跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/03/17 13:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃詩晴
研究生(外文):Shih Ching Huang
論文名稱:製備多壁奈米碳管/幾丁聚醣複合式電極以電吸附方式移除苯胺之研究
論文名稱(外文):Preparation of Multiwalled Carbon Nanotubes/Chitosan Composite Electrode for Removal of Aniline by Electrosorption
指導教授:鄧宗禹鄧宗禹引用關係侯嘉洪
口試委員:李公哲周佩欣
口試日期:2014-01-08
學位類別:碩士
校院名稱:東海大學
系所名稱:環境科學與工程學系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:114
中文關鍵詞:電吸附多壁奈米碳管幾丁聚醣苯胺
外文關鍵詞:electrosorptionmultiwalled carbon nanotubeschitosananiline
相關次數:
  • 被引用被引用:3
  • 點閱點閱:381
  • 評分評分:
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
苯胺(aniline)是普遍被應用於各種工業上的芳香族胺之一,而於工業用途方面,苯胺大部分被使用於藥物、樹酯及染料之製程中。苯胺屬於第三類毒性污染物質,具有可燃性與急毒性,因此考量其對於環境及生物健康方面有一定程度之危害,許多國家皆有設立法令控制其排放許可濃度。電化學技術被應用於去除鹽類、重金屬以及有機化合物,其應用範圍包含電降解方法(electrochemical degradation)、電聚合方法(electropolymerization),以及電吸附方法(electrosorption)。其中,電吸附的優點為低能量消耗、低成本、不需添加任何化學藥劑、操作簡單及維護容易。另外,多壁奈米碳管/幾丁聚醣複合式電極(multiwalled carbon nanotubes/chitosan composite electrode)的比表面積為106 m2/g,孔洞結構係主要以中孔洞所組成,並具有良好的導電性,以及電雙層電容器之特徵,因此對於帶電荷離子或是極性分子具有好的孔洞接受性。因此,本論文的主要研究目的為應用電吸附方法,使用多壁奈米碳管/幾丁聚醣複合式電極,移除水體中較低濃度的苯胺。於本研究中,使用循環伏安法(cycle voltammetry)來分析苯胺與電極之間的電化學特性,結果顯示在掃描電位於-0.6與+0.6 V之間,無氧化還原電流的產生,代表多壁奈米碳管/幾丁聚醣複合式電極與苯胺溶液的反應以電吸附反應機制為主,並無其他化學反應生成。在電吸附批次系統中,施加開放電流(open circuit)與− 0.6 V的電壓時,多壁奈米碳管/幾丁聚醣複合式電極對於0.1 mM苯胺的移除容量分別是0.19 mmol/g與0.12 mmol/g,而在+0.6 V的施加電壓時,可藉由極化電極作用,使得苯胺分子電吸附於複合式多壁奈米碳材的電極表面上,其移除容量可以顯著增加到0.31 mmol/g。另一方面,本研究尚有利用擬一階動力學模式及等溫吸附模式來進行電吸附行為之探討。此研究結果顯示,使用良好的奈米孔洞電極材料,藉由電吸附技術,有效增加吸附材料的吸附容量,可提升對於苯胺的移除效率。然而,為了進一步探討電壓對於電吸附效率及衍生物的影響,因而施加較高電壓於批次系統中。結果得知,雖然移除容量會隨著電壓的增加而上升,但施加電壓大於1.2 V時,疑似系統中的自由基的產生而破壞苯胺的苯環結構,其造成苯胺礦化(mineralization)並生成衍生物。
Aniline, as an important chemical material, has been used extensively in agriculture, drugs, dyes, conducting polymers and many other chemicals of current domestic and industrial interest. Exposure to aniline can occur in the workplace or in the environment following releases to air, water, land, or groundwater. Laboratory studies show that repeat exposure to large amounts of aniline in the diet over a lifetime causes cancer in animals. Aniline may likewise cause cancer in humans. Electrochemical methods for the treatment of wastewater include electrochemical degradation, electropolymerization and electrosorption. Carbon materials are considered as prospective electrode materials for electrochemical methods, including activated carbon, carbon aerogels, carbon nanofibres, and carbon nanotubes. The advantages of carbon materials include abundance, lower cost, easy processing, non-toxicity, higher specific surface area, good conductivity, and high chemical stability. In this study, electrosorption removal of aniline based on multiwalled carbon nanotubes/chitosan composite electrode by applying a potential at -0.6 V, open circuit, and +0.6 V, respectively. The removal capacity of electrosorption removal for 0.1 mM aniline solution is 0.19 mmol/g (-0.6 V), 0.12 mmol/g (O.C.) and 0.31 mmol/g (+0.6 V). Kinetics of electrosorption onto multiwalled carbon nanotubes/chitosan composite electrode was investigated. It was found that electrosorption of aniline follows pseudo- first order model. Isotherm was also investigated. It was found that both of Langmuir and Freundlich are match. It confirmed electrosorption can be successfully improved removal capacity. On the other hand, electrochemical degradation of aniline was studied by applying a potential at 1.2 V and 1.8 V.
