跳到主要內容

臺灣博碩士論文加值系統

(44.201.99.222) 您好!臺灣時間:2022/12/10 10:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:熊皓儀
研究生(外文):Hao-Yi Hsiung
論文名稱:核桃仁乙酸乙酯區分物及純化物質之抗氧化及醣解酵素抑制作用
論文名稱(外文):Antioxidant and glycosidase inhibitory activity of ethyl acetate fraction and isolated components from walnut kernels
指導教授:蘇正德蘇正德引用關係
指導教授(外文):Jeng-De Su
口試委員:吳明昌王進崑蔡正宗江文德
口試日期:2014-07-17
學位類別:碩士
校院名稱:東海大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:102
中文關鍵詞:核桃仁分離純化醣解酵素抗氧化
外文關鍵詞:α-amylaseα-glucosidasewalnut kernelsJuglans regia L.isolated componentsantioxidantglycosidase inhibitory
相關次數:
  • 被引用被引用:7
  • 點閱點閱:1821
  • 評分評分:
  • 下載下載:149
  • 收藏至我的研究室書目清單書目收藏:0
糖尿病與胰島素之分泌及作用缺失有關,高血糖使人體內產生過多的活性氧與自由基,造成體內氧化、壓力的上升,促使相關併發症發生。抗氧化物質能有效調控體內自由基,而醣解酵素能參與人體醣類消化作用,並與血糖調節相關,進而影響現代疾病如糖尿病的發生。其中又以α-amylase及α-glucosidase尤為重要。中藥材核桃仁(walnut kernels, Juglans regia L.)已證實其具有抗氧化、抗腦衰老、抗動脈粥狀硬化、降血脂、抗腫瘤等生理活性。已有相關文獻探討核桃葉乙醇萃取物對於大鼠的降血糖作用,但在核桃仁的部分,其相關血糖調控的研究相當少見,因此本研究探討核桃仁之抗氧化活性及評估其對醣解酵素的抑制能力,期望從核桃仁中純化出具抗氧化及調節血糖之活性成分,進而研發出具相關保健機能之保健食品。核桃仁甲醇萃取物加入二次去離子水依序利用等體積比例的正己烷、乙酸乙酯及正丁醇等溶劑進行液液萃取,並以抗氧化及醣解酵素抑制活性進行篩選及活性成分之分離純化與結構鑑定。結果得知核桃仁乙酸乙酯區分物具有較佳的抗氧化性及醣解酵素抑制活性,經液相管柱層析及HPLC分離純化再經UV、MS、 1H-NMR及13C-NMR等光譜進行結構鑑定出二種具抗氧化及醣解酵素抑制活性之純化物質。其結構為tellimagrandin I及casuarictin,均屬於水解型單寧化合物。利用總抗氧化力(TEAC)檢測其抗氧化性,結果顯示其總抗氧化力之自由基清除率分別為99.58%(1)及99.60%(2)。醣解酵素抑制活性測試之結果顯示,純化物質1及2在α-glucosidase 抑制率上皆呈現良好的效果,抑制率分別為66.57%(1),68.59%(2);對α-amylase抑制率則分別為14.08%(1),13.88%(2)。
Diabetes is associated with deficiencies in insulin secretion or action. Excess reactive oxygen species are built up with chronic hyperglycemia, and are subsequently contributing to oxidative stress and complications. Antioxidants have important roles in disorders involving oxidative stress. Glycosidases are not only involved in human digestion, but also affect the generation of many metabolic diseases such as diabetes, the most important glycosidases are α-amylase and α-glucosidase. Walnut kernels, Juglans regia L., has long been used in traditional Chinese medicine. Previous studies have demonstrated that walnut kernels have antioxidant, antiatherogenic, antiproliferative, antitumor activities and anti-aging effects of brain. There were literature related to the ethanol extract of walnut leaves for hypoglycemic effect in rats, but in walnut kernels of research related to blood sugar regulation which is quite rare. This study was to investigate the antioxidant activity of walnut and assess their glycosidases ability to inhibit expect from the issue of walnut purified antioxidant active ingredients and regulate blood sugar, and then issue the relevant health research and development functions of health food. Walnut kernels was extracted with methanol, and the methanol extracts were added distilled deionized water, and then extracted with the proportional n-hexane, ethyl acetate and n-butanol successively. These extracts were analysed wth antioxidation and glucosidase activity were isolated and purified with the structure of the screening and identification of the active ingredient. The results showed that ethyl acetate fraction of walnut kernels had better resistance to oxidation and glycolytic enzyme inhibitory activity, after the separation of the liquid column chromatography and HPLC purified effective active ingredients. Finally, the structure identified two kinds of antioxidant and glycosidase inhibitory activity of the purified material by UV, MS, 1H-NMR and 13C-NMR analyses. The isolated components were identified two hydrolyzable tannins, tellimagrandin I(1) and casuarictin(2). Two isolated components showed the strongest antioxidant activity by trolox equivalent antioxidant capacity(TEAC), which were 99.58%(1) and 99.60%(2) respectively. And the two isolated components gave the highest inhibition rates against α-glucosidase, which were 66.57%(1) and 68.59%(2)% respectively. Two isolated component were efficient in inhibiting α-amylase, with inhibition rates of 14.08%(1) and 13.88%(2).
