(34.204.186.91) 您好!臺灣時間:2021/04/19 14:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳建廷
研究生(外文):Jian-Ting Chen
論文名稱:植基於最佳像素調整法之可適應性及可回復性資訊隱藏演算法
論文名稱(外文):Adaptive and Reversible Data Hiding Algorithms Based on Optimal Pixel Adjustment Process
指導教授:蔡淵裕
指導教授(外文):Yuan-Yu Tsai
口試委員:張庭毅詹啟祥蔡淵裕
口試委員(外文):Ting-Yi ChangChi-Shiang ChanYuan-Yu Tsai
口試日期:2014-07-18
學位類別:碩士
校院名稱:亞洲大學
系所名稱:資訊多媒體應用學系
學門:電算機學門
學類:電算機應用學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:56
中文關鍵詞:可適應性資訊隱藏演算法可回復性資訊隱藏演算法最佳像素調整法影像內插像素差值
外文關鍵詞:Adaptive Data HidingReversible Data HidingOptimal Pixel Adjustment ProcessImage InterpolationPixel-value Differencing
相關次數:
  • 被引用被引用:0
  • 點閱點閱:414
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:34
  • 收藏至我的研究室書目清單書目收藏:0
在本篇論文中,我們將最佳像素調整法分別應用至可適應性及可回復性資訊隱藏演算法上。Khodaei與Faez兩學者提出一套植基於最低有效位元取代法與像素差值技術的可適應性資訊隱藏演算法,偽裝影像可在嵌入大量秘密訊息下,仍然保有可接受的影像品質。然而,他們所提技術僅能擁有固定的訊息嵌入量,未能依照使用者需求動態改變區塊大小。此外,此技術所使用的像素切割方式,在邊界區域的像素差值計算會導致不準確的複雜度估計,而提高影像的失真度。最後,該技術未能在訊息嵌入條件中對溢位的情況作妥善的處理。據此,我們提出一套植基於最佳像素調整法與像素差值技術的區塊式可適應性資訊隱藏演算法,此演算法能依使用者需求,動態地將掩護影像切割成不重疊的影像區塊。接著,我們使用最佳像素調整法將秘密訊息嵌入至每一區塊的中間像素,再計算其他像素與中間偽裝像素的差值,利用像素差值技術將訊息嵌入。實驗結果顯示,所提方法確實能依照使用者需求動態調整區塊大小,並能在偽裝影像品質與訊息嵌入量兩者之間取得平衡點,產生可調整的訊息嵌入量,顯示我們所提的技術是可行的。
Jung與Yoo兩學者提出第一篇將影像內插技術應用於可回復性資訊隱藏技術的論文,該技術雖擁有低時間複雜度、較佳內插影像效果與可回復性等特性,但其訊息嵌入量明顯不足,因此Lee與Huang兩學者提出改進技術,除了可大量增加訊息嵌入量外,影像內插後所得到的掩護影像能擁有更佳的視覺效果。然而,上述兩文獻所使用的影像內插技術不夠周延,邊界區域會有無法妥善處理的窘境。在演算法的論述過程中,僅探討將原始影像擴張成兩倍的情況,未說明延伸至其他倍率或是任意解析度的方式,不夠一般性,且嵌入演算法所造成的失真度過大。此外,訊息嵌入量仍稍嫌不足,可再次改進,上述的缺失皆會影響到演算法的效能。針對上述的缺失,我們提出一個植基於最佳像素調整法與影像內插技術之可回復性資訊隱藏演算法。為了使本技術能具一般性,我們更改先前演算法所使用的像素對應方式,並利用常見的雙線性內插技術,將掩護影像的空白像素填滿,完成影像內插的操作。接著,我們更改Lee與Huang兩學者所使用的參考像素決定方式,再次提升偽裝影像所能承載的訊息量。最後,我們利用最佳像素調整法修改秘密訊息嵌入的方式,大幅提升偽裝影像的影像品質。相較於先前演算法,我們所提出的技術擁有更高的訊息嵌入量、更具一般性,且有較佳的偽裝影像品質。

In this study, an optima pixel adjustment process applies separately to adaptive and reversible data hiding algorithms. In the first part of this study, we propose a block-based adaptive data hiding algorithm considering both the optimal pixel adjustment process and the pixel-value differencing scheme. The cover image is first partitioned into non-overlapping blocks with m-by-n pixels. A dynamic block subdivision is employed on the boundary region to address the problem of inaccurate complexity estimation in previous algorithm. We also modify the embedding equation to solve the overflow problem. The experimental results show that our proposed algorithm can achieve an adjustable embedding capacity according to the block size. The proposed technique is feasible in adaptive data hiding.