目錄
摘要…………………………………………………………………………………...I
Abstract……………………………………………………………………………...III
致謝…………………………………………………………………………………..IV
目錄…………………………………………………………………………...............V
圖目錄………………………………………………………………………………VII
表目錄………………………………………………………………………...............X

第一章 緒論……………………………………………………………………..1
1.1 研究緣起…………………………………………………………………...1
1.2 研究目的…………………………………………………………………...2
第二章 文獻回顧………………………………………………………………….....3
2-1 苯胺………………………………………………………………………...3
2-1-1 苯胺之物化基本特性…………………………………………………3
2-1-2 應用範圍與現況………………………………………………………4
2-1-3 危害與影響…………………………………………………………....4
2-2 苯胺之處理方法……………………………………………………..…….6
2-3 電化學技術的應用……………………………………………………...…7
2-3-1 電降解方法………………………………………………………..…..7
2-3-2 電聚合方法…………………………………………………………..11
2-3-2-1 電聚合方法之機制介紹………………………………………..11
2-3-2-2 電聚合方法之應用……………………………………………..14
2-3-3 電吸附方法…………………………………………………………..17
2-4 奈米碳管………………………………………………………………….23
第三章 實驗材料與方法…………………………………………………………...25
3-1 實驗藥品………………………………………………………………….25
3-2 製作多壁奈米碳管複合電極…………………………………………….26
3-2-1 多壁奈米碳管之純化………………………………………….…….26
3-2-2 多壁奈米碳管之合成………………………………………………..28
3-3 多壁奈米碳管複合電極之表面特性分析……………………………….30
3-3-1 SEM及TEM分析…………………………………………………..30
3-3-2 比表面積與孔徑分析………………………………………………..30
3-3-3 傅立葉轉換紅外光譜儀檢測法……………………………………31
3-3-4 化學分析電子能譜儀檢測法………………………………………..32
3-4 多壁奈米碳管/幾丁聚醣複合式電極之電容特性分…...……………….33
3-5 苯胺之電化學特性分析………………………………………………….36
3-6 電化學方法移除苯胺溶液實驗………………………………………….38
3-6-1 電化學吸附實驗……………………………………………………..38
3-6-2 電壓對於電吸附效能之影響………………………………………38
3-6-3 移除容量……………………………………………………………..41
3-6-4 等溫吸附模式………………………………………………………..41
3-6-5 動力學模式…………………………………………………………42
3-6-6 苯胺水溶液檢測方法…………………………………….………..43
3-6-6-1 紫外光分光光度計檢測法(UV- Vis)…………………………..43
3-6-6-2 高效能液相層析儀檢測法(HPLC)…………………………….45
第四章 結果與討論…………………………………………………………………47
4-1 多壁奈米碳管複合電極之電容特性分析………………………….47
4-1-1 複合式電極之幾丁聚醣配比影響……………………..……47
4-1-2 掃描速率影響…………………………………………………..51
4-1-3 電流充放電實驗………………………………………………..53
4-2 多壁奈米碳管複合電極之表面型態分析………………………….54
4-2-1 電極的表面特性分析…………………………………………..54
4-2-2 比表面積與孔徑分析…………………………………………..57
4-3 苯胺之電化學特性分析…………………………………………….59
4-3-1 玻璃碳電極對於苯胺之電化學特性分析……………………..59
4-3-2 多壁奈米碳管複合電極對於苯胺之電化學特性分析………..63
4-3-2-1 電化學聚合反應於多壁奈米碳管/幾丁聚醣複合式電極.63
4-3-2-2 電解質對於電容特性之影響….………………………….64
4-3-2-3 掃描速率對於電容特性之影響…………………………..65
4-4 電化學方法移除水體中苯胺……………………………………….68
4-4-1 電吸附移除苯胺………………………………………………..68
4-4-2 電吸附機制……………………………………………………..73
4-4-3 分析經電吸附過後之電極……………………………………..75
4-4-3-1 複合電極之官能基分析…………………………………..75
4-4-3-2 複合電極之元素分析…………………………………….77
4-4-4 電壓影響之探討………………………………………………..81
4-4-4-1 電壓對於移除苯胺之影響…………………......................81
4-4-4-2 電壓對於衍生物之影響………………………………..…84
4-4-5 擬一階動力學分析…………………………………………….90
4-4-6 等溫吸附曲線………………………………………………….92
第五章 結論與建議…………………………………………………………………94
5-1 結論…………………………………………………………………94
5-2 建議…………………………………………………………………95
參考文獻……………………………………………………………………………..96

[1] C.H. Hou, J.F. Huang, H.R. Lin, B.Y. Wang, Preparation of activated carbon sheet electrode assisted electrosorption process, Journal of the Taiwan Institute of Chemical Engineers, 43 (2012) 473-479.