目錄
摘要--------------------------------------------------------------------------------------1
英文摘要--------------------------------------------------------------------------------2
第一章、前言--------------------------------------------------------------------------4
第二章、文獻回顧
一、核桃仁-----------------------------------------------------------------------------5
(一)核桃仁之介紹---------------------------------------------------------------------5
(二)核桃仁之傳統功效---------------------------------------------------------------6
(三)核桃仁之生理活性---------------------------------------------------------------6
二、糖尿病-----------------------------------------------------------------------------8
(一)糖尿病主要類型------------------------------------------------------------------9
(二)糖尿病症狀-----------------------------------------------------------------------11
(三)糖尿病所引起的併發症--------------------------------------------------------12
(四)糖尿病之治療--------------------------------------------------------------------13
三、糖尿病與自由基之關聯-------------------------------------------------------16
四、自由基與活性氧----------------------------------------------------------------16
(一)自由基與活性氧之種類--------------------------------------------------------16
(二)自由基與活性氧所扮演之生理功能-----------------------------------------17
(三)自由基與活性氧之危害--------------------------------------------------------17
五、脂質氧化作用-------------------------------------------------------------------18
六、抗氧化劑與抗氧化劑作用機制----------------------------------------------21
(一)抗氧化作用機制-----------------------------------------------------------------22
(二)天然抗氧化劑--------------------------------------------------------------------24
(三)人工合成抗氧化劑--------------------------------------------------------------31
七、胰島素----------------------------------------------------------------------------32
(一)胰島素作用-----------------------------------------------------------------------32
(二)胰島素作用於細胞--------------------------------------------------------------33
(三)胰島素細胞層面之傳訊--------------------------------------------------------33
(四)胰島素阻抗性--------------------------------------------------------------------34
八、高血糖與醣解酵素-------------------------------------------------------------35
(一)α-澱粉酶(α-amylase)------------------------------------------------------------35
(二)α-葡萄糖苷酶(α-glucosidase)--------------------------------------------------35
九、醣解酵素抑制劑之作用-------------------------------------------------------36
第三章、研究目的與實驗流程
一、研究目的-------------------------------------------------------------------------37
二、實驗架構-------------------------------------------------------------------------38
第四章、材料與方法
一、實驗材料-------------------------------------------------------------------------39
二、實驗試藥與溶劑----------------------------------------------------------------39
(一)抗氧化試試藥--------------------------------------------------------------------39
(二)醣解酵素抑制試驗之試藥-----------------------------------------------------39
(三)純化成分層析及光譜分析之溶劑--------------------------------------------40
三、實驗儀器設備-------------------------------------------------------------------40
四、實驗方法-------------------------------------------------------------------------41
(一)樣品萃取--------------------------------------------------------------------------41
(二)總酚含量測定--------------------------------------------------------------------42
(三)總類黃酮含量測定--------------------------------------------------------------42
(四)DPPH 自由基清除能力試驗--------------------------------------------------42
(五)總抗氧化能力測定 -------------------------------------------------------------43
(六)α-amylase 抑制作用測定------------------------------------------------------44
(七)α-glucosidase 抑制作用測定--------------------------------------------------45
(八)核桃仁抗氧化及醣解酵素抑制成分之萃取、分離及純化--------------45
(九)統計分析--------------------------------------------------------------------------51
第五章、結果與討論
一、核桃仁甲醇萃取物各區分物之產率----------------------------------------52
二、核桃仁各溶劑區分物之總酚含量-------------------------------------------52
三、核桃仁各溶劑區分物之總類黃酮含量-------------------------------------52
四、核桃仁各溶劑區分物之DPPH 自由基清除能力-------------------------54
五、核桃仁各溶劑區分物之總抗氧化能力-------------------------------------54
六、核桃仁各溶劑區分物之醣解酵素抑制活性-------------------------------54
七、核桃仁正己烷及乙酸乙酯區分物之矽膠液相管柱層析----------------57
八、核桃仁乙酸乙酯區分物之區分物H之XAD-7液相管柱層析-----------62
九、核桃仁乙酸乙酯區分物之區分物d及e之HPLC分析及製備------------65
十、核桃仁乙酸乙酯區分物之區分物d-1及e-1之HPLC分析及製備------69
十一、核桃仁乙酸乙酯區分物純化物質之結構鑑定--------------------------72
十二、核桃仁乙酸乙酯區分物純化物質之抗氧化及醣解酵素抑制作用-82
第六章、結論 -------------------------------------------------------------------------85
第七章、參考文獻 -------------------------------------------------------------------86
第八章、附錄--------------------------------------------------------------------------101







