跳到主要內容

臺灣博碩士論文加值系統

(44.211.34.178) 您好!臺灣時間:2024/11/02 23:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:Nila Armelia Windasari
研究生(外文):Nila Armelia Windasari
論文名稱:驗證電子學習平台成功因素與永續發展— 結合DMIS和TAM模型之實證研究
論文名稱(外文):Examining the Success Factor and Sustainable Development of E-learning: An Empirical Study of Combining DMIS and TAM Model
指導教授:陳坤成陳坤成引用關係
指導教授(外文):James Kun-Cheng Chen
口試委員:陳坤成吳豐祥王明妤
口試委員(外文):James Kun-Cheng ChenFeng-Shang Vincent WuWang, Ming-Yeu
口試日期:2014-07-20
學位類別:碩士
校院名稱:亞洲大學
系所名稱:經營管理學系
學門:商業及管理學門
學類:企業管理學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:75
中文關鍵詞:電子學習平台信息系統學習成效持續使用意圖MRA
外文關鍵詞:E-learningInformation systemLearning performanceContinuance intentionMRA
相關次數:
  • 被引用被引用:0
  • 點閱點閱:318
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
如今,電子學習平台有顯著的市場成長和快速發展空間。供應商提供優質可靠的電子學習系統成為遠距教學的主議題。使用單一代理伺服器評估一個電子學習平台是不足的,因為所面臨發生的問題是多變性與多元化環境。本研究旨在探討電子學習平台的成功因素和永續續發展。研究範圍鎖定在一般學校單位的電子學習系統,譬如:虛擬教室,電子學習應用,及提供給學生的電子學習平台。但不包括企業培訓計畫之教育學習。
本研究採用網路線上填卷調查,對象以有使用過電子學習經驗的學生為主。本論文透過文獻探索建構問卷內容效度,使用Cornbach Alpha測試問卷信度,並使用MRA檢驗研究假設。十個研究假設中有八個完全被接受,其中服務品質,信息品質,以及系統品質皆為電子學習平台後續應發展的重點,尤其以幫助學生獲得更好的學習成效,可增強使用者繼續使用它的意圖。這些研究發現可提供電子學習系統的供應商和建構者之參考依據,對於實際發展一個成功的電子學習系統有實質的幫助。

E-learning nowadays is facing high level of adoption and speed up growth on market. The supplier has to provide a high quality and reliable E-learning systems that become master issues on long distance education. Evaluating an E-learning system using single proxy constructor is not enough. Because of the problems occur are acceptance discontinuance anomaly phenomenon and diverse environment. This study aims to examine success factors and sustainable development of E-learning. The scope of research is focused on educational purpose not including corporate training program. While the research objectors is lock onto E-learning system such as virtual classroom, E-learning application, and E-learning provided by universities respect to students as end-users.
Online data collection is utilized and the survey targets are students who have experienced using E-learning. The process through literature review and content construction create the validity of article, using cornbach alpha to test the reliability of questionnaires, and utilizes Multiple Regression Analysis (MRA) to examine the hypotheses using Statistical Package for the Social Sciences (SPSS).
Eight of ten hypotheses are accepted implies that service quality, information quality, and system quality on E-learning have to be developed based on the focus on helping the learner achieve better performance which enabling the users intention to keep continue using it. The findings contribute to enrich system providers and instructors perspective as well as practical implication in developing successful E-learning system.
TABLE OF CONTENTS

Acknowledgement ............... i
English Abstract .............. ii
Chinese Abstract .............. iii
Table of Contents ............. iv
List of Figure................. vi
List of Table.................. vii

CHAPTER I INTRODUCTION
Research Background .............. 1
Research Motivation .............. 6
Research Question ................ 7
Scope and Limitation ............. 7
Research Objectives............... 8

CHAPTER II LITERATURE REVIEW
Between Online Distance Learning and Traditional Class.............. 9
E-learning ......................................................... 11
D&M IS Success Model................................................ 15
Technology Acceptance Model (TAM)................................... 18
Service Innovation ................................................. 20
Learning Performance ............................................... 23
Continuance Intention .............................................. 24

CHAPTER III RESEARCH METHODOLOGY
Research Methodology .............. 27
Conceptual Framework .............. 27
Research Hypothesis ............... 28
Data Collection Method ............ 32
Questionnaire Design .............. 33
Data Analysis ..................... 37