[2] C.H. Hou, C.Y. Huang, A comparative study of electrosorption selectivity of ions by activated carbon electrodes in capacitive deionization, Desalination, 314 (2013) 124-129.
[3] E. Bayram, N. Hoda, E. Ayranci, Adsorption/electrosorption of catechol and resorcinol onto high area activated carbon cloth, Journal of Hazardous Materials, 168 (2009) 1459-1466.
[4] E. Bayram, E. Ayranci, Electrochemically enhanced removal of polycyclic aromatic basic dyes from dilute aqueous solutions by activated carbon cloth electrodes, Environmental Science & Technology, 44 (2010) 6331-6336.
[5] Y.H. Han, X. Quan, S. Chen, H.M. Zhao, C.Y. Cui, Y.Z. Zhao, Electrochemically enhanced adsorption of aniline on activated carbon fibers, Separation and Purification Technology, 50 (2006) 365-372.
[6] X. Li, S. Chen, X. Quan, Y. Zhang, Enhanced adsorption of PFOA and PFOS on multiwalled carbon nanotubes under electrochemical assistance, Environmental Science & Technology, 45 (2011) 8498-8505.
[7] 行政院環保署, 物質安全資料表, 環保署列管編號:038-01.
[8] U.S. EPA, Aniline Fact Sheet, Pollution Prevention and Toxics (7407), EPA 749-F-95-002 (1994)
[9] F.J. O'Neill, K.C.A. Bromley-Challenor, R.J. Greenwood, J.S. Knapp, Bacterial growth on aniline: Implications for the biotreatment of industrial wastewater, Water Research, 34 (2000) 4397-4409.
[10] G. Ersoz, S. Atalay, Treatment of aniline by catalytic wet air oxidation: Comparative study over CuO/CeO2 and NiO/Al2O3, Journal of Environmental Management, 113 (2012) 244-250.
[11] Y. Jiang, C. Petrier, T.D. Waite, Effect of pH on the ultrasonic degradation of ionic aromatic compounds in aqueous solution, Ultrasonics Sonochemistry, 9 (2002) 163-168.
[12] K. Turhan, S. Uzman, The degradation products of aniline in the solutions with ozone and kinetic investigations, Annali Di Chimica, 97 (2007) 1129-1138.
[13] R. Devulapalli, F. Jones, Separation of aniline from aqueous solutions using emulsion liquid membranes, Journal of Hazardous Materials, 70 (1999) 157-170.
[14] D.M. Nevskaia, E. Castillejos-Lopez, V. Munoz, A. Guerrero-Ruiz, Adsorption of aromatic compounds from water by treated carbon materials, Environmental Science & Technology, 38 (2004) 5786-5796.
[15] S.L. Mu, J.Q. Kan, The effect of salts on the electrochemical polymerization of aniline, Synthetic Metals, 92 (1998) 149-155.
[16] X. Chen, X. Xia, P. Liang, X.X. Cao, H.T. Sun, X. Huang, Stacked microbial desalination cells to enhance water desalination efficiency, Environmental Science & Technology, 45 (2011) 2465-2470.