圖目錄
圖 2-1、核桃仁(Juglans regia L.)之圖片。------------------------------------------5
圖 2-2、脂質自氧化連鎖反應。---------------------------------------------------20
圖 2-3、油脂自氧化的反應階段。------------------------------------------------20
圖 2-4、不飽和脂肪酸自氧化反應中最初氫過氧化物的形成。-----------21
圖 2-5、自由基清除劑之抗氧化作用機制。------------------------------------23
圖 2-6、類黃酮之基本結構圖。---------------------------------------------------27
圖 2-7、類黃酮衍生物之化學結構。---------------------------------------------28
圖 2-8、胰島素之代謝調控。------------------------------------------------------33
圖 2-9、胰島素之傳訊路徑。------------------------------------------------------34
圖 2-10、Acarbose 之結構。------------------------------------------------------36
圖 2-11、Miglitol 之結構。--------------------------------------------------------36
圖 3-1、實驗架構圖。---------------------------------------------------------------38
圖 4-1、核桃仁各種溶劑區分物之製備。---------------------------------------41
圖 4-2、DPPH 自由基清除作用之反應式。------------------------------------43
圖 4-3、葡萄糖之呈色反應。------------------------------------------------------44
圖 4-4、核桃仁正己烷及乙酸乙酯區分物抗氧化及醣解酵素抑制成分之純化流程圖。-----------------------------------------------------------------------------50
圖 5-1、核桃仁不同溶劑區分物之DPPH 自由基清除能力。--------------55
圖 5-2、核桃仁不同溶劑區分物之總抗氧化能力。---------------------------55圖 5-3、核桃仁不同溶劑區分物對α-amylase之抑制率。--------------------56
圖 5-4、核桃仁不同溶劑區分物對α-glucosudase之抑制率。---------------56
圖 5-5、核桃仁正己烷區分物之矽膠液相管柱層析圖。-------------------------58
圖 5-6、核桃仁乙酸乙酯區分物之矽膠液相管柱層析圖。-----------------------59
圖 5-7、核桃仁正己烷及乙酸乙酯區分物經矽膠液相層析後各沖提區分之DPPH自由基清除能力。----------------------------------------------------------------------60
圖 5-8、核桃仁正己烷及乙酸乙酯區分物經矽膠液相層析後各沖提區分之總抗氧化力以ABTS自由基清除率表示。-------------------------------------------------60
圖 5-9、核桃仁正己烷及乙酸乙酯區分物經矽膠液相層析後各沖提區分之α-amylase及各沖提區分之α-glucosidase抑制活性。------------------------------61
圖 5-10、核桃仁乙酸乙酯區分物區分H之XAD-7液相管柱層析圖。----------62
圖5-11、核桃仁乙酸乙酯區分物區分H經XAD-7液相層析後各沖提區分之DPPH自由基清除能力。----------------------------------------------------------------------63
圖 5-12、核桃仁乙酸乙酯區分物區分H經XAD-7液相層析後各沖提區分之總抗氧化力以ABTS自由基清除率表示。-------------------------------------------------64
圖 5-13、核桃仁乙酸乙酯區分物區分H經XAD-7液相層析後各沖提區分之α-amylase及各沖提區分之α-glucosidase抑制活性。------------------------------64
圖 5-14、核桃仁乙酸乙酯區分物區分d之分析型HPLC圖。---------------------66
圖 5-15、核桃仁乙酸乙酯區分物區分e之分析型HPLC圖。---------------------67
圖 5-16、核桃仁乙酸乙酯區分物區分d及e經HPLC層析後各沖提區分之α-amylase及各沖提區分之α-glucosidase抑制活性。-----------------------------68
圖 5-17、核桃仁乙酸乙酯區分物區分d-1之分析型HPLC圖。------------------69
圖 5-18、核桃仁乙酸乙酯區分物區分e-1之分析型HPLC圖。------------------70
圖 5-19、核桃仁乙酸乙酯區分物純化物質1之分析型HPLC圖。---------------71
圖 5-20、核桃仁乙酸乙酯區分物純化物質2之分析型HPLC圖。---------------71
圖 5-21、核桃仁乙酸乙酯區分物純化物質1之紫外光-可見光譜圖。----------74
圖 5-22、核桃仁乙酸乙酯區分物純化物質1之1H-核磁共振光譜圖。----------75
圖 5-23、核桃仁乙酸乙酯區分物純化物質1之13C-核磁共振光譜圖。---------76
圖 5-24、核桃仁乙酸乙酯區分物純化物質2之紫外光-可見光譜圖。----------79
圖 5-25、核桃仁乙酸乙酯區分物純化物質2之1H-核磁共振光譜圖。----------80
圖 5-26、核桃仁乙酸乙酯區分物純化物質2之13C-核磁共振光譜圖。---------81
圖 5-27、核桃仁乙酸乙酯區分物之純化物質的總抗氧化能力。---------------83
圖 5-28、核桃仁乙酸乙酯區分物純化物質之α-amylase抑制率。---------------83
圖 5-29、核桃仁乙酸乙酯區分物 純化物質之α-glucosidase抑制率。-----------84





表目錄
表 2-1、妊娠性糖尿病篩檢--------------------------------------------------------11
表 2-2、植物中具有降血糖功能之活性物質-----------------------------------15
表 2-3、活性氧族群-----------------------------------------------------------------17
表 2-4、天然抗氧化物質及其來源-----------------------------------------------25
表 2-5、類黃酮衍生物之抗氧化性-----------------------------------------------29
表 5-1、核桃仁四種溶劑之區分物產率-----------------------------------------53
表 5-2、核桃仁四種溶劑區分物之總酚、總類黃酮含量--------------------53
表 5-3、核桃仁正己烷區分物經矽膠液相層析後各沖提區分之產率----------58
表 5-4、核桃仁正己烷區分物經矽膠液相層析後各沖提區分之產率----------59
表 5-5、核桃仁乙酸乙酯區分物區分H經XAD-7液相層析後各沖提區分之產率--------------------------------------------------------------------------------------------63
表 5-6、核桃仁乙酸乙酯區分物區分d經HPLC層析後各沖提區分之產率----66
表 5-7、核桃仁乙酸乙酯區分物區分e經HPLC層析後各沖提區分之產率--67







附目錄

附錄一、沒食子酸之標準曲線--------------------------------------------------101
附錄二、檞皮酮之標準曲線-----------------------------------------------------101
附錄三、BHA之標準曲線---------------------------------------------------------102
附錄四、Trolox 之標準曲線-----------------------------------------------------102

王玉虹。2011。茉莉脂氧合酶抑制劑的特性。高雄海洋科技大學 水產食品科學研究所 碩士論文。
中藥大辭典。2003。江蘇新醫學院編。上海科學技術出版社。
古為榮。2006。咖啡果肉抗氧化及揮發性成分之研究。東海大學 食品科學系 碩士論文。
李旻。2006。綠藻中α-glucosidase抑制物之分離與特性鑑定。靜宜大學 食品營養學系碩士論文。
王瑄閔。甘草中具抑制醣解酵素活性萃取物及純化物質之調節葡萄糖恆定作用。東海大學食品科學研究所 碩士論文。(2011)。
巫熒。2009。綠藻水解物對α-葡萄糖苷酶與α-澱粉酶之抑制與活性物質的純化。海洋大學 食品科學系 碩士論文。
吳青蓉。2011。黃金銀耳酸性多醣對FL83B小鼠肝臟細胞具胰島素增敏功效。東海大學 食品科學系 碩士論文。
吳崇榮。2004。糖尿病慢性併發症的致病機轉和未來展望。台灣醫界 47(6): 13-18。
林宏達。2003。認識糖尿病。台灣糖尿病協會。
林建谷。2008。綠藻萃取物與細胞壁組成之分離、鑑定與抑制糖苷酵素活性。靜宜大學 食品科學系 碩士論文。
林念穎。2009。茜草根正己烷及乙酸乙酯萃取物之抗氧化成分。東海大學 食品科學系 碩士論文。
胡智伯。2002。口服降血糖製劑與天然調節血糖物質。食品工業 34(6): 19-37。