CHAPTER IV RESULT AND DISCUSSION
Demographic Characteristics .............. 39
Descriptive Analysis ..................... 42
Validity and Reliability Analysis ........ 44
Correlation Result ....................... 45
Regression Result ........................ 46
Test of Mediating Effect ................. 50
Test of Moderating Effect ................ 52
Result of Hypothesis Testing ............. 55

CHAPTER V CONCLUSION
Conclusion and Implication ............... 56
Suggestion for Further Research .......... 60

REFERENCES .............. 62
APPENDIX ................ 69


LIST OF FIGURES

Figure 1 DeLone and McLean (DM) IS Success Model ...... 16
Figure 2 Technology Acceptance Model (TAM) ............ 19
Figure 3 Service Innovation Dimension ................. 21
Figure 4 Research Framework ........................... 28
Figure 5 Model 1 (Regression with Mediating)........... 46
Figure 6 Model 2 (Regression with Moderating).......... 46

LIST OF TABLE

Table 1 Traditional Classroom Learning vs E-learning............... 10
Table 2 Research studies investigating E-learning system success... 13
Table 3 Summary of Hypothesis Proposed............................. 32
Table 4 Measurement Items.......................................... 34
Table 5 Demographic Characteristic ................................ 40
Table 6 E-learning User Profile ................................... 42
Table 7 Descriptive Analysis....................................... 43
Table 8 Reliability Test........................................... 44
Table 9 Validity Test with KMO and Bartlett's Test................. 45
Table 10 Correlation Result........................................ 45
Table 11 Test of Direct Relationship............................... 47
Table 12 Test of Mediating Effect (Model 1)........................ 50
Table 13 Multicolliniearity Test................................... 52
Table 14 Test of Moderating Effect (Model 2)....................... 53
Table 15 Result of the Hypothesis Testing.......................... 55

Aas, T. H., & Pedersen, P. E. (2010). The firm-level effects of service innovation: A literature review. International Journal of Innovation Management, 14(05), 759-794.
Alavi, M. (1994). Computer-mediated collaborative learning: An empirical evaluation. MIS Quarterly, 159-174.
Arbaugh, J. B., & Duray, R. (2002). Technological and structural characteristics, student learning and satisfaction with web-based courses – An exploratory study of two on-line MBA programs. Management Learning, 33(3), 331–347.
Aydın, C. H., & Tasci, D. (2005). Measuring readiness for e-learning: reflections from an emerging country. Educational Technology & Society,8(4), 244-257.
Bailey, J. E., & Pearson, S. W. (1983). Development of a tool for measuring and analyzing computer user satisfaction. Management Science, 29(5), 530-545.
Baron, R. M. and Kenny, D. A. (1986). The Moderator-Mediator Variable Distinction in Social Psychological Research – Conceptual, Strategic, and Statistical Considerations. Journal of Personality and Social Psychology, Vol. 51(6), pp. 1173–1182.
Bennett, G., & Green, F. P. (2001). Student learning in the online environment: Nosignificant difference? Quest, 53, 1–13.
Bhattacherjee, A. (2001a). An empirical analysis of the antecedents of electronic commerce service continuance. Decision Support Systems, 32(2), 201–214.
Bhattacherjee, A. (2001b). Understanding information systems continuance. An expectation–confirmation model. MIS Quarterly, 25(3), 351–370.
Bhattacherjee, A., Perols, J., & Sanford, C. (2008). Information technology continuance: A theoretical extension and empirical test. Journal of Computer Information Systems, 49(1), 17-26.
Brace, N., Kemp, R., & Snelgar, R. (2006). SPSS for psychologists: A guide to data analysis using SPSS for Windows, Versions 12 and 13. L. Erlbaum Associates Inc.
Carswell, A. D., & Venkatesh, V. (2002). Learner outcomes in an asynchronous distance education environment. International Journal of Human-Computer Studies, 56(5), 475-494.
Chang, H. H. (2010). Task-technology fit and user acceptance of online auction. International Journal of Human-Computer Studies, 68, 69–89
Chemers, M. M., Hu, L. T., & Garcia, B. F. (2001). Academic self-efficacy and first year college student performance and adjustment. Journal of Educational Psychology, 93(1), 55.
Chen, H. J. (2010). Linking employees’ E-learning system use to their overall job outcomes: An empirical study based on the IS success model. Computers & Education, 55(4), 1628-1639.
Chen, L. H., & Kuo, Y. F. (2011). Understanding E-learning service quality of a commercial bank by using Kano's model. Total Quality Management, 22(1), 99-116.
Chen, S. C., Yen, D. C., & Hwang, M. I. (2012). Factors influencing the continuance intention to the usage of Web 2.0: An empirical study. Computers in Human Behavior, 28(3), 933-941.
Cheng, C. C., & Krumwiede, D. (2012). The role of service innovation in the market orientation—new service performance linkage. Technovation, 32(7), 487-497.
Chiu, C. M., & Wang, E. T. (2008). Understanding Web-based learning continuance intention: The role of subjective task value. Information & Management, 45(3), 194-201.
Chiu, C. M., Chiu, C. S., & Chang, H. C. (2007). Examining the integrated influence of fairness and quality on learners’ satisfaction and Web‐based learning continuance intention. Information Systems Journal, 17(3), 271-287.
Damanpour, F., Walker, R. M., & Avellaneda, C. N. (2009). Combinative effects of innovation types and organizational performance: a longitudinal study of service organizations. Journal of Management Studies, 46(4), 650-675
Danjuma, I., & Rasli, A. (2012). Imperatives of service innovation and service quality for customer satisfaction: Perspective on higher education. Procedia-Social and Behavioral Sciences, 40, 347-352.
Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319–340.
Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: a comparison of two theoretical models. Management Science, 35(8), 982-1003.
Davies, J., & Graff, M. (2005). Performance in e‐learning: online participation and student grades. British Journal of Educational Technology, 36(4), 657-663.
Davis, S., & Wiedenbeck, S. (2001). The mediating effects of intrinsic motivation, ease of use and usefulness perceptions on performance in first-time and subsequent computer users. Interacting with computers, 13(5), 549-580.