In the second part of this study, we propose a generalized image interpolation-based reversible data hiding scheme with high embedding capacity and image quality. This study modifies the pixel mapping scheme and adopts a bilinear interpolation to solve boundary artifacts. Thus, our scheme can support magnified images at any resolution. Thereafter, the modified reference pixel determination and an optimal pixel adjustment process can effectively enhance the embedding capacity and the image quality. The experimental results show our proposed algorithm achieves a higher embedding capacity under acceptable visual distortions, and can be applied to a magnified image at any resolution. Our proposed technique is feasible in reversible data hiding.

摘要 i
Abstract iii
誌謝 iv
目錄 v
圖目錄 viii
表目錄 x
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 2
1.3 論文架構 5
第二章 文獻探討 6
2.1 植基於像素差值技術之可適應性資訊隱藏演算法 6
2.1.1 Wu與Tsai所提的技術 6
2.1.2 Wu等學者所提的技術 7
2.1.3 Khodaei與Faez所提的技術 9
2.2 植基於影像內插技術之可回復性資訊隱藏技術 10
2.2.1像素對應與影像內插方式 11
2.2.2參考像素的決定方式 13
2.2.3訊息嵌入的方式 14
2.2.4訊息擷取與影像還原的方式 14
第三章 植基於最佳像素調整法之可適應性資訊隱藏演算法 15
3.1 影像區塊切割 15
3.2 訊息嵌入的方式 16
3.3 擷取訊息的方式 16
3.4 我們所提技術之範例說明 17
3.4.1訊息嵌入階段 17
3.4.2訊息擷取階段 18
3.5 實驗結果 19
第四章 植基於最佳像素調整法之可回復性資訊隱藏演算法 25
4.1 像素對應與影像內插方式 25
4.2 參考像素的決定方式 26
4.3 訊息嵌入的方式 27
4.4 訊息擷取與影像還原的方式 27
4.5 我們所提技術之範例說明 28
4.5.1訊息嵌入階段 28
4.5.2訊息擷取階段與影像還原 29
4.6 實驗結果 29
第五章 結論與未來研究方向 38
參考文獻 40
個人簡歷 46

圖目錄
圖 2.1 植基於影像內插技術之可回復性資訊隱藏演算法 .................. 11
圖 2.2 Jung 與 Yoo 兩學者之像素對應與影像內插方式 ...................... 12
圖 2.3 Lee 與 Huang 兩學者之像素對應與影像內插方式 ................... 13
圖 3.1 擁有 8 × 8 像素的掩護影像區塊之切割結果 ............................. 16
圖 3.2 擁有 3 × 3 像素的掩護影像區塊 ................................................. 17
圖 3.3 擁有 3 × 3 像素的偽裝影像區塊 ................................................. 19
圖 3.4 掩護影像的視覺效果 .................................................................. 20
圖 3.5 偽裝影像之影像品質在 30dB 時,所使用的區塊大小及其視覺效果 ... 23
圖 4.1 本研究所提出的像素對應方式( ?? = 2, ?? = 2 ) ......................... 26
圖 4.2 本研究與先前演算法像素對應方式之差異( ?? = 3, ?? = 2 ) ..... 26
圖 4.3 像素對應及影像內插技術之運作範例( ?? = 3, ?? = 2 ) ............. 28
圖 4.4 擁有 6 × 6 像素的偽裝影像 ......................................................... 29
圖 4.5 原始影像的視覺效果 .................................................................. 30
圖 4.6 放大倍率為 2 之 PSNR 數值、訊息嵌入量及其視覺效果 ...... 32
圖 4.7 內插影像之影像品質比較 .......................................................... 32
圖 4.8 訊息嵌入量比較 .......................................................................... 33
圖 4.9 偽裝影像之各個像素的訊息嵌入量統計 .................................. 34
圖 4.10 偽裝影像之影像品質比較 ........................................................ 35
圖 4.11 差值影像之視覺效果 ................................................................ 36

表目錄
表 2.1 Wu 與 Tsai 所使用的範圍層級劃分表 .......................................... 7
表 2.2 Wu 等學者所使用的範圍層級劃分表 .......................................... 8
表 2.3 考慮偽裝影像品質的範圍層級劃分表 ......................................... 9
表 2.4 考慮訊息嵌入量的範圍層級劃分表 ........................................... 10
表 3.1 不同區塊大小的訊息嵌入量(位元) ........................................... 22
表 3.2 不同區塊大小所得到的偽裝影像品質(dB) ............................... 22
表 3.3 不同的區塊形狀之訊息嵌入量(位元) ....................................... 24
表 3.4 不同的區塊形狀之偽裝影像品質(dB) ....................................... 24
表 4.1 掩護影像之不同擴張倍率的訊息嵌入量(位元) ....................... 37
[1]W. Bender, D. Gruhl, N. Morimoto, and A. Lu, “Techniques for data hiding,” IBM Systems Journal, Vol. 35, No. 3-4, pp. 313-336, 1996.