食品工業發展研究所菌種中心/國家衛生研究院細胞庫。細胞株資料單。生資中心編號:BCRC 60325。細胞株名稱:FL83B。細胞株來源:ATCC CRL-2390。組織來源:Liver, Mouse。
唐孟成、賈之慎、朱祥瑞和呂順霖。1996。春秋桑葉中黃酮類化合物總量及提取方法比較。浙江農業大學學報 22(4): 394-398。
陳紀樺。2002。血糖調節機制及功效評估。食品工業 34(6): 2-17。
陳銘鴻、 康玉嬋、王佩文。Acarbose應用於第二型糖尿病合併腎衰竭患者之可能禁忌機轉。內科學誌。20:434-439。(2009)。
滿田久輝,安本教傳,岩見公和。1967。吲哚抗氧化成分對亞麻油酸之自氧化的影響。營養與糧食19: 210-214。
劉毓蕙。2008。後期醣化終產物與活性氧在糖尿病併發症中的角色。食品工業40(1): 27-35。
鍾玉玲。2003。海巴戟天葉、莖及果實粗萃物的抗氧化活性之比較。嘉南藥理科技大學 生物科技研究所 碩士論文。
蘇正德、蔡文騰、張基煌、蘇女淳。1991。茶湯與茶渣兒茶酚含量及抗氧化性之調查研究。食品科學18: 234-248。
郭柏村。高粱薑乙酸乙酯萃取物之抗氧化及調節血糖作用。東海大學食品科學研究所 碩士論文。(2011) 。
鄭芳琪。番石榴葉水萃取物降血糖作用及有效成分分離。國立台灣大學生物資源暨農學院食品科學研究所博士論文。(2009)。
華敏,尹政。(2006)。核桃仁提取物抗腦衰老作用的實驗研究。現代中藥研究與實踐第20卷第3期。
江城梅,肖棣。(1995)。核桃仁結抗氯化汞致衰老和誘變作用。蚌埠醫学院學報第4期。
丁昌玉 江城梅。(1995)。芦笋及核桃仁抗衰老作用比较。蚌埠醫學院學报第4期。
李怡慧。白芍熱水萃取物醣解酵素抑制成分之純化及對小鼠肝臟FL83B細胞之葡萄糖恆定調節。東海大學食品科學研究所 碩士論文。(2011)。
簡永亮。沙苑子、馬櫻丹花抗氧化成分及沙苑子揮發性成分之研究。東海大學食品科學研究所 碩士論文。(2002)。
衛生福利部前二十大死因戶籍縣市鄉鎮別就診統計。http://www.mohw.gov.tw/cht/DOS/Statistic.aspx?f_list_no=312&fod_list_no=2368。(2014)。
顏國欽、劉展冏、韓建國、劉冠汝、李嘉展、陳建元、蘇敏昇、馮惠萍、謝秋蘭、饒家麟、梁弘人、林聖敦、江伯源、李政達、盧更煌、周志輝。食品化學。華格納企業股份有限公司。(2007)。
郭晉銓。訶子對抗藥性金黃葡萄球菌之抗菌活性研究。臺北醫學大學生藥學研究所 碩士論文。(2004)。
Abuja, P. M., Albertini, R. 2001. Methods for monitoring oxidative stress, lipid peroxidation and oxidation resistance of lipoproteins. Clin. Chim. Acta. 306: 1-17.
Ali, H., Houghton, P. J., Soumyanath, A. 2006. α-Amylase inhibitory activity of some malaysian plants used to treat diabetes; with particular reference to Phyllanthus amarus. Journal of Ethnopharmacology 107: 449–455.
American Diabetes Association (ADA). 2011. Standard of medical care in diabetes-2011. Diabetes Care, Supplement 1, 34: S11-S61.
Anderson, K. J., Teuber, S. S., Gobeille, A., Cremin, P., Waterhouse, A. L., & Steinberg, F. M. (2001). Walnut polyphenolics inhibit in vitro human plasma and LDL oxidation. The Journal of Nutrition, 131, 2837–2842.
Anguelova, T., Warthsen, J. 2000. Degradation of lycopene, α-carotene, and β-carotene during lipid peroxidation. J. Food Sci. 65: 71-75.
An, N., Zou, Z.-M., Tian, Z., Luo X.-Z., Yang, S.-L., Xu, L.-Z. 2008 Diarylheptanoids from the rhizomes of Alpinia officinarum and their anticancer activity. Fitoterapia 79: 27–31.
An, N., Zhang, H.-W., Xu, L.-Z., Yang, S.-L., Zou, Z.-M. 2010. New diarylheptanoids from the rhizome of Alpinia officinarum Hance. Food Chemistry 119: 513–517.
Aquino, A., Jorge, J., Terenzi, H., Polizeli, M. 2003. Studies on a thermostable α-amylase from the thermophilic fungus Scytalidium thermophilum. Applied Microbiology and Biotechnology 61:323-328.
Arnao, M. B., Cano. A., Hernádez-Ruiz, J., Carcía-Cánovas, F., Acosta, M. 1996 Inhibition by L-ascorbic acid and other antioxidants of 2,2’-azino-bis(3-ethylbiazoline-6-sulfonic acid)oxidation catalyzed by peroxidase: a new approach for determining total antioxidant status of food. Analy. Biochem. 236: 255-261.
Aruoma, O. I. 1994. Nutrition and health aspects of free radicals and antioxidants. Food and Chemical Toxicology 32: 671-683.
Baron, A.D. 1998. Postprandial hyperglycaemia and α-glucosidase inhibitors. Diabetes Research and Clinical Practice 40 Suppl: S51-S55.
Barry, H., John, M. C. 1999. Free radicals in biology and medicine. Oxford Scienc.
Bate, S., Swain, E. C. 1962. Comparative Biochemistry, Vol. 3, Mason, H. S. and Florkin, M., Eds., Academic Press, New York. 764.
Baynes, J. W., Thorpe, S. R. 1999. Role of oxidative stress in diabetic complication: a new perspective on an old paradigm. Diabetes 48: 1-9.
Bergonzi, M. C., Bilia, A. R., Bari, L. D., Mazzi, G., Vincieri, F. F. 2007. Studies on the interactions between some flavonols and cyclodextrins. Bioorganic & Medicinal Chemistry Letters 17: 5744–5748.
Bessesen, D. H. 2001. The role of carbohydrates in insulin resistance. J. Nutr. 131: 2782S-2786S.
Beyer, R. E. 1994 The role of ascorbate in antioxidant protection of biomembranes: interaction with vitamin E and coenzyme Q. J. Bioenerg. Biomembr. 26(4):349-58.
Bravo, L. (1998). Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutrition Reviews, 56, 317–333.
Bros, W., Heller, W., Michel, C., Saran, M. 1990. Flavonoids as antioxidants : Determination of radical-scavenging efficiencies. Methods Enzymol. 186: 343-355.
Brownlee, M. 2001. Biochemistry and molecular cell biology of diabetic complication. Nature 414: 813-820
Burton, G. W. 1994. Vitamin E: molecular and biological function. Pro. Nutr. Soc. 53: 251-262.
Buse, M. G. 2006. Hexosamines, insulin resistance, and complications of diabetes: current status. Am. J. Physiol. Endocrinol. Metab. 290: E1-E8
Ceriello, A. 1998. The emerging role of post-prandial hyperglycemic spikes in the pathogenesis of diabetic complications. Diabetic Medicine 15: 188–193.