De Jong, J. P., Bruins, A., Dolfsma, W., & Meijaard, J. (2003). Innovation in service firms explored: what, how and why. EIM Business Policy Research, Strategic Study B200205, 18.
DeLone, W. H., & McLean, E. R. (1992). Information systems success: the quest for the dependent variable. Information Systems Research, 3(1), 60-95.
DeLone, W. H. and McLean E.R (2003). The DeLone and McLean model of information systems success: a ten-year update. Journal of management information systems,19(4), 9-30.
Field, A. (2009) Discovering Statistics using SPSS. London: Sage.
Garrity, E. J., Glassberg, B., Kim, Y. J., Sanders, G. L., & Shin, S. K. (2005). An experimental investigation of web-based information systems success in the context of electronic commerce. Decision Support Systems, 39(3), 485-503.
Gong, M., Xu, Y., & Yu, Y. (2004). An enhanced technology acceptance model for Web-Based learning. Journal of Information Systems Education, 15(4), 365–373.
Hair, Joseph F., et al. (2009) Multivariate Data Analysis: A Global Perspective. 7th ed. Upper Saddle River: Prentice Hall. Print.
Halawi, L. A., McCarthy, R. V., & Aronson, J. E. (2007). An empirical investigation of knowledge management systems’ success. Journal of Computer Information Systems, 48(2), 121–135.
Hertog, P. D. (2000). Knowledge-intensive business services as co-producers of innovation. International Journal of Innovation Management, 4(04), 491-528.
Holsapple, C. W. (2006). Defining, assessing, and promoting E-learning success: An information systems perspective. Decision Sciences Journal of Innovative Education, 4(1), 67–85.
Holsapple, C. W., & Lee‐Post, A. (2006). Defining, Assessing, and Promoting E‐Learning Success: An Information Systems Perspective. Decision Sciences Journal of Innovative Education, 4(1), 67-85.
Islam, A. K. M. (2013). Investigating E-learning system usage outcomes in the university context. Computers & Education, 69, 387-399.
Jonsson, B.-A. (2005). A case study of successful E-learning: a web-based distance course in medical physics held for school teachers of the upper secondary level. Medical Engineering & Physics, 27(7), 571–581.
Kaplan, D. (2009). Structural equation modeling: Foundations and extensions (Vol. 10). SAGE Publications, Incorporated.
Kaplan-Leiserson, E. (2000). E-learning glossary, Available from http://www.learningcircuits.org/glossary.html
Komiak, S. & Bensabat, I. (2006). The effects of personalization and familiarity on trust and adoption of recommendation agents. MIS Quarterly, 30, 941-960.
Kulkarni, U. R., Ravindran, S., & Freeze, R. (2007). A knowledge management success model: theoretical development and empirical validation. Journal of Management Information Systems, 23(3), 309-347.
Lee, B. C., Yoon, J. O., & Lee, I. (2009). Learners’ acceptance of E-learning in South Korea: Theories and results. Computers & Education, 53(4), 1320-1329.
Lee, J. S., Cho, H., Gay, G., Davidson, B., & IngraVea, A. (2003). Technology acceptance and social networking in distance learning. Educational Technology & Society, 6(2), 50–61.
Lee, M. C. (2010). Explaining and predicting users’ continuance intention toward E-learning: An extension of the expectation–confirmation model.Computers & Education, 54(2), 506-516.
Lee, J. K., & Lee, W. K. (2008). The relationship of e-Learner’s self-regulatory efficacy and perception of E-learning environmental quality. Computers in Human Behavior, 24(1), 32-47.
Lin, H. F. (2007). Measuring online learning systems success: Applying the updated DeLone and McLean model. Cyberpsychology & behavior, 10(6), 817-820.