[2]F. A. P. Petitcolas, R. J. Anderson, and M. G. Kuhn, “Information hiding – A survey,” Proceedings of the IEEE, Special Issue on Protection of Multimedia Content, Vol. 87, No. 7, pp. 1062-1078, 1999.
[3]L. M. Marvel, C. G. Boncelet, and C. T. Retter, “Spread spectrum image steganography,” IEEE Transactions on Image Processing, Vol. 8, No. 8, pp. 1075-1083, 1999.
[4]R. Z. Wang, C. F. Lin, and J. C. Lin, “Image hiding by optimal LSB substitution and genetic algorithm,” Pattern Recognition, Vol. 34, No. 3, pp. 671-683, 2001.
[5]C. K. Chan and L. M. Cheng, “Hiding data in images by simple LSB substitution,” Pattern Recognition, Vol. 37, No. 3, pp. 469-474, 2004.
[6]C. C. Chang and H. W. Tseng, “A steganographic method for digital images using side match,” Pattern Recognition Letters, Vol. 25, No. 12, pp. 1431-1437, 2004.
[7]H. L. Jin, M. Fujiyoshi, and H. Kiya, “Lossless data hiding in the spatial domain for high quality images,” IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, Vol. E90-A, No. 4, pp. 771-777, 2007.
[8]C. H. Yang, “Inverted pattern approach to improve image quality of information hiding by LSB substitution,” Pattern Recognition, Vol. 41, No. 8, pp. 2674-2683, 2008.
[9]I. C. Lin, Y. B. Lin, and C. M. Wang, “Hiding data in spatial domain images with distortion tolerance,” Computer Standards & Interfaces, Vol. 31, No. 2, pp. 458-464, 2009.
[10]D. C. Lou, M. C. Hu, and J. L. Liu, “Multiple layer data hiding scheme for medical images,” Computer Standards & Interfaces, Vol. 31, No. 2, pp. 329-335, 2009.
[11]P. Bedi, R. Bansal, and P. Sehgal, “Using PSO in a spatial domain based image hiding scheme with distortion tolerance,” Computers & Electrical Engineering, Vol. 39, No. 2, pp. 640-654, 2013.
[12]C. S. Lu, S. K. Huang, C. J. Sze and H. Y. M. Liao, “Cocktail watermarking for digital image protection,” IEEE Transactions on Multimedia, Vol. 2, No. 4, pp. 209-224, 2000.
[13]C. S. Lu and H. Y. Liao, “Multipurpose watermarking for image authentication and protection,” IEEE Transactions on Image Processing, Vol. 10, No. 10, pp. 1579-1592, 2001.
[14]G. Xuan, J. Zhu, J. Chen, Y. Q. Shi, Z. Ni, and W. Su, “Distortionless data hiding based on integer wavelet transform,” Electronics Letters, Vol. 38, No. 25, pp. 1646-1648, 2002.
[15]S. H. Wang and Y. P. Lin, “Wavelet tree quantization for copyright protection watermarking,” IEEE Transactions on Image Processing, Vol. 13, No. 2, pp. 154-165, 2004.
[16]X. Li and J. Wang, “A steganographic method based upon JPEG and particle swarm optimization algorithm,” Information Sciences, Vol. 177, No. 15, pp. 3099-3109, 2007.
