growth. J Clin Invest 110, 1839-1847.
Kon, N., Zhong, J., Qiang, L., Accili, D., and Gu, W. (2012). Inactivation of arf-bp1 induces p53 activation and diabetic phenotypes in mice. J Biol Chem 287, 5102-5111.
Lee, J.Y., Ristow, M., Lin, X., White, M.F., Magnuson, M.A., and Hennighausen, L. (2006). RIP-Cre revisited, evidence for impairments of pancreatic beta-cell function. J Biol Chem 281, 2649-2653.
Li, F., Zhang, D., and Fujise, K. (2001). Characterization of fortilin, a novel antiapoptotic protein. J Biol Chem 276, 47542-47549.
Liu, H., Peng, H.W., Cheng, Y.S., Yuan, H.S., and Yang-Yen, H.F. (2005). Stabilization and enhancement of the antiapoptotic activity of mcl-1 by TCTP. Mol Cell Biol 25, 3117-3126.
Marine, J.C., and Lozano, G. (2010). Mdm2-mediated ubiquitylation: p53 and beyond. Cell Death Differ 17, 93-102.
Ogawara, Y., Kishishita, S., Obata, T., Isazawa, Y., Suzuki, T., Tanaka, K., Masuyama, N., and Gotoh, Y. (2002). Akt enhances Mdm2-mediated ubiquitination and degradation of p53. J Biol Chem 277, 21843-21850.
Pende, M., Kozma, S.C., Jaquet, M., Oorschot, V., Burcelin, R., Le Marchand-Brustel, Y., Klumperman, J., Thorens, B., and Thomas, G. (2000). Hypoinsulinaemia, glucose intolerance and diminished beta-cell size in S6K1-deficient mice. Nature 408, 994-997.
Pomplun, D., Florian, S., Schulz, T., Pfeiffer, A.F., and Ristow, M. (2007). Alterations of pancreatic beta-cell mass and islet number due to Ins2-controlled expression of Cre recombinase: RIP-Cre revisited; part 2. Horm Metab Res 39, 336-340.
Postic, C., Shiota, M., Niswender, K.D., Jetton, T.L., Chen, Y., Moates, J.M., Shelton, K.D., Lindner, J., Cherrington, A.D., and Magnuson, M.A. (1999). Dual roles for glucokinase in glucose homeostasis as determined by liver and pancreatic beta cell-specific gene knock-outs using Cre recombinase. J Biol Chem 274, 305-315.
Rho, S.B., Lee, J.H., Park, M.S., Byun, H.J., Kang, S., Seo, S.S., Kim, J.Y., and Park, S.Y. (2011). Anti-apoptotic protein TCTP controls the stability of the tumor suppressor p53. FEBS letters 585, 29-35.
Scaglia, L., Cahill, C.J., Finegood, D.T., and Bonner-Weir, S. (1997). Apoptosis participates in the remodeling of the endocrine pancreas in the neonatal rat. Endocrinology 138, 1736-1741.
Schmidt, I., Fahling, M., Nafz, B., Skalweit, A., and Thiele, B.J. (2007). Induction of translationally controlled tumor protein (TCTP) by transcriptional and post-transcriptional mechanisms. FEBS J 274, 5416-5424.
Susini, L., Besse, S., Duflaut, D., Lespagnol, A., Beekman, C., Fiucci, G., Atkinson, A.R., Busso, D., Poussin, P., Marine, J.C., et al. (2008). TCTP protects from apoptotic cell death by antagonizing bax function. Cell Death Differ 15, 1211-1220.
Thaw, P., Baxter, N.J., Hounslow, A.M., Price, C., Waltho, J.P., and Craven, C.J. (2001). Structure of TCTP reveals unexpected relationship with guanine nucleotide-free chaperones. Nat Struct Biol 8, 701-704.
Thiele, H., Berger, M., Skalweit, A., and Thiele, B.J. (2000). Expression of the gene and processed pseudogenes encoding the human and rabbit translationally controlled tumour protein (TCTP). Eur J Biochem 267, 5473-5481.
Thomas, G., and Luther, H. (1981). Transcriptional and translational control of cytoplasmic proteins after serum stimulation of quiescent Swiss 3T3 cells. Proc Natl Acad Sci U S A 78, 5712-5716.
Treins, C., Alliouachene, S., Hassouna, R., Xie, Y., Birnbaum, M.J., and Pende, M. (2012). The Combined Deletion of S6K1 and Akt2 Deteriorates Glycemic Control in a High-Fat Diet. Mol Cell Biol 32, 4001-4011.
Tsubouchi, S., Kano, E., and Suzuki, H. (1987). Demonstration of expanding cell populations in mouse pancreatic acini and islets. Anat Rec 218, 111-115.
Tuttle, R.L., Gill, N.S., Pugh, W., Lee, J.P., Koeberlein, B., Furth, E.E., Polonsky, K.S., Naji, A., and Birnbaum, M.J. (2001). Regulation of pancreatic beta-cell growth and survival by the serine/threonine protein kinase Akt1/PKBalpha. Nat Med 7, 1133-1137.
Velazquez-Garcia, S., Valle, S., Rosa, T.C., Takane, K.K., Demirci, C., Alvarez-Perez, J.C., Mellado-Gil, J.M., Ernst, S., Scott, D.K., Vasavada, R.C., et al. (2011). Activation of protein kinase C-zeta in pancreatic beta-cells in vivo improves glucose tolerance and induces beta-cell expansion via mTOR activation. Diabetes 60, 2546-2559.
Yang, T., Buchan, H.L., Townsend, K.J., and Craig, R.W. (1996). MCL-1, a member of the BLC-2 family, is induced rapidly in response to signals for cell differentiation or death, but not to signals for cell proliferation. J Cell Physiol 166, 523-536.
Yarm, F.R. (2002). Plk phosphorylation regulates the microtubule-stabilizing protein TCTP. Mol Cell Biol 22, 6209-6221.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