Lin, L. (2011). The impact of service innovation on firm performance: evidence from the Chinese tourism sector†. The Service Industries Journal, (ahead-of-print), 1-34.
Lin, W. S., & Wang, C. H. (2012). Antecedences to continued intentions of adopting E-learning system in blended learning instruction: A contingency framework based on models of information system success and task-technology fit. Computers & Education, 58(1), 88-99.
Maki, R.H., Maki, W.S., Patterson, M., and Whittaker, P.D. Evaluation of a Web-based introductory psychology course: learning and satisfaction in online versus lecture courses. Behavior Research Methods, Instruments, and Computers 32, 2 (2000), 230–239.
Marold, K. A., Larsen, G., & Moreno, A. (2000). Web-based learning: is it working? A comparison of student performance and achievement in web-based courses and their in-classroom counterparts. In Proceedings of The 2000 Information Resources Management Association International Conference on Challenges of Information Technology Management in the 21st century (pp. 350–353), Anchorage, Alaska, United States
McGill, T. J., & Klobas, J. E. (2009). A task–technology fit view of learning management system impact. Computers & Education, 52(2), 496-508.
Negash, S., Ryan, T., & Igbaria, M. (2003). Quality and effectiveness in web-based customer support systems. Information & Management, 40(8), 757-768.
Nunamaker Jr, J. F., Briggs, R. O., Mittleman, D. D., Vogel, D. R., & Balthazard, P. A. (1996). Lessons from a dozen years of group support systems research: a discussion of lab and field findings. Journal of management information systems, 13(3), 163-207.
O'Cass, A., Song, M., & Yuan, L. (2013). Anatomy of service innovation: Introduction to the special issue. Journal of Business Research, 66(8), 1060-1062.
Oliver, R. L. (1980). A cognitive model for the antecedents and consequences of satisfaction. Journal of Marketing Research, 17, 460–469.
Parasuraman, A., Zeithaml, V. A., & Berry, L. L. (1988). Refinement and reassessment of the SERVQUAL scale. Journal of Retailing, 64(1), 12-40.
Park, S. Y. (2009). An Analysis of the Technology Acceptance Model in Understanding University Students' Behavioral Intention to Use E-learning. Educational Technology & Society, 12 (3), 150–162.
Pedhazur, E. J. (1997). Multiple regression in behavioral research: Explanation and prediction. Harcourt Brace College Publishers.
Phipps, R., & Merisotis, J. (1999). What’s the difference: A review of contemporary research on the effectiveness of distance learning in higher education. Washington, DC: Institute for Higher Education Policy.
Piccoli, G., Ahmad, R., & Ives, B. (2001). Web-based virtual learning environments: A research framework and a preliminary assessment of effectiveness in basic IT skills training. MIS Quarterly, 401-426.
Roca, J. C., Chiu, C. M., & Martínez, F. J. (2006). Understanding E-learning continuance intention: An extension of the Technology Acceptance Model. International Journal of Human-Computer Studies, 64(8), 683-696.
Roca, J. C., Gagné, M. (2008). Understanding E-learning continuance intention in the workplace: A self-determination theory perspective. Computers in Human Behavior, 24, 1585-1604. doi:10.1016/j.chb.2007.06.001.
Rosenberg, M. J. (2001). E-learning: Strategies for delivering knowledge in the digital age (Vol. 9). New York: McGraw-Hill.
Russell, T. (1999). The no significant difference phenomenon. Chapel Hill, NC: Office of Instructional Telecommunications, University of North Carolina.
Saadé, R., & Bahli, B. (2005). The impact of cognitive absorption on perceived usefulness and perceived ease of use in on-line learning: an extension of the technology acceptance model. Information & Management, 42(2), 317-327.