[17]S. Bhattacharyya and G. Sanyal, “Data hiding in images in discrete wavelet domain using PMM,” World Academy of Science, Engineering & Technology, Vol. 4, No. 8, pp. 504-512, 2010.
[18]T. H. The and T. L. Tien, “An efficient blind watermarking method based on significant difference of wavelet tree quantization using adaptive threshold,” International Journal of Electronics and Electrical Engineering, Vol. 1, No. 2, pp. 98-103, 2013.
[19]C. C. Lin, S. C. Chen, and N. L. Hsueh, “Adaptive embedding techniques for VQ-compressed images,” Information Sciences, Vol. 179, No. 1-2, pp. 140-149, 2009.
[20]S. C. Shie and S. D. Lin, “Data hiding based on compressed VQ indices of images,” Computer Standards & Interfaces, Vol. 31, No. 6, pp. 1143-1149, 2009.
[21]J. X. Wang and Z. M. Lu, “A path optional lossless data hiding scheme based on VQ joint neighboring coding,” Information Sciences, Vol. 179, No. 19, pp. 3332-3348, 2009.
[22]J. D. Lee, Y. H. Chiou, and J. M. Guo, “Lossless data hiding for VQ indices based on neighboring correlation,” Information Sciences, Vol. 221, pp. 419-438, 2013.
[23]C. C. Chang, T. S. Nguyen, and C. C. Lin, “A novel VQ-based reversible data hiding scheme by using hybrid encoding strategies,” Journal of Systems and Software, Vol. 86, No. 2, pp. 389-402, 2013.
[24]C. Qin, C. C. Chang, and Y. P. Chiu, “A novel joint data hiding and compression scheme based on SMVQ and image inpainting,” IEEE Transactions on Image Processing, Vol. 23, No. 3, pp. 969-978, 2014.
[25]L. Wang, Z. Pan, X. Ma, and S. Hu, “A novel high-performance reversible data hiding scheme using SMVQ and improved locally adaptive coding method,” Journal of Visual Communication and Image Representation, Vol. 25, No. 2, pp. 454-465, 2014.
[26]D. C. Wu and W. H. Tsai, “A steganographic method for images by pixel-value differencing,” Pattern Recognition Letters, Vol. 24, No. 9-10, pp. 1613-1626, 2003.
[27]X. Liao, Q. Y. Wen, and J. Zhang, “A steganographic method for digital images with four-pixel differencing and modified LSB substitution,” Journal of Visual Communication and Image Representation, Vol. 22, No. 1, pp. 1-8, 2011.
[28]F. Peng, X. Li, and B. Yang, “Adaptive reversible data hiding scheme based on integer transform,” Signal Processing, Vol. 92, No. 1, pp. 54-62, 2012.
[29]W. Hong, “Adaptive image data hiding in edges using patched reference table and pair-wise embedding technique,” Information Sciences, Vol. 221, pp. 473-489, 2013.
[30]X. Gui, X, Li, and B. Yang, “A high capacity reversible data hiding scheme based on generalized prediction-error expansion and adaptive embedding,” Signal Processing, Vol. 98, pp. 370-380, 2014.
[31]J. Tian, “Reversible data embedding using a difference expansion,” IEEE Transactions on Circuits and Systems for Video Technology, Vol. 13, No. 8, pp. 890-896, 2003.
[32]Z. Ni, Y. Q. Shi, N. Ansari, and W. Su, “Reversible data hiding,” IEEE Transactions on Circuits and Systems for Video Technology, Vol. 16, No. 3, pp. 354-362, 2006.
[33]H. C. Wu, C. C. Lee, C. S. Tsai, Y. P. Chu, and H. R. Chen, “A high capacity reversible data hiding scheme with edge prediction and difference expansion,” Journal of Systems and Software, Vol. 82, No. 12, pp. 1966-1973, 2009.
[34]C. F. Lee, H. L. Chen, and H. K. Tso, “Embedding capacity raising in reversible data hiding based on prediction of difference expansion,” Journal of Systems and Software, Vol. 83, No. 10, pp. 1864-1872, 2010.
[35]L. Luo, Z. Chen, M. Chen, X. Zeng, and Z. Xiong, “Reversible image watermarking using interpolation technique,” IEEE Transactions on Information Forensics and Security, Vol. 5, No. 1, pp. 187-193, 2010.