Ceriello, A. 2003. New insights on oxidative stress and diabetic complications may lead to a “causal” antioxidant therapy. Diabetes Care 26: 1589-1596.
Chauhan, J. S., Srivastava, S. K., Srivastava, S. D. 1979. Two glycoflavanones from the roots of Cleome viscose. Ind. J. Chem. 17(b): 300-302.
Cheng, A. Y. Y., Fantus, I. G. 2005. Oral antihyperglycemic therapy for type 2 diabetes mellitus. Cmaj. 172: 213-226.
Cheng, H. L., Huang, H. K., Chang, C. I., Tsai, C. P., Chou, C. H. 2008. A cell-based screening identifies compounds from the stem of Momordica charantia that overcome insulin resistance and activate AMP-activated protein Kinase. J. Agric. Food Chem. 56: 6835-6843
Cook, N. C., Samman, S. 1996. Flavonoids: Chemistry, metabolism, cardioprotective effects, and dietary sources. J. Nutr. Biochem. 7: 66-76.
Crawford, J. M., Cotran, R. S. 1999. The pancreas. Cortran, R. S., Kumar, V., and Collins, T. (ed), Pathologic Basis of Disease. 6th. Ch 20.
Diana O. Labuckas, Damia’n M. Maestri, Milton Perello’, Marcela L. Marti’nez, Alicia L. Lamarque. (2008). Phenolics from walnut (Juglans regia L.) kernels: Antioxidant activity and interactions with proteins. Food Chemistry, 107, 607–612.
Duman, B. S., Turkoglu, C., Gunay, D., Cagatay, P., Demiroglu, C., Buyukdevrim, A. 2003. The interrelationship between insulin secretion and action in type 2 diabetes mellitus with different degrees of obesity: evidence supporting central obesity. Diabetes Nutr. Metab. 16: 243-250.
Fang, Y. Z. 2002. Free radicals and nutrition. In: Fang, Y. Z., Zheng, R. L.,(Ed.). Theory and application of free radical biology. Beijing: Scientific Press: 647.
Ferraro, G. E., Norbedo, C., Coussio, J. D. 1981 Polyphenols from Achyrocline satureioides. Phytochemistry. 20(8): 2053-2054.
Frandsen, T.P., Svensson, B. 1998. Plant α-glucosidases of the glycoside hydrolase family 31. Molecular properties, substrate specificity, reaction mechanism, and comparison with family members of different origin. Plant Molecular Biology 37: 1–13.
Fred-Jaiyesimi, A., Kio, A., Richard, W. 2009. α-Amylase inhibitory effect of 3β-olean-12-en-3-yl (9Z)-hexadec-9-enoate isolated from Spondias mombin leaf. Food Chemistry 116: 285–288.
Fridovich, I. 1995. Superoxide radical and superoxide dismutase. Annu. Rev. Biochem. 64: 97-112.
Fujisawa, T., Ikegami, H., Inoue, K., Kawabata, Y., Ogihara, T. 2005. Effect of two α-glucosidase inhibitors, voglibose and acarbose, on postprandial hyperglycemia correlates with subjective abdominal symptoms. Metabolism- Clinical and Experimental 54: 387-390.
Gao, M., Zhang, W.-C., Liu, Q.-S., Hu, J.-J., Liu, G.-T., Du, G.-H. 2008. Pinocembrin prevents glutamate-induced apoptosis in SH-SY5Y neuronal cells via decrease of bax/bcl-2 ratio. European Journal of Pharmacology 591: 73–79.
Green, K., Brend, M. D., Murphy, M. P. 2004. Prevention of mitochondrial oxidative damage as a therapeutic stratege in diabetes. Diabetes 53: S110-S118.
Halliwell, B. 1994. Free radicals, antioxidants and human disease: curiosity, cause or consequence. Lancet 344: 721-723.
Halliwell, B., Murcia, M. A., Chirico, S., Aruoma, O. I. 1995. Free radicals and antioxidants in food and in vivo: what they do and how they work. Crit. Rev. Food Sci. Nutr. 35: 7-20.
Harbone, J. B. 1994. The flavonoids: advances in researchsince 1986. Chapman & Hall, London, UK.
Heejung Yang, Hyun-Jong Cho, So Hee Sim, Young Keun Chung, Dae-Duk Kim, Sang Hyun Sung, Jinwoong Kim, Young Choong Kim. (2012). Cytotoxic terpenoids from Juglans sinensis leaves and twigs. Bioorganic & Medicinal Chemistry Letters, 22, 2079–2083.
Heo, M.Y., Lee, J.H., Sohn, S.J., Au, W.W. 1996. Anticlastogenic effects of galangin against mitomycin C-induced micronuclei in reticulocytes of mice. Mutation Research 360: 37– 41.
Hotamisligil, G. S. 2006 Inflammation and metabolic disorders. Nature 444:860-867. Hsueh, W. A., Law, R. E. 2003. PPAR-γ and atherosclerosis: effects on cell growth and movement. Arterioscler. Thromb. Vasc. Biol. 21: 1891-1895.
Huang, D. W., Shen, S. C., Wu J. S. B. 2009. Effect of caffeic acid and cinnamic acid on glucose uptake in insulin-resistant mouse hepatocytes. J. Agric. Food Chem. 57: 7687-7692.
Huang, M. T., Chang, R. L., Wood, A. W., Newmark, H. L., Sayer, J. M., Yagi, H., Jerina, D. M., Conney, A. H. 1985. Inhibition of the mutagenicity of bay-egion diol-epoxides of polycyclic aromatic hydrocarbons by tannic acid, hydroxylated anthraquinones and hydroxylated cinnamic acid derivatives. Carcinogenesis 6: 237-242.
Imamura, Y., Migita, T., Uriu, Y., Otagiri, M., Okawara, T. 2000. Inhibitory effects of flavonoids on rabbit heart carbonyl reductase. Journal of Biochemistry 127: 653–658.
Imanaga, Y., Sakata, N., Takebayashi, S. 2000. In vivo and in vitro evidence for the glycoxidation of low density lipoprotein in human atherosclerotic plaques. Atherosclerosis 150: 343-355.
