[1] C.H. Hou, J.F. Huang, H.R. Lin, B.Y. Wang, Preparation of activated carbon sheet electrode assisted electrosorption process, Journal of the Taiwan Institute of Chemical Engineers, 43 (2012) 473-479.
[2] C.H. Hou, C.Y. Huang, A comparative study of electrosorption selectivity of ions by activated carbon electrodes in capacitive deionization, Desalination, 314 (2013) 124-129.
[3] E. Bayram, N. Hoda, E. Ayranci, Adsorption/electrosorption of catechol and resorcinol onto high area activated carbon cloth, Journal of Hazardous Materials, 168 (2009) 1459-1466.
[4] E. Bayram, E. Ayranci, Electrochemically enhanced removal of polycyclic aromatic basic dyes from dilute aqueous solutions by activated carbon cloth electrodes, Environmental Science & Technology, 44 (2010) 6331-6336.
[5] Y.H. Han, X. Quan, S. Chen, H.M. Zhao, C.Y. Cui, Y.Z. Zhao, Electrochemically enhanced adsorption of aniline on activated carbon fibers, Separation and Purification Technology, 50 (2006) 365-372.
[6] X. Li, S. Chen, X. Quan, Y. Zhang, Enhanced adsorption of PFOA and PFOS on multiwalled carbon nanotubes under electrochemical assistance, Environmental Science & Technology, 45 (2011) 8498-8505.
[7] 行政院環保署, 物質安全資料表, 環保署列管編號:038-01.
[8] U.S. EPA, Aniline Fact Sheet, Pollution Prevention and Toxics (7407), EPA 749-F-95-002 (1994)
[9] F.J. O'Neill, K.C.A. Bromley-Challenor, R.J. Greenwood, J.S. Knapp, Bacterial growth on aniline: Implications for the biotreatment of industrial wastewater, Water Research, 34 (2000) 4397-4409.
[10] G. Ersoz, S. Atalay, Treatment of aniline by catalytic wet air oxidation: Comparative study over CuO/CeO2 and NiO/Al2O3, Journal of Environmental Management, 113 (2012) 244-250.
[11] Y. Jiang, C. Petrier, T.D. Waite, Effect of pH on the ultrasonic degradation of ionic aromatic compounds in aqueous solution, Ultrasonics Sonochemistry, 9 (2002) 163-168.
[12] K. Turhan, S. Uzman, The degradation products of aniline in the solutions with ozone and kinetic investigations, Annali Di Chimica, 97 (2007) 1129-1138.
[13] R. Devulapalli, F. Jones, Separation of aniline from aqueous solutions using emulsion liquid membranes, Journal of Hazardous Materials, 70 (1999) 157-170.
[14] D.M. Nevskaia, E. Castillejos-Lopez, V. Munoz, A. Guerrero-Ruiz, Adsorption of aromatic compounds from water by treated carbon materials, Environmental Science & Technology, 38 (2004) 5786-5796.
[15] S.L. Mu, J.Q. Kan, The effect of salts on the electrochemical polymerization of aniline, Synthetic Metals, 92 (1998) 149-155.
[16] X. Chen, X. Xia, P. Liang, X.X. Cao, H.T. Sun, X. Huang, Stacked microbial desalination cells to enhance water desalination efficiency, Environmental Science & Technology, 45 (2011) 2465-2470.
[17] L. Ciriaco, C. Anjo, M.J. Pacheco, A. Lopes, J. Correia, Electrochemical degradation of Ibuprofen on Ti/Pt/PbO2 and Si/BDD electrodes, Electrochimica Acta, 54 (2009) 1464-1472.
[18] G.A. Planes, J.L. Rodriguez, M.C. Miras, G. Garcia, E. Pastor, C.A. Barbero, Spectroscopic evidence for intermediate species formed during aniline polymerization and polyaniline degradation, Physical Chemistry Chemical Physics, 12 (2010) 10584-10593.