[17] L. Ciriaco, C. Anjo, M.J. Pacheco, A. Lopes, J. Correia, Electrochemical degradation of Ibuprofen on Ti/Pt/PbO2 and Si/BDD electrodes, Electrochimica Acta, 54 (2009) 1464-1472.
[18] G.A. Planes, J.L. Rodriguez, M.C. Miras, G. Garcia, E. Pastor, C.A. Barbero, Spectroscopic evidence for intermediate species formed during aniline polymerization and polyaniline degradation, Physical Chemistry Chemical Physics, 12 (2010) 10584-10593.
[19] J.J. Niu, B.E. Conway, Adsorptive and electrosorptive removal of aniline and bipyridyls from waste-waters, Journal of Electroanalytical Chemistry, 536 (2002) 83-92.
[20] K.Y. Foo, B.H. Hameed, A short review of activated carbon assisted electrosorption process: An overview, current stage and future prospects, Journal of Hazardous Materials, 170 (2009) 552-559.
[21] S.L. Ambuludi, M. Panizza, N. Oturan, A. Ozcan, M.A. Oturan, Kinetic behavior of anti-inflammatory drug ibuprofen in aqueous medium during its degradation by electrochemical advanced oxidation, Environmental Science and Pollution Research, 20 (2013) 2381-2389.
[22] Y.J. Li, F. Wang, G.D. Zhou, Y.M. Ni, Aniline degradation by electrocatalytic oxidation, Chemosphere, 53 (2003) 1229-1234.
[23] Y.H. Cui, X.Y. Li, G.H. Chen, Electrochemical degradation of bisphenol A on different anodes, Water Research, 43 (2009) 1968-1976.
[24] G.V. Korshin, J. Kim, L.L. Gan, Comparative study of reactions of endocrine disruptors bisphenol A and diethylstilbestrol in electrochemical treatment and chlorination, Water Research, 40 (2006) 1070-1078.
[25] M. Gattrell, D.W. Kirk, A study of the oxidation of phenol at platinum and preoxidized platinum surfaces, Journal of the Electrochemical Society, 140 (1993) 1534-1540.
[26] M. Ferreira, H. Varela, R.M. Torresi, G. Tremiliosi, Electrode passivation caused by polymerization of different phenolic compounds, Electrochimica Acta, 52 (2006) 434-442.
[27] H. Kuramitz, M. Matsushita, S. Tanaka, Electrochemical removal of bisphenol A based on the anodic polymerization using a column type carbon fiber electrode, Water Research, 38 (2004) 2331-2338.
[28] H. Kuramitz, Y. Nakata, M. Kawasaki, S. Tanaka, Electrochemical oxidation of bisphenol A. Application to the removal of bisphenol A using a carbon fiber electrode, Chemosphere, 45 (2001) 37-43.
[29] M. Matsushita, H. Kuramitz, S. Tanaka, Electrochemical oxidation for low concentration of aniline in neutral pH medium: Application to the removal of aniline based on the electrochemical polymerization on a carbon fiber, Environmental Science & Technology, 39 (2005) 3805-3810.
[30] A. Grinberg, E. Korin, A. Bettelheim, Removal of phenol and derivatives from aqueous solutions by electropolymerization in aerogel carbon electrodes, Electrochemical and Solid State Letters, 8 (2005) E42-E44.
[31] V.P. Shinde, P.P. Patil, Investigation on role of monomer(s) during electrochemical polymerization of aniline and its derivatives on low carbon steel by XPS, Electrochimica Acta, 78 (2012) 483-494.
[32] J.D. Huang, X.M. Zhang, S. Liu, Q. Lin, X.R. He, X.R. Xing, W.J. Lian, Electrochemical sensor for bisphenol A detection based on molecularly imprinted polymers and gold nanoparticles, Journal of Applied Electrochemistry, 41 (2011) 1323-1328.
[33] F.G. Wang, J.Q. Yang, K.B. Wu, Mesoporous silica-based electrochemical sensor for sensitive determination of environmental hormone bisphenol A, Analytica Chimica Acta, 638 (2009) 23-28.
[34] C.J. Yan, L. Zou, R. Short, Single-walled carbon nanotubes and polyaniline composites for capacitive deionization, Desalination, 290 (2012) 125-129.