Inoguchi, T., Li, P., Umeda, F., Yu, H. Y., Kakimoto, M., Imamure, M., Aoki, T., Etoh, T., Hashimoto, T., Naruse, M., Sano, H., Utsumi, H., Nawata, H. 2000. High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C-dependent activation of NAD(P)H oxidase in cultured vascular cells. Diabetes 49: 1939-1945
Isomaa, B. 2003. A major health health hazard: the metabolic syndrome. Life Sci. 73: 2395-2411.
Jacob, R. A., Burri, B. J. 1996. Oxidative damage and defense. American Journal of Clinical Nutrition. 63: 985S–990S.
Jacob, R. A. 1994. Nutrition, health and antioxidants. Inform 11: 1271-1275.
Jezek P. and Hlavata L. 2005. Mitochondria in homeostasis of reactive oxygen species in cell, tissues, and organism. Int J Biochem Cell Biol 37:2478-2503.
Li J., J.-X. Sun, H.-Y. Yu, Z.-Y. Chen, X.-Y. Zhao and H.-L. Ruan. (2013).
Diarylheptanoids from the root bark of Juglans cathayensis. Chinese Chemical Letters, 24, 521–523.
Julkunen-Titto, R. 1985. Phenoic constituents in the leaves of Northern willows: Methods for the analysis of certain phenolics. J. Agric. Food Chem. 33: 213-217.
Yang, J., R. H. Liu and L. Halim. (2009). Antioxidant and antiproliferative activities of common edible nut seeds. Food Science and Technology, 42, 1–8.
Junxi Liu, Min Menga, Chen Li, Xinyi Huang, Duolong Di. (2008). Simultaneous determination of three diarylheptanoids and an alpha-tetralone derivative in the green walnut husks (Juglans regia L.) by high-performance liquid chromatography with photodiode array detector. Journal of Chromatography A, 1190, 80–85.
Liu, J. X., D. L. Di, X. Y. Huang and C. L. (2007). Two new diarylheptanoids from the pericarps of Juglans regia L. Chinese Chemical Letters, 18, 943–946.
Kahn, B. B., Flier, J. S. 2000. Obesity and insulin resistance. J. Clin. Invest. 106: 473-481.
Kamal-Eldin, A., Appelqvist, L. A. 1996. The chemistry and antioxidant properties of tocopherols and tocotrienols. Lipids 31: 671-701.
Kaufman, F. 2002. Stop diabetes in its tracks. Nurs. Manage. Suppl: 2-6.
Korshunov, S. S., Skulachev, V. P., Starkov A. A. 1997. High protonic potential actuates a mechanism of reactive oxygen species in mitochondria. FEBS Letters 416: 15-18.
Koya, D., King, G. L. 1998. Protein kinase C activation and the development of diabetic complication. Diabetes 47: 859-866.
Kris-Etherton, P. M., Hecker, K. D., Bonanome, A., Coval, S. M., Binkoski, A. E., Hilpert, K. F., et al. (1999). High-monounsaturated fatty acid diets lower both plasma cholesterol and triacylglycerol concentrations. American Journal of Clinical Nutrition, 70, 1009–1015.
Lawrence, 1961. Microdetermination of glycogen with anthrone reagent. Department of Anatomy, University of Kansas, Received for publication April 21.
Lee, C. C., Houghton P. 2005. Cytotoxicity of plants from Malaysia and Thailand used traditionally to treat cancer. Journal of Ethnopharmacology 100: 237–243.
Lee, J., Kim, K. A., Jeong, S., Lee, S., Park, H. J., Kim, N. J., Lim, S. 2009. Lee, S. E., Hwang, H. J., Ha, J.-S., Jeong, H.-S., Kim, J. H. 2003. Screening of medicinal plant extracts for antioxidant activity. Life Sciences 73: 167–179.
Lenzen, S., Drinkgern, J. and Tiedge, M. 1996. Low antioxidant enzyme gene expression in pancreatic islets compared with various other mouse tissues. Free Radic. Biol. Med. 20: 463-466.
Lillioja, S., Mott, D. M., Spraul, M., Ferraro, R., Foley, J. E., Ravussin, E., Knowler, W. C., Bennett, P. H., Bogardus, C. 1993. Insulin resistance and insulin secretory dysfunction as precursors of non-insulin dependent diabetes mellitus: Prospective studies of Pima Indians. N. Engl. J. Med. 329: 1988-1992.
Lodovici, M., Guglielmi, F., Casalini, C., Meoni, M., Cheynier, V., Dolara. 2001.
Antioxidant and radical scavenging properties in vitro of polyphenolic extracts from red wine. Eur. J. Nutr. 40: 74-77.
Lopes, G. K. B., Scchulman, H. M., Hermes-Lima, M. 1999. Polyphenol tannic acid inhibits hydroxyl radical formation from Fenton reaction by complexing ferrous ions. Biochim. Biophys. Acta. 1472: 142-152.
Maarten, F. C.M., Petra, L. M., Wilbert, H. M., Eric, A. P. 1999. Glutathione and glutathione-related enzymes in reproduction a review. European Journal of Obs. Gynecol. Reprod. Biol. 82: 171-184.
Manzoor A. Rather, B. A. Dar, M. Y. Dar, B. A. Wani, W. A. Shah, B. A. Bhat, B. A. Ganai, K. A. Bhat, R. Anand and M. A. Qurishi. (2012). Chemical composition, antioxidant and antibacterial activities of the leaf essential oil of Juglans regia L. and its constituents. Phytomedicine, 19, 1185– 1190.
Marcia Carvalho, Pedro J. Ferreira, Vanda S. Mendes, Renata Silva, Jose A. Pereira, Carmen Jeronimo, Branca M. Silva.(2010). Human cancer cell antiproliferative and antioxidant activities of Juglans regia L. Food and Chemical Toxicology, 48, 441–447.
Marshall, S., Bacote, V., Traxinger, R. R. 1991. Complete inhibition of glucose-induced desensitization of the glucose transport system by inhibitors of mRNA synthesis evidence for rapid turnover of glutamine: fructose-6-phosphate amidotransferase. J. Bio. Chem. 266: 10115-10161.
Matsuda, H., Nakashima, S., Oda, Y., Nakashima, S., Yoshikawa, M. 2009. Matsui, T., Oki, T., Osajima, Y. 2007. α-glucosidase inhibitory profile of catechins and theaflavins. Journal of Agricultural and Food Chemistry 55: 99-105.
Maxwell, L., Gavin, J. 1992. Anti-oxidant therapy improves microvascular ultrastructure and perfusion in postischemic myocardium. Microvasc. Res. 43: 255-266.