Seddon, P. B. (1997). A respecification and extension of the DeLone and McLean model of IS success. Information Systems Research, 8(3), 240-253.
Sekaran, Uma. (1992). Research Methods for Business, 2nd ed., John Wiley & Sons, New York.
Sharpe, T., Harper, W., & Brown, S. (1998). In response: Further reflections on technology, science, and culture. Quest, 50, 332–343.
Sun, P. C., Tsai, R. J., Finger, G., Chen, Y. Y., & Yeh, D. (2008). What drives a successful E-learning? An empirical investigation of the critical factors influencing learner satisfaction. Computers & Education, 50(4), 1183-1202.
Teo, T. (2010). Development and validation of the E-learning Acceptance Measure (ElAM). The Internet and Higher Education, 13(3), 148-152.
Tsou, H. T., & Chen, J. S. (2012). The influence of interfirm codevelopment competency on e-service innovation. Information & Management.
Van Raaij, E. M., & Schepers, J. J. (2008). The acceptance and use of a virtual learning environment in China. Computers & Education, 50(3), 838-852.
Van Ark, B., Broersma, L., & den Hertog, P. (2003). Services innovation, performance and policy: a review. Synthesis report in the framework of the project on Structural Information Provision on Innovation in Services (SIID) for the Ministry of Economic Affairs of the Netherlands, University of Groningen and DIALOGIC.
Vatanasombut, B., Lgbaria, M., Stylianou, A. C., & Rodgers, W. (2008). Information systems continuance intention of web-based applications customers: the case of online banking. Information & Management, 45(7), 419–428.
Velasquez, N. F., Durcikova, A., & Sabherwal, R. (2009). Studying knowledge management system success in system administration. In Proceedings of the 42nd Hawaii international conference on system sciences (HICSS 09), Hawaii.
Vogel, D. R., Davison, R. M., & Shroff, R. H. (2001). Socio-cultural learning: a perspective on GSS-enabled global education. Communications of the AIS, 7, 1–39.
Wang, Y. S., Wang, H. Y., & Shee, D. Y. (2007). Measuring E-learning systems success in an organizational context: Scale development and validation. Computers in Human Behavior, 23(4), 1792-1808.
Wang, Y.-S. (2003). Assessment of learner satisfaction with asynchronous electronic learning systems. Information and Management, 41(1), 75–86
Wang, Y. S. (2008). Assessing e-commerce systems success: A respecification and validation of the Delone and Mclean model of IS success. Information Systems Journal, 18, 529–557.
Wu, J. H., & Wang, Y. M. (2006). Measuring KMS success: A respecification of the DeLone and McLean's model. Information and Management, 43(6), 728-739.
Wu, J. P., Tsai, R. J., Chen, C. C., & Wu, Y. C. (2006). An integrative model to predict the continuance use of electronic learning systems: hints for teaching. International Journal on E-Learning, 5(2), 287–302.
Ying-Yuh Huang, Kittiya Kaewmee, (2011), The Impact of Service Quality and Service Innovation on Technology Acceptance Model. BAI 2011 Internationsl Conference on Business and Information, Bangkok, Thailand.
Zaied, A. N. H. (2012). An Integrated Success Model for Evaluating Information System in Public Sectors. Journal of Emerging Trends in Computing and Information Sciences, 3(6).
Zhang, D., & Nunamaker, J. F. (2003). Powering E-learning in the new millennium: an overview of E-learning and enabling technology. Information Systems Frontiers, 5(2), 207-218.
Zhang, D., Zhao, J. L., Zhou, L., & Nunamaker Jr, J. F. (2004). Can e-learning replace classroom learning?. Communications of the ACM, 47(5), 75-79.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