[35] 黃承業, 以電容去離子技術去除無機鹽類之電吸附行為研究, 東海大學 環境科學與工程學系 碩士論文, (2012).
[36] 黃進益, 電化學的原理及應用, 高立出版社, (1998).
[37] 胡啟章, 電化學原理與方法(二版), 五南圖書出版公司, (2012).
[38] A. Ban, A. Schafer, H. Wendt, Fundamentals of electrosorption on activated carbon for wastewater treatment of industrial effluents, Journal of Applied Electrochemistry, 28 (1998) 227-236.
[39] G.P. Wang, L. Zhang, J.J. Zhang, A review of electrode materials for electrochemical supercapacitors, Chemical Society Reviews, 41 (2012) 797-828.
[40] C.O. Ania, F. Beguin, Mechanism of adsorption and electrosorption of bentazone on activated carbon cloth in aqueous solutions, Water Research, 41 (2007) 3372-3380.
[41] B.Z. Fang, L. Binder, A modified activated carbon aerogel for high-energy storage in electric double layer capacitors, Journal of Power Sources, 163 (2006) 616-622.
[42] C. Portet, Z. Yang, Y. Korenblit, Y. Gogotsi, R. Mokaya, G. Yushin, Electrical double-layer capacitance of zeolite-templated carbon in organic electrolyte, Journal of the Electrochemical Society, 156 (2009) A1-A6.
[43] B. Xu, F. Wu, R.J. Chen, G.P. Cao, S. Chen, Z.M. Zhou, Y.S. Yang, Highly mesoporous and high surface area carbon: A high capacitance electrode material for EDLCs with various electrolytes, Electrochemistry Communications, 10 (2008) 795-797.
[44] J. Mi, X.R. Wang, R.J. Fan, W.H. Qu, W.C. Li, Coconut-shell-based porous carbons with a tunable micro/mesopore ratio for high-performance supercapacitors, Energy & Fuels, 26 (2012) 5321-5329.
[45] W. Chen, L. Duan, D.Q. Zhu, Adsorption of polar and nonpolar organic chemicals to carbon nanotubes, Environmental Science & Technology, 41 (2007) 8295-8300.
[46] Y. Zhan, L. Pan, C. Nie, H. Li, Z. Sun, Carbon nanotube-chitosan composite electrodes for electrochemical removal of Cu(II) ions, Journal of Alloys and Compounds, 509 (2011) 5667-5671.
[47] C.M. Yu, L.L. Gou, X.H. Zhou, N. Bao, H.Y. Gu, Chitosan-Fe(3)O(4) nanocomposite based electrochemical sensors for the determination of bisphenol A, Electrochimica Acta, 56 (2011) 9056-9063.
[48] 國立編譯館, 實用儀器分析, 合記圖書出版社, (2003).
[49] 石宇華, 儀器分析化學, 鼎茂圖書出版有限公司, (1999).
[50] 何雍, 儀器分析總整理, 鼎茂圖書出版有限公司, (2004).
[51] K. Yang, L.Z. Zhu, B.S. Xing, Adsorption of polycyclic aromatic hydrocarbons by carbon nanomaterials, Environmental Science & Technology, 40 (2006) 1855-1861.
[52] Y.H. Han, X. Quan, X.L. Ruan, W.D. Zhang, Integrated electrochemically enhanced adsorption with electrochemical regeneration for removal of acid orange 7 using activated carbon fibers, Separation and Purification Technology, 59 (2008) 43-49.
[53] L.D. Zou, L.X. Li, H.H. Song, G. Morris, Using mesoporous carbon electrodes for brackish water desalination, Water Research, 42 (2008) 2340-2348.
[54] H. Kuramitz, J. Saitoh, T. Hattori, S. Tanaka, Electrochemical removal of p-nonylphenol from dilute solutions using a carbon fiber anode, Water Research, 36 (2002) 3323-3329.
[55] Y. Zhang, Q. Li, H. Cui, J.P. Zhai, Removal of phenols from the aqueous solutions based on their electrochemical polymerization on the polyaniline electrode, Electrochimica Acta, 55 (2010) 7219-7224.
[56] Y.K. Zhan, L.K. Pan, C.Y. Nie, H.B. Li, Z. Sun, Carbon nanotube-chitosan composite electrodes for electrochemical removal of Cu(II) ions, Journal of Alloys and Compounds, 509 (2011) 5667-5671.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top