McCue, P. Shetty, K. 2004. Inhibitory effects of rosmarinic acid ectracts on porcine pancreatic amylase in vitro. Asia Pacific of Clinical Nutrition 13: 101-106.
Meyer, A. S., Isaksen, A. 1995. Application of enzymes as food antioxidants. Trends in Food Sci. and Tech. 6: 300-304.
Milic, B. L., Djilas, S. M., Canadanovic-Brunet, J. M. 1998. Antioxidative activity of phenolic compounds on the metal-ion breakdown of lipid peroxidation system. Food Chem. 61: 443-447.
Miller, N. J., Rice-Evans, C. A., Davies, M. J., Gopinathan, V. and Milner, A. 1993. A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant capacity and its application to neonates. Clin. Sci. 84: 407-412.
Monauni, T., Zenti, M. G., Cretti, A., Daniels, M. C., Targher, G., Caruso, B., Caputo, M., McClain, D., Del Prato, S., Giaccari, A., Muggeo, M., Bonora, E., Bonadonna, R. C. 2000. Effects of glucosamine infusion on insulin secretion and insulin action in humans. Diabetes 49: 929-935.
Morrissey, P. A., O’Brien, N.M. 1998. Dietary antioxidants in health and disease. Int. Dairy J. 8: 463-472.
Moskovitz, J., Yim, M. B., Chock, P. B. 2002. Free radicals and disease. Arch. Biochem. Biophys. 397(2): 354-359.
Mruka, D. D., Silvestrinib, B., Moa, M. Y., Chenga, C. Y. 2002. Antioxidant superoxide dismutase - a review: its function, regulation in the testis, and role in male fertility. Contraception. 67: 305-311.
Niki, E., 1992. Active oxygens and free radicals in biology. Yukagaku 41(9): 768-773.
Nishikawa, T., Edelstein, D., Du, X. L., Yamagishi, S., Matsumura, T., Kaneda, Y., Yorek, M. A., Beebe, D., Oates, P. J., Hammes, H. P., Giardion, I., Brownlee, M. 2000. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 404: 787-790.
Nordlie, R.C., Fostem, J.D. 1999. Regulation of glucose production by the liver. Annurev. Nutr. 19: 379-406.
Pepeljnjak, S., Jalsenjak, I., Maysinger, D. 1985. Flavonoid content in propolis extracts and growth inhibition of Bacillus subtilis. Pharmazie 40: 122–123.
Poitout, V., Robertson, R. P. 2002. Minireview: Secondary beta-cell failure in type 2 diabetes-a convergence of glucotoxicity and lipotoxicity. Endocrinology 143: 339-342.
Prentki, M., Nolan, C. J. 2006. Islet beta cell failure in type 2 diabetes. J. Clin. Invest. 116: 1802-1812.
Rahimi, R., Nikfar, S., Larijani, B., and abdollahi, M. 2005. A review on the role of antioxidants in the management of diabetes and it complications. Biomed. Pharmacother. 59: 365-373.
Reaven, G. M., Chen, Y. D., Hollenbeck, C. B., Sheu, W. H., Ostrega, D., Polonsky, K. S. 1993. Plasma insulin C-peptide, and proinsulin glucose tolerance. J. Clin. Endocrinol. Metab. 76: 44-48.
Reddy, V. P., and Beyaz, A. 2006. Inhibitor of the maillard reaction and AGE breakers as therapeutics for multiple diseases. Drug Discov. Today 11: 646-654
Rice-Evans, C. A., Miller, N. J., Paganga, G. 1996. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med. 20: 933-956.
Rikans, L. E., Hornbrook, K. R. 1997. Lipid peroxidation, antioxidant protection and aging. Biochim. Biophys. Acta. 1362: 116-127.
Ros, E. (2000). Substituting walnuts for monounsaturated fat improves the serum lipid profile of hypercholesterolemic men and women. A randomized crossover trial. Annals of Internal Medicine, 132, 538–546.
Hosseini, S., L. Jamshidi, S. Mehrzadi, K. Mohammad, A. R. Najmizadeh, H. Alimoradi and H. F. Huseini. (2014). Effects of Juglans regia L. leaf extract on hyperglycemia and lipid profiles in type two diabetic patients: Arandomized double-blind, placebo-controlled clinicaltrial. Journal of Ethnopharmacology, 152, 451–456.
Sala, A., Recio, M.C., Schinella, G.R., Manez, S., Giner, R.M., Cerda-Nicolas, M., Rosi, J.L. 2003. Assessment of the anti-inflammatory activity and free radical scavenger activity of tiliroside. Eur. J. Pharmacol. 461: 53–61.
Saltiel AR, Kahn CR. Insulin signaling and the regulation of glucose and
lipid metabolism. Nature. 414: 799-806(2001).
Santos, A. C., Uyemura, S. A., Lopes, J. L., Bazon, J. N., Mingatto, F. E., Curti, C. 1998. Effect of naturally occurring flavonoids on lipid peroxidation and membrane permeability transition in mitochondria. Free Radic. Biol. Med. 24: 1455–1461.
Scalbert, A., Williamson, G. 2000. Dietary intake and bioavailability of polyphenols. J. Nutr. 130: 2073-2085.
Scudiero, D. A., Shoemaker, R. H., Paull, K. D., Monks, A., Tierney, S., Nofzinger, T. H., Currens, M. J., Seniff, D., Boyd, M. 1988. Evaluation of soluble tetrazolium/formazan assay for cell growth and drug sensitivity in culture using human and other tumor cell lines. Cancer Research 48:4827-4833.
Asgary, S., S. Parkhideh, A. Solhpour, H. Madani, P. Mahzouni and P. Rahimi. (2008). Effect of ethanolic extract of Juglans regia L. on blood sugar in diabetes-induced rats. Journal of Medicinal Food, 11, 533-538.
Sen, C. K. 1997. Nutritional biochemistry of cellular glutathione. Nutrl. Biochem. 8: 660-672.
Sheldon, R., Pinnell, M. D., Durham, N. C. 2003. Cutaneous photodamage, oxidative stress, and topical antioxidant protection. J. Am. Acad. Dermatol. 48: 1-19.
Shigenaga, M. K., Gimeno, C. J., Ames, B. N. 1989. Urinary 8-hydroxy-2'- deoxyguanosine as a biological marker of in vivo oxidative DNA damage. Proc. Natl. Acad. Sci. U S A. 86: 9697-9701.