[19] J.J. Niu, B.E. Conway, Adsorptive and electrosorptive removal of aniline and bipyridyls from waste-waters, Journal of Electroanalytical Chemistry, 536 (2002) 83-92.
[20] K.Y. Foo, B.H. Hameed, A short review of activated carbon assisted electrosorption process: An overview, current stage and future prospects, Journal of Hazardous Materials, 170 (2009) 552-559.
[21] S.L. Ambuludi, M. Panizza, N. Oturan, A. Ozcan, M.A. Oturan, Kinetic behavior of anti-inflammatory drug ibuprofen in aqueous medium during its degradation by electrochemical advanced oxidation, Environmental Science and Pollution Research, 20 (2013) 2381-2389.
[22] Y.J. Li, F. Wang, G.D. Zhou, Y.M. Ni, Aniline degradation by electrocatalytic oxidation, Chemosphere, 53 (2003) 1229-1234.
[23] Y.H. Cui, X.Y. Li, G.H. Chen, Electrochemical degradation of bisphenol A on different anodes, Water Research, 43 (2009) 1968-1976.
[24] G.V. Korshin, J. Kim, L.L. Gan, Comparative study of reactions of endocrine disruptors bisphenol A and diethylstilbestrol in electrochemical treatment and chlorination, Water Research, 40 (2006) 1070-1078.
[25] M. Gattrell, D.W. Kirk, A study of the oxidation of phenol at platinum and preoxidized platinum surfaces, Journal of the Electrochemical Society, 140 (1993) 1534-1540.
[26] M. Ferreira, H. Varela, R.M. Torresi, G. Tremiliosi, Electrode passivation caused by polymerization of different phenolic compounds, Electrochimica Acta, 52 (2006) 434-442.
[27] H. Kuramitz, M. Matsushita, S. Tanaka, Electrochemical removal of bisphenol A based on the anodic polymerization using a column type carbon fiber electrode, Water Research, 38 (2004) 2331-2338.
[28] H. Kuramitz, Y. Nakata, M. Kawasaki, S. Tanaka, Electrochemical oxidation of bisphenol A. Application to the removal of bisphenol A using a carbon fiber electrode, Chemosphere, 45 (2001) 37-43.
[29] M. Matsushita, H. Kuramitz, S. Tanaka, Electrochemical oxidation for low concentration of aniline in neutral pH medium: Application to the removal of aniline based on the electrochemical polymerization on a carbon fiber, Environmental Science & Technology, 39 (2005) 3805-3810.
[30] A. Grinberg, E. Korin, A. Bettelheim, Removal of phenol and derivatives from aqueous solutions by electropolymerization in aerogel carbon electrodes, Electrochemical and Solid State Letters, 8 (2005) E42-E44.
[31] V.P. Shinde, P.P. Patil, Investigation on role of monomer(s) during electrochemical polymerization of aniline and its derivatives on low carbon steel by XPS, Electrochimica Acta, 78 (2012) 483-494.
[32] J.D. Huang, X.M. Zhang, S. Liu, Q. Lin, X.R. He, X.R. Xing, W.J. Lian, Electrochemical sensor for bisphenol A detection based on molecularly imprinted polymers and gold nanoparticles, Journal of Applied Electrochemistry, 41 (2011) 1323-1328.
[33] F.G. Wang, J.Q. Yang, K.B. Wu, Mesoporous silica-based electrochemical sensor for sensitive determination of environmental hormone bisphenol A, Analytica Chimica Acta, 638 (2009) 23-28.
[34] C.J. Yan, L. Zou, R. Short, Single-walled carbon nanotubes and polyaniline composites for capacitive deionization, Desalination, 290 (2012) 125-129.
[35] 黃承業, 以電容去離子技術去除無機鹽類之電吸附行為研究, 東海大學 環境科學與工程學系 碩士論文, (2012).[36] 黃進益, 電化學的原理及應用, 高立出版社, (1998).
[37] 胡啟章, 電化學原理與方法(二版), 五南圖書出版公司, (2012).