[36]O. M. Al-Qershi and B. E. Khoo, “High capacity data hiding schemes for medical images based on difference expansion,” Journal of Systems and Software, Vol. 84, No. 1, pp. 105-112, 2011.
[37]W. Hong and T. S. Chen, “A local variance-controlled reversible data hiding method using prediction and histogram-shifting,” Journal of Systems and Software, Vol. 83, No. 12, pp. 2653-2663, 2010.
[38]Y. C. Li, C. M. Yeh, and C. C. Chang, “Data hiding based on the similarity between neighboring pixels with reversibility,” Digital Signal Processing, Vol. 20, No. 4, pp. 1116-1128, 2010.
[39]Z. Zhao, H. Luo, Z. M. Lu, and J. S. Pan, “Reversible data hiding based on multilevel histogram modification and sequential recovery,” AEÜ - International Journal of Electronics and Communications, Vol. 65, No. 10, pp. 814-826, 2011.
[40]C. C. Chang, Y. H. Huang, H. Y. Tsai, and C. Qin, “Prediction-based reversible data hiding using the difference of neighboring pixels,” AEÜ - International Journal of Electronics and Communications, Vol. 66, No. 9, pp. 758-766, 2012.
[41]L. C. Huang, L. Y. Tseng, and M. S. Hwang, “A reversible data hiding method by histogram shifting in high quality medical images,” Journal of Systems and Software, Vol. 86, No. 3, pp. 716-727, 2013.
[42]Y. Y. Tsai, D. S. Tsai, and C. L. Liu, “Reversible data hiding scheme based on neighboring pixel differences,” Digital Signal Processing, Vol. 23, No. 3, pp. 919-927, 2013.
[43]T. C. Lu, C. Y. Tseng, and K. M. Deng, “Reversible data hiding using local edge sensing prediction methods and adaptive thresholds,” Signal Processing, Vol. 104, pp. 152-166, 2014.
[44]H. C. Wu, N. I. Wu, C. S. Tsai, and M. S. Hwang, “Image steganographic scheme based on pixel-value differencing and LSB replacement methods,” IEE Proceedings of Vision, Image and Signal Processing, Vol. 152, No. 5, pp. 611-615, 2005.
[45]H. C. Lu, Y. P. Chu, and M. S. Hwang, “New steganographic method of pixel value differencing,” Journal of Imaging Science and Technology, Vol. 50, No. 5, pp. 424-426, 2006.
[46]C. M. Wang, N. I. Wu, C. S. Tsai, and M. S. Hwang, “A high quality steganographic method with pixel-value differencing and modulus function,” Journal of Systems and Software, Vol. 81, No. 1, pp. 150-158, 2008.
[47]M. Khodaei and K. Faez, “New adaptive steganographic method using least-significant-bit substitution and pixel-value differencing,” IET Image Processing, Vol. 6, No. 6, pp. 677-686, 2012.
[48]N. I. Wu, K. C. Wu, and C. M. Wang, “Exploring pixel-value differencing and base decomposition for low distortion data embedding,” Applied Soft Computing, Vol. 12, No. 2, pp. 942-960, 2012.
[49]Y. P. Lee, J. C. Lee, W. K. Chen, K. C. Chang, I. J. Su, and C. P. Chang, “High-payload image hiding with quality recovery using tri-way pixel-value differencing,” Information Sciences, Vol. 191, pp. 214-225, 2012.
[50]X. Liao, Q. Y. Wen, Z. L. Zhao, and J. Zhang, “A novel steganographic method with four-pixel differencing and modulus function,” Fundamenta Informaticae, Vol. 118, No. 3, pp. 281-289, 2012.
[51]K. H. Jung and K. Y. Yoo, “Data hiding method using image interpolation,” Computer Standards & Interfaces, Vol. 31, No. 2, pp. 465-470, 2009.
[52]C. F. Lee and Y. L. Huang, “An efficient image interpolation increasing payload in reversible data hiding,” Expert Systems with Applications, Vol. 39, No. 8, pp. 6712-6719, 2012.
[53]R. C. Gonzalez and R. E. Woods, Digital Image Processing, Third Edition, Burlington, Prentice Hall, 2007.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