Shih, H., Pickwell, G.V., Quttrochi, L.C. 2000. Differential effects of flavonoid compounds on tumor promoter-induced activation of the human CYP1A1 enhancer. Archives of Biochemistry and Biophysics 373: 287–294.
Shim, Y.-J., Doo, H.-K., Ahn, S.-Y., Kim, Y.-S., Seong, J.-K., Park, I.-S., Min,B.-H. 2003. Inhibitory effect of aqueous extract from the gall of Rhus chinensis on alpha-glucosidase activity and postprandial blood glucose. Journal of Ethnopharmacology 85: 283–287.
Shobana, S., Sreerama, Y. N., Malleshi, N. G. 2009. Composition and enzyme inhibitory properties of finger millet (Eleusine coracana L.) seed coat phenolics: Mode of inhibition of α-glucosidase and pancreatic amylase. Food Chemistry 115: 1268–1273.
Shoelson, S. E., Lee, J. and Goldfine, A. B. 2006. Inflammation and insulin resistance. J Clin Invest 116:1793-1801.
Singh, R., Barden, A., Mori, T., Beilin, L. 2001. Advanced glycation end-products: A review. Diabetologia 44: 129-146.
Tadera, K., Minami, Y., Takamatsu, K., Matsuoka, T. 2006. Inhibition of α-glucosidase and α-amylase by flavonoids. J Nutr Sci Vitaminol 52: 149–153.
Tiedge, M., Lortz, S., Drinkgern, J., Lenzen, S. 1997. Relation between antioxidant enzyme gene expression and antioxidative defense status of insulin-producing cell. Diabetes 46: 1733-1742.
Topinka, J., Bincova, B., Sram, R. J., Erin, A. N. 1989. The influence of α-tocopherol and pyritinol on oxidative DNA damage and lipid peroxidation in human lymphocytes. Mutat Res. 255: 131.
Toshiyuki Fukuda, Hideyuki Ito, Takashi Yoshida. (2003). Antioxidative polyphenols from walnuts (Juglans regia L.). Phytochemistry, 63, 795–801.
Valko, M., Leibfritz, D., Moncol, J., Cronin, M. T., Mazur, M., Telser, J. 2007. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 2007;39:44-84.
Valko, M., Rhodes, C. J., Moncol, J., Izakovic, M., Mazur, M. 2006. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem. Biol. Interact. 160: 1-40.
Vaseekaran, S., Balakumar. S., Arasaratnam, V. 2010. Isolation and identification of a bacterial strain producing thermostable α- amylase. Tropical Agricultural Research 22(1): 1-11.
Vessby, J., Basu, S., Mohsen, R., Berne, C. and Vessby, B. 2002. Oxidative stress and antioxidant status in type 1 diabetes mellitus. J. Intern. Med. 251: 69-76.
Wall, M. E., Wani, M. C., Manikumar, G., Abraham, P., Taylor, H., Hughes, T. J., Warner, J., McGiveney, R. 1988. Plant antimutagenic agents, 2. Flavonoids. Journal of Natural Products 51: 1084–1091.
Weisberg, S. P., McCann D., Desai, M., Rosenbaum M., Leibel R. L. and Ferrante A. W. 2003. Obesity is associated with macrophage accumulation in adipose tissue. J. Clin Invest 112: 1796-1808.
Wells-Knecht, K. J., Zyzak, D. V., Litchfield, J. E., Thorpe, S. R., Baynes, J. W. 1995. Mechanism of autoxidative glycosylation: Identification of glyoxal and arabinose as intermediates in the autoxidative modification of proteins by glucose. Biochemistry 34: 3720-3790.
White MF, Kahn CR.J Biol Chem. The insulin signaling system. Jan7; 269(1): 1-4(1994).
Wild, S., Roglic, G., Green, A., Sicree, R., King, H. 2004. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 27: 1047-1035.
Wu, G., Fang, Y. Z., Yang, S., Lupton, J. R., Turner, N. D. 2003. Glutathione metabolism and its implications for health. Nutr. Sci. 18: 489-492.
Ma, X., Q. Wei, S. Zhang, L. Shi and Z. Zhao. (2011). Isolation and bioactivities of organic acids and phenols from walnut shell pyroligneous acid. Journal of Analytical and Applied Pyrolysis, 91, 338–343.
Xu, H., Barnes G. T., Yang, Q., Tan, G., Yang, D., Chou, C. J., Sole, J., Nichol, A., Ross J. S., Tartaglia, L. A. Chen, H. 2003. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J.Clin Invest 112: 1821-1830.
Yamagishi, S., Imaizumi, T. 2005. Diabetic vascular complications: pathophysiology, biochemical basis and potential therapeutic strategy. Curr. Pharm. Des. 11: 2279-2299.
Yi Z, Wang Z, Li H, Liu M. (2004). Inhibitory effect of tellimagrandin I on chemically induced differentiation of human leukemia K562 cells. Toxicol Lett, Mar 1, 147(2), 109-19.
Yokozawa, T., Cho, E. J., Hara, Y., Kitaani, K. 2000. Antioxidative activity of green tea treat with radical initiator 2,2’-azobis (2-amidinopropane) dihydrochloride. J. Agric. Food Chem. 48: 5068-5073.
Yoshioka, K. Takahashi, H. Homma, T. Saito, M. Oh, K. B. Nemoto, Y. Matsuoka, H. 1996. A novel fluorescent derivative of glucose applicable to the assessment of glucose uptake activity of Escherichia coli. Biochim. Biophys. Acta 1289: 5-9.
Zijia Zhang, Liping Liao, Jeffrey Moore, Tao Wu, Zhengtao Wang. (2009).
Antioxidant phenolic compounds from walnut kernels (Juglans regia L.). Food Chemistry, 113, 160–165.
Zimmet, P., Alberti, K. G., Shaw, J. 2001. Global and societal implications of the diabetes epidemic. Nature 414: 782-787.
Yi Z. C., Y. Z. Liu, H. X. Li, Y. Yin, F. Y. Zhuang, Y. B. Fan and Z. Wang. (2006). Tellimagrandin I enhances gap junctional communication and attenuates the tumor phenotype of human cervical carcinoma HeLa cells in vitro. Cancer Letters, 242, 77–87.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top