[38] A. Ban, A. Schafer, H. Wendt, Fundamentals of electrosorption on activated carbon for wastewater treatment of industrial effluents, Journal of Applied Electrochemistry, 28 (1998) 227-236.
[39] G.P. Wang, L. Zhang, J.J. Zhang, A review of electrode materials for electrochemical supercapacitors, Chemical Society Reviews, 41 (2012) 797-828.
[40] C.O. Ania, F. Beguin, Mechanism of adsorption and electrosorption of bentazone on activated carbon cloth in aqueous solutions, Water Research, 41 (2007) 3372-3380.
[41] B.Z. Fang, L. Binder, A modified activated carbon aerogel for high-energy storage in electric double layer capacitors, Journal of Power Sources, 163 (2006) 616-622.
[42] C. Portet, Z. Yang, Y. Korenblit, Y. Gogotsi, R. Mokaya, G. Yushin, Electrical double-layer capacitance of zeolite-templated carbon in organic electrolyte, Journal of the Electrochemical Society, 156 (2009) A1-A6.
[43] B. Xu, F. Wu, R.J. Chen, G.P. Cao, S. Chen, Z.M. Zhou, Y.S. Yang, Highly mesoporous and high surface area carbon: A high capacitance electrode material for EDLCs with various electrolytes, Electrochemistry Communications, 10 (2008) 795-797.
[44] J. Mi, X.R. Wang, R.J. Fan, W.H. Qu, W.C. Li, Coconut-shell-based porous carbons with a tunable micro/mesopore ratio for high-performance supercapacitors, Energy & Fuels, 26 (2012) 5321-5329.
[45] W. Chen, L. Duan, D.Q. Zhu, Adsorption of polar and nonpolar organic chemicals to carbon nanotubes, Environmental Science & Technology, 41 (2007) 8295-8300.
[46] Y. Zhan, L. Pan, C. Nie, H. Li, Z. Sun, Carbon nanotube-chitosan composite electrodes for electrochemical removal of Cu(II) ions, Journal of Alloys and Compounds, 509 (2011) 5667-5671.
[47] C.M. Yu, L.L. Gou, X.H. Zhou, N. Bao, H.Y. Gu, Chitosan-Fe(3)O(4) nanocomposite based electrochemical sensors for the determination of bisphenol A, Electrochimica Acta, 56 (2011) 9056-9063.
[48] 國立編譯館, 實用儀器分析, 合記圖書出版社, (2003).
[49] 石宇華, 儀器分析化學, 鼎茂圖書出版有限公司, (1999).
[50] 何雍, 儀器分析總整理, 鼎茂圖書出版有限公司, (2004).
[51] K. Yang, L.Z. Zhu, B.S. Xing, Adsorption of polycyclic aromatic hydrocarbons by carbon nanomaterials, Environmental Science & Technology, 40 (2006) 1855-1861.
[52] Y.H. Han, X. Quan, X.L. Ruan, W.D. Zhang, Integrated electrochemically enhanced adsorption with electrochemical regeneration for removal of acid orange 7 using activated carbon fibers, Separation and Purification Technology, 59 (2008) 43-49.
[53] L.D. Zou, L.X. Li, H.H. Song, G. Morris, Using mesoporous carbon electrodes for brackish water desalination, Water Research, 42 (2008) 2340-2348.
[54] H. Kuramitz, J. Saitoh, T. Hattori, S. Tanaka, Electrochemical removal of p-nonylphenol from dilute solutions using a carbon fiber anode, Water Research, 36 (2002) 3323-3329.
[55] Y. Zhang, Q. Li, H. Cui, J.P. Zhai, Removal of phenols from the aqueous solutions based on their electrochemical polymerization on the polyaniline electrode, Electrochimica Acta, 55 (2010) 7219-7224.
[56] Y.K. Zhan, L.K. Pan, C.Y. Nie, H.B. Li, Z. Sun, Carbon nanotube-chitosan composite electrodes for electrochemical removal of Cu(II) ions, Journal of Alloys and Compounds, 509 (2011) 5667-5